xref: /linux/arch/x86/kernel/fpu/core.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 #include <asm/irq_regs.h>
14 
15 #include <linux/hardirq.h>
16 #include <linux/pkeys.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <asm/trace/fpu.h>
20 
21 /*
22  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
23  * depending on the FPU hardware format:
24  */
25 union fpregs_state init_fpstate __read_mostly;
26 
27 /*
28  * Track whether the kernel is using the FPU state
29  * currently.
30  *
31  * This flag is used:
32  *
33  *   - by IRQ context code to potentially use the FPU
34  *     if it's unused.
35  *
36  *   - to debug kernel_fpu_begin()/end() correctness
37  */
38 static DEFINE_PER_CPU(bool, in_kernel_fpu);
39 
40 /*
41  * Track which context is using the FPU on the CPU:
42  */
43 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
44 
45 static void kernel_fpu_disable(void)
46 {
47 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
48 	this_cpu_write(in_kernel_fpu, true);
49 }
50 
51 static void kernel_fpu_enable(void)
52 {
53 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
54 	this_cpu_write(in_kernel_fpu, false);
55 }
56 
57 static bool kernel_fpu_disabled(void)
58 {
59 	return this_cpu_read(in_kernel_fpu);
60 }
61 
62 static bool interrupted_kernel_fpu_idle(void)
63 {
64 	return !kernel_fpu_disabled();
65 }
66 
67 /*
68  * Were we in user mode (or vm86 mode) when we were
69  * interrupted?
70  *
71  * Doing kernel_fpu_begin/end() is ok if we are running
72  * in an interrupt context from user mode - we'll just
73  * save the FPU state as required.
74  */
75 static bool interrupted_user_mode(void)
76 {
77 	struct pt_regs *regs = get_irq_regs();
78 	return regs && user_mode(regs);
79 }
80 
81 /*
82  * Can we use the FPU in kernel mode with the
83  * whole "kernel_fpu_begin/end()" sequence?
84  *
85  * It's always ok in process context (ie "not interrupt")
86  * but it is sometimes ok even from an irq.
87  */
88 bool irq_fpu_usable(void)
89 {
90 	return !in_interrupt() ||
91 		interrupted_user_mode() ||
92 		interrupted_kernel_fpu_idle();
93 }
94 EXPORT_SYMBOL(irq_fpu_usable);
95 
96 void __kernel_fpu_begin(void)
97 {
98 	struct fpu *fpu = &current->thread.fpu;
99 
100 	WARN_ON_FPU(!irq_fpu_usable());
101 
102 	kernel_fpu_disable();
103 
104 	if (fpu->initialized) {
105 		/*
106 		 * Ignore return value -- we don't care if reg state
107 		 * is clobbered.
108 		 */
109 		copy_fpregs_to_fpstate(fpu);
110 	} else {
111 		__cpu_invalidate_fpregs_state();
112 	}
113 }
114 EXPORT_SYMBOL(__kernel_fpu_begin);
115 
116 void __kernel_fpu_end(void)
117 {
118 	struct fpu *fpu = &current->thread.fpu;
119 
120 	if (fpu->initialized)
121 		copy_kernel_to_fpregs(&fpu->state);
122 
123 	kernel_fpu_enable();
124 }
125 EXPORT_SYMBOL(__kernel_fpu_end);
126 
127 void kernel_fpu_begin(void)
128 {
129 	preempt_disable();
130 	__kernel_fpu_begin();
131 }
132 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
133 
134 void kernel_fpu_end(void)
135 {
136 	__kernel_fpu_end();
137 	preempt_enable();
138 }
139 EXPORT_SYMBOL_GPL(kernel_fpu_end);
140 
141 /*
142  * Save the FPU state (mark it for reload if necessary):
143  *
144  * This only ever gets called for the current task.
145  */
146 void fpu__save(struct fpu *fpu)
147 {
148 	WARN_ON_FPU(fpu != &current->thread.fpu);
149 
150 	preempt_disable();
151 	trace_x86_fpu_before_save(fpu);
152 	if (fpu->initialized) {
153 		if (!copy_fpregs_to_fpstate(fpu)) {
154 			copy_kernel_to_fpregs(&fpu->state);
155 		}
156 	}
157 	trace_x86_fpu_after_save(fpu);
158 	preempt_enable();
159 }
160 EXPORT_SYMBOL_GPL(fpu__save);
161 
162 /*
163  * Legacy x87 fpstate state init:
164  */
165 static inline void fpstate_init_fstate(struct fregs_state *fp)
166 {
167 	fp->cwd = 0xffff037fu;
168 	fp->swd = 0xffff0000u;
169 	fp->twd = 0xffffffffu;
170 	fp->fos = 0xffff0000u;
171 }
172 
173 void fpstate_init(union fpregs_state *state)
174 {
175 	if (!static_cpu_has(X86_FEATURE_FPU)) {
176 		fpstate_init_soft(&state->soft);
177 		return;
178 	}
179 
180 	memset(state, 0, fpu_kernel_xstate_size);
181 
182 	if (static_cpu_has(X86_FEATURE_XSAVES))
183 		fpstate_init_xstate(&state->xsave);
184 	if (static_cpu_has(X86_FEATURE_FXSR))
185 		fpstate_init_fxstate(&state->fxsave);
186 	else
187 		fpstate_init_fstate(&state->fsave);
188 }
189 EXPORT_SYMBOL_GPL(fpstate_init);
190 
191 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
192 {
193 	dst_fpu->last_cpu = -1;
194 
195 	if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
196 		return 0;
197 
198 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
199 
200 	/*
201 	 * Don't let 'init optimized' areas of the XSAVE area
202 	 * leak into the child task:
203 	 */
204 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
205 
206 	/*
207 	 * Save current FPU registers directly into the child
208 	 * FPU context, without any memory-to-memory copying.
