1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * General FPU state handling