xref: /linux/arch/x86/kernel/fpu/core.c (revision a2cce7a9f1b8cc3d4edce106fb971529f1d4d9ce)
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/traps.h>
12 
13 #include <linux/hardirq.h>
14 
15 /*
16  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
17  * depending on the FPU hardware format:
18  */
19 union fpregs_state init_fpstate __read_mostly;
20 
21 /*
22  * Track whether the kernel is using the FPU state
23  * currently.
24  *
25  * This flag is used:
26  *
27  *   - by IRQ context code to potentially use the FPU
28  *     if it's unused.
29  *
30  *   - to debug kernel_fpu_begin()/end() correctness
31  */
32 static DEFINE_PER_CPU(bool, in_kernel_fpu);
33 
34 /*
35  * Track which context is using the FPU on the CPU:
36  */
37 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
38 
39 static void kernel_fpu_disable(void)
40 {
41 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
42 	this_cpu_write(in_kernel_fpu, true);
43 }
44 
45 static void kernel_fpu_enable(void)
46 {
47 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
48 	this_cpu_write(in_kernel_fpu, false);
49 }
50 
51 static bool kernel_fpu_disabled(void)
52 {
53 	return this_cpu_read(in_kernel_fpu);
54 }
55 
56 /*
57  * Were we in an interrupt that interrupted kernel mode?
58  *
59  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
60  * pair does nothing at all: the thread must not have fpu (so
61  * that we don't try to save the FPU state), and TS must
62  * be set (so that the clts/stts pair does nothing that is
63  * visible in the interrupted kernel thread).
64  *
65  * Except for the eagerfpu case when we return true; in the likely case
66  * the thread has FPU but we are not going to set/clear TS.
67  */
68 static bool interrupted_kernel_fpu_idle(void)
69 {
70 	if (kernel_fpu_disabled())
71 		return false;
72 
73 	if (use_eager_fpu())
74 		return true;
75 
76 	return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
77 }
78 
79 /*
80  * Were we in user mode (or vm86 mode) when we were
81  * interrupted?
82  *
83  * Doing kernel_fpu_begin/end() is ok if we are running
84  * in an interrupt context from user mode - we'll just
85  * save the FPU state as required.
86  */
87 static bool interrupted_user_mode(void)
88 {
89 	struct pt_regs *regs = get_irq_regs();
90 	return regs && user_mode(regs);
91 }
92 
93 /*
94  * Can we use the FPU in kernel mode with the
95  * whole "kernel_fpu_begin/end()" sequence?
96  *
97  * It's always ok in process context (ie "not interrupt")
98  * but it is sometimes ok even from an irq.
99  */
100 bool irq_fpu_usable(void)
101 {
102 	return !in_interrupt() ||
103 		interrupted_user_mode() ||
104 		interrupted_kernel_fpu_idle();
105 }
106 EXPORT_SYMBOL(irq_fpu_usable);
107 
108 void __kernel_fpu_begin(void)
109 {
110 	struct fpu *fpu = &current->thread.fpu;
111 
112 	WARN_ON_FPU(!irq_fpu_usable());
113 
114 	kernel_fpu_disable();
115 
116 	if (fpu->fpregs_active) {
117 		copy_fpregs_to_fpstate(fpu);
118 	} else {
119 		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
120 		__fpregs_activate_hw();
121 	}
122 }
123 EXPORT_SYMBOL(__kernel_fpu_begin);
124 
125 void __kernel_fpu_end(void)
126 {
127 	struct fpu *fpu = &current->thread.fpu;
128 
129 	if (fpu->fpregs_active)
130 		copy_kernel_to_fpregs(&fpu->state);
131 	else
132 		__fpregs_deactivate_hw();
133 
134 	kernel_fpu_enable();
135 }
136 EXPORT_SYMBOL(__kernel_fpu_end);
137 
138 void kernel_fpu_begin(void)
139 {
140 	preempt_disable();
141 	__kernel_fpu_begin();
142 }
143 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
144 
145 void kernel_fpu_end(void)
146 {
147 	__kernel_fpu_end();
148 	preempt_enable();
149 }
150 EXPORT_SYMBOL_GPL(kernel_fpu_end);
151 
152 /*
153  * CR0::TS save/restore functions:
154  */
155 int irq_ts_save(void)
156 {
157 	/*
158 	 * If in process context and not atomic, we can take a spurious DNA fault.