209 	 *
210 	 * ( The function 'fails' in the FNSAVE case, which destroys
211 	 *   register contents so we have to copy them back. )
212 	 */
213 	if (!copy_fpregs_to_fpstate(dst_fpu)) {
214 		memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
215 		copy_kernel_to_fpregs(&src_fpu->state);
216 	}
217 
218 	trace_x86_fpu_copy_src(src_fpu);
219 	trace_x86_fpu_copy_dst(dst_fpu);
220 
221 	return 0;
222 }
223 
224 /*
225  * Activate the current task's in-memory FPU context,
226  * if it has not been used before:
227  */
228 void fpu__initialize(struct fpu *fpu)
229 {
230 	WARN_ON_FPU(fpu != &current->thread.fpu);
231 
232 	if (!fpu->initialized) {
233 		fpstate_init(&fpu->state);
234 		trace_x86_fpu_init_state(fpu);
235 
236 		trace_x86_fpu_activate_state(fpu);
237 		/* Safe to do for the current task: */
238 		fpu->initialized = 1;
239 	}
240 }
241 EXPORT_SYMBOL_GPL(fpu__initialize);
242 
243 /*
244  * This function must be called before we read a task's fpstate.
245  *
246  * There's two cases where this gets called:
247  *
248  * - for the current task (when coredumping), in which case we have
249  *   to save the latest FPU registers into the fpstate,
250  *
251  * - or it's called for stopped tasks (ptrace), in which case the
252  *   registers were already saved by the context-switch code when
253  *   the task scheduled out - we only have to initialize the registers
254  *   if they've never been initialized.
255  *
256  * If the task has used the FPU before then save it.
257  */
258 void fpu__prepare_read(struct fpu *fpu)
259 {
260 	if (fpu == &current->thread.fpu) {
261 		fpu__save(fpu);
262 	} else {
263 		if (!fpu->initialized) {
264 			fpstate_init(&fpu->state);
265 			trace_x86_fpu_init_state(fpu);
266 
267 			trace_x86_fpu_activate_state(fpu);
268 			/* Safe to do for current and for stopped child tasks: */
269 			fpu->initialized = 1;
270 		}
271 	}
272 }
273 
274 /*
275  * This function must be called before we write a task's fpstate.
276  *
277  * If the task has used the FPU before then invalidate any cached FPU registers.
278  * If the task has not used the FPU before then initialize its fpstate.
279  *
280  * After this function call, after registers in the fpstate are
281  * modified and the child task has woken up, the child task will
282  * restore the modified FPU state from the modified context. If we
283  * didn't clear its cached status here then the cached in-registers
284  * state pending on its former CPU could be restored, corrupting
285  * the modifications.
286  */
287 void fpu__prepare_write(struct fpu *fpu)
288 {
289 	/*
290 	 * Only stopped child tasks can be used to modify the FPU
291 	 * state in the fpstate buffer:
292 	 */
293 	WARN_ON_FPU(fpu == &current->thread.fpu);
294 
295 	if (fpu->initialized) {
296 		/* Invalidate any cached state: */
297 		__fpu_invalidate_fpregs_state(fpu);
298 	} else {
299 		fpstate_init(&fpu->state);
300 		trace_x86_fpu_init_state(fpu);
301 
302 		trace_x86_fpu_activate_state(fpu);
303 		/* Safe to do for stopped child tasks: */
304 		fpu->initialized = 1;
305 	}
306 }
307 
308 /*
309  * 'fpu__restore()' is called to copy FPU registers from
310  * the FPU fpstate to the live hw registers and to activate
311  * access to the hardware registers, so that FPU instructions
312  * can be used afterwards.
313  *
314  * Must be called with kernel preemption disabled (for example
315  * with local interrupts disabled, as it is in the case of
316  * do_device_not_available()).