159 	 * Otherwise, doing clts() in process context requires disabling preemption
160 	 * or some heavy lifting like kernel_fpu_begin()
161 	 */
162 	if (!in_atomic())
163 		return 0;
164 
165 	if (read_cr0() & X86_CR0_TS) {
166 		clts();
167 		return 1;
168 	}
169 
170 	return 0;
171 }
172 EXPORT_SYMBOL_GPL(irq_ts_save);
173 
174 void irq_ts_restore(int TS_state)
175 {
176 	if (TS_state)
177 		stts();
178 }
179 EXPORT_SYMBOL_GPL(irq_ts_restore);
180 
181 /*
182  * Save the FPU state (mark it for reload if necessary):
183  *
184  * This only ever gets called for the current task.
185  */
186 void fpu__save(struct fpu *fpu)
187 {
188 	WARN_ON_FPU(fpu != &current->thread.fpu);
189 
190 	preempt_disable();
191 	if (fpu->fpregs_active) {
192 		if (!copy_fpregs_to_fpstate(fpu))
193 			fpregs_deactivate(fpu);
194 	}
195 	preempt_enable();
196 }
197 EXPORT_SYMBOL_GPL(fpu__save);
198 
199 /*
200  * Legacy x87 fpstate state init:
201  */
202 static inline void fpstate_init_fstate(struct fregs_state *fp)
203 {
204 	fp->cwd = 0xffff037fu;
205 	fp->swd = 0xffff0000u;
206 	fp->twd = 0xffffffffu;
207 	fp->fos = 0xffff0000u;
208 }
209 
210 void fpstate_init(union fpregs_state *state)
211 {
212 	if (!cpu_has_fpu) {
213 		fpstate_init_soft(&state->soft);
214 		return;
215 	}
216 
217 	memset(state, 0, xstate_size);
218 
219 	if (cpu_has_fxsr)
220 		fpstate_init_fxstate(&state->fxsave);
221 	else
222 		fpstate_init_fstate(&state->fsave);
223 }
224 EXPORT_SYMBOL_GPL(fpstate_init);
225 
226 /*
227  * Copy the current task's FPU state to a new task's FPU context.
228  *
229  * In both the 'eager' and the 'lazy' case we save hardware registers
230  * directly to the destination buffer.
231  */
232 static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
233 {
234 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
235 
236 	/*
237 	 * Don't let 'init optimized' areas of the XSAVE area
238 	 * leak into the child task:
239 	 */
240 	if (use_eager_fpu())
241 		memset(&dst_fpu->state.xsave, 0, xstate_size);
242 
243 	/*
244 	 * Save current FPU registers directly into the child
245 	 * FPU context, without any memory-to-memory copying.
246 	 *
247 	 * If the FPU context got destroyed in the process (FNSAVE
248 	 * done on old CPUs) then copy it back into the source
249 	 * context and mark the current task for lazy restore.
250 	 *
251 	 * We have to do all this with preemption disabled,
252 	 * mostly because of the FNSAVE case, because in that
253 	 * case we must not allow preemption in the window
254 	 * between the FNSAVE and us marking the context lazy.
255 	 *
256 	 * It shouldn't be an issue as even FNSAVE is plenty
257 	 * fast in terms of critical section length.
258 	 */
259 	preempt_disable();
260 	if (!copy_fpregs_to_fpstate(dst_fpu)) {
261 		memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
262 		fpregs_deactivate(src_fpu);
263 	}
264 	preempt_enable();
265 }
266 
267 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
268 {
269 	dst_fpu->counter = 0;
270 	dst_fpu->fpregs_active = 0;
271 	dst_fpu->last_cpu = -1;
272 
273 	if (src_fpu->fpstate_active && cpu_has_fpu)
274 		fpu_copy(dst_fpu, src_fpu);
275 
276 	return 0;
277 }
278 
279 /*
280  * Activate the current task's in-memory FPU context,
281  * if it has not been used before:
282  */
283 void fpu__activate_curr(struct fpu *fpu)
284 {
285 	WARN_ON_FPU(fpu != &current->thread.fpu);
286 
287 	if (!fpu->fpstate_active) {
288 		fpstate_init(&fpu->state);
289 
290 		/* Safe to do for the current task: */
291 		fpu->fpstate_active = 1;
292 	}
293 }
294 EXPORT_SYMBOL_GPL(fpu__activate_curr);
295 
296 /*
297  * This function must be called before we read a task's fpstate.
298  *
299  * If the task has not used the FPU before then initialize its
300  * fpstate.
301  *
302  * If the task has used the FPU before then save it.
303  */
304 void fpu__activate_fpstate_read(struct fpu *fpu)
305 {
306 	/*
307 	 * If fpregs are active (in the current CPU), then
308 	 * copy them to the fpstate:
309 	 */
310 	if (fpu->fpregs_active) {
311 		fpu__save(fpu);
312 	} else {
313 		if (!fpu->fpstate_active) {
314 			fpstate_init(&fpu->state);
315 
316 			/* Safe to do for current and for stopped child tasks: */
317 			fpu->fpstate_active = 1;
318 		}
319 	}
320 }
321 
322 /*
323  * This function must be called before we write a task's fpstate.
324  *
325  * If the task has used the FPU before then unlazy it.
326  * If the task has not used the FPU before then initialize its fpstate.
327  *
328  * After this function call, after registers in the fpstate are
329  * modified and the child task has woken up, the child task will
330  * restore the modified FPU state from the modified context. If we
331  * didn't clear its lazy status here then the lazy in-registers
332  * state pending on its former CPU could be restored, corrupting
333  * the modifications.
334  */
335 void fpu__activate_fpstate_write(struct fpu *fpu)
336 {
337 	/*
338 	 * Only stopped child tasks can be used to modify the FPU
339 	 * state in the fpstate buffer:
340 	 */
341 	WARN_ON_FPU(fpu == &current->thread.fpu);
342 
343 	if (fpu->fpstate_active) {
344 		/* Invalidate any lazy state: */
345 		fpu->last_cpu = -1;
346 	} else {
347 		fpstate_init(&fpu->state);
348 
349 		/* Safe to do for stopped child tasks: */
350 		fpu->fpstate_active = 1;
351 	}
352 }
353 
354 /*
355  * 'fpu__restore()' is called to copy FPU registers from
356  * the FPU fpstate to the live hw registers and to activate
357  * access to the hardware registers, so that FPU instructions
358  * can be used afterwards.
359  *
360  * Must be called with kernel preemption disabled (for example
361  * with local interrupts disabled, as it is in the case of
362  * do_device_not_available()).
363  */
364 void fpu__restore(struct fpu *fpu)
365 {
366 	fpu__activate_curr(fpu);
367 
368 	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
369 	kernel_fpu_disable();
370 	fpregs_activate(fpu);
371 	copy_kernel_to_fpregs(&fpu->state);
372 	fpu->counter++;
373 	kernel_fpu_enable();
374 }
375 EXPORT_SYMBOL_GPL(fpu__restore);
376 
377 /*
378  * Drops current FPU state: deactivates the fpregs and
379  * the fpstate. NOTE: it still leaves previous contents
380  * in the fpregs in the eager-FPU case.
381  *
382  * This function can be used in cases where we know that
383  * a state-restore is coming: either an explicit one,
384  * or a reschedule.