317  */
318 void fpu__restore(struct fpu *fpu)
319 {
320 	fpu__initialize(fpu);
321 
322 	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
323 	kernel_fpu_disable();
324 	trace_x86_fpu_before_restore(fpu);
325 	fpregs_activate(fpu);
326 	copy_kernel_to_fpregs(&fpu->state);
327 	trace_x86_fpu_after_restore(fpu);
328 	kernel_fpu_enable();
329 }
330 EXPORT_SYMBOL_GPL(fpu__restore);
331 
332 /*
333  * Drops current FPU state: deactivates the fpregs and
334  * the fpstate. NOTE: it still leaves previous contents
335  * in the fpregs in the eager-FPU case.
336  *
337  * This function can be used in cases where we know that
338  * a state-restore is coming: either an explicit one,
339  * or a reschedule.
340  */
341 void fpu__drop(struct fpu *fpu)
342 {
343 	preempt_disable();
344 
345 	if (fpu == &current->thread.fpu) {
346 		if (fpu->initialized) {
347 			/* Ignore delayed exceptions from user space */
348 			asm volatile("1: fwait\n"
349 				     "2:\n"
350 				     _ASM_EXTABLE(1b, 2b));
351 			fpregs_deactivate(fpu);
352 		}
353 	}
354 
355 	fpu->initialized = 0;
356 
357 	trace_x86_fpu_dropped(fpu);
358 
359 	preempt_enable();
360 }
361 
362 /*
363  * Clear FPU registers by setting them up from
364  * the init fpstate:
365  */
366 static inline void copy_init_fpstate_to_fpregs(void)
367 {
368 	if (use_xsave())
369 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
370 	else if (static_cpu_has(X86_FEATURE_FXSR))
371 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
372 	else
373 		copy_kernel_to_fregs(&init_fpstate.fsave);
374 
375 	if (boot_cpu_has(X86_FEATURE_OSPKE))
376 		copy_init_pkru_to_fpregs();
377 }
378 
379 /*
380  * Clear the FPU state back to init state.
381  *
382  * Called by sys_execve(), by the signal handler code and by various
383  * error paths.
384  */
385 void fpu__clear(struct fpu *fpu)
386 {
387 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
388 
389 	fpu__drop(fpu);
390 
391 	/*
392 	 * Make sure fpstate is cleared and initialized.
393 	 */
394 	if (static_cpu_has(X86_FEATURE_FPU)) {
395 		preempt_disable();
396 		fpu__initialize(fpu);
397 		user_fpu_begin();
398 		copy_init_fpstate_to_fpregs();
399 		preempt_enable();
400 	}
401 }
402 
403 /*
404  * x87 math exception handling:
405  */
406 
407 int fpu__exception_code(struct fpu *fpu, int trap_nr)
408 {
409 	int err;
410 
411 	if (trap_nr == X86_TRAP_MF) {
412 		unsigned short cwd, swd;
413 		/*
414 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
415 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
416 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
417 		 * fault bit.  We should only be taking one exception at a time,
418 		 * so if this combination doesn't produce any single exception,
419 		 * then we have a bad program that isn't synchronizing its FPU usage
420 		 * and it will suffer the consequences since we won't be able to
421 		 * fully reproduce the context of the exception.
422 		 */
423 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
424 			cwd = fpu->state.fxsave.cwd;
425 			swd = fpu->state.fxsave.swd;
426 		} else {
427 			cwd = (unsigned short)fpu->state.fsave.cwd;
428 			swd = (unsigned short)fpu->state.fsave.swd;
429 		}
430 
431 		err = swd & ~cwd;
432 	} else {
433 		/*
434 		 * The SIMD FPU exceptions are handled a little differently, as there
435 		 * is only a single status/control register.  Thus, to determine which
436 		 * unmasked exception was caught we must mask the exception mask bits
437 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
438 		 */
439 		unsigned short mxcsr = MXCSR_DEFAULT;
440 
441 		if (boot_cpu_has(X86_FEATURE_XMM))
442 			mxcsr = fpu->state.fxsave.mxcsr;
443 
444 		err = ~(mxcsr >> 7) & mxcsr;
445 	}
446 
447 	if (err & 0x001) {	/* Invalid op */
448 		/*
449 		 * swd & 0x240 == 0x040: Stack Underflow
450 		 * swd & 0x240 == 0x240: Stack Overflow
451 		 * User must clear the SF bit (0x40) if set
452 		 */
453 		return FPE_FLTINV;
454 	} else if (err & 0x004) { /* Divide by Zero */
455 		return FPE_FLTDIV;
456 	} else if (err & 0x008) { /* Overflow */
457 		return FPE_FLTOVF;
458 	} else if (err & 0x012) { /* Denormal, Underflow */
459 		return FPE_FLTUND;
460 	} else if (err & 0x020) { /* Precision */
461 		return FPE_FLTRES;
462 	}
463 
464 	/*
465 	 * If we're using IRQ 13, or supposedly even some trap
466 	 * X86_TRAP_MF implementations, it's possible
467 	 * we get a spurious trap, which is not an error.
468 	 */
469 	return 0;
470 }
471