385  */
386 void fpu__drop(struct fpu *fpu)
387 {
388 	preempt_disable();
389 	fpu->counter = 0;
390 
391 	if (fpu->fpregs_active) {
392 		/* Ignore delayed exceptions from user space */
393 		asm volatile("1: fwait\n"
394 			     "2:\n"
395 			     _ASM_EXTABLE(1b, 2b));
396 		fpregs_deactivate(fpu);
397 	}
398 
399 	fpu->fpstate_active = 0;
400 
401 	preempt_enable();
402 }
403 
404 /*
405  * Clear FPU registers by setting them up from
406  * the init fpstate:
407  */
408 static inline void copy_init_fpstate_to_fpregs(void)
409 {
410 	if (use_xsave())
411 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
412 	else
413 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
414 }
415 
416 /*
417  * Clear the FPU state back to init state.
418  *
419  * Called by sys_execve(), by the signal handler code and by various
420  * error paths.
421  */
422 void fpu__clear(struct fpu *fpu)
423 {
424 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
425 
426 	if (!use_eager_fpu()) {
427 		/* FPU state will be reallocated lazily at the first use. */
428 		fpu__drop(fpu);
429 	} else {
430 		if (!fpu->fpstate_active) {
431 			fpu__activate_curr(fpu);
432 			user_fpu_begin();
433 		}
434 		copy_init_fpstate_to_fpregs();
435 	}
436 }
437 
438 /*
439  * x87 math exception handling:
440  */
441 
442 static inline unsigned short get_fpu_cwd(struct fpu *fpu)
443 {
444 	if (cpu_has_fxsr) {
445 		return fpu->state.fxsave.cwd;
446 	} else {
447 		return (unsigned short)fpu->state.fsave.cwd;
448 	}
449 }
450 
451 static inline unsigned short get_fpu_swd(struct fpu *fpu)
452 {
453 	if (cpu_has_fxsr) {
454 		return fpu->state.fxsave.swd;
455 	} else {
456 		return (unsigned short)fpu->state.fsave.swd;
457 	}
458 }
459 
460 static inline unsigned short get_fpu_mxcsr(struct fpu *fpu)
461 {
462 	if (cpu_has_xmm) {
463 		return fpu->state.fxsave.mxcsr;
464 	} else {
465 		return MXCSR_DEFAULT;
466 	}
467 }
468 
469 int fpu__exception_code(struct fpu *fpu, int trap_nr)
470 {
471 	int err;
472 
473 	if (trap_nr == X86_TRAP_MF) {
474 		unsigned short cwd, swd;
475 		/*
476 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
477 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
478 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
479 		 * fault bit.  We should only be taking one exception at a time,
480 		 * so if this combination doesn't produce any single exception,
481 		 * then we have a bad program that isn't synchronizing its FPU usage
482 		 * and it will suffer the consequences since we won't be able to
483 		 * fully reproduce the context of the exception
484 		 */
485 		cwd = get_fpu_cwd(fpu);
486 		swd = get_fpu_swd(fpu);
487 
488 		err = swd & ~cwd;
489 	} else {
490 		/*
491 		 * The SIMD FPU exceptions are handled a little differently, as there
492 		 * is only a single status/control register.  Thus, to determine which
493 		 * unmasked exception was caught we must mask the exception mask bits
494 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
495 		 */
496 		unsigned short mxcsr = get_fpu_mxcsr(fpu);
497 		err = ~(mxcsr >> 7) & mxcsr;
498 	}
499 
500 	if (err & 0x001) {	/* Invalid op */
501 		/*
502 		 * swd & 0x240 == 0x040: Stack Underflow
503 		 * swd & 0x240 == 0x240: Stack Overflow
504 		 * User must clear the SF bit (0x40) if set
505 		 */
506 		return FPE_FLTINV;
507 	} else if (err & 0x004) { /* Divide by Zero */
508 		return FPE_FLTDIV;
509 	} else if (err & 0x008) { /* Overflow */
510 		return FPE_FLTOVF;
511 	} else if (err & 0x012) { /* Denormal, Underflow */
512 		return FPE_FLTUND;
513 	} else if (err & 0x020) { /* Precision */
514 		return FPE_FLTRES;
515 	}
516 
517 	/*
518 	 * If we're using IRQ 13, or supposedly even some trap
519 	 * X86_TRAP_MF implementations, it's possible
520 	 * we get a spurious trap, which is not an error.
521 	 */
522 	return 0;
523 }
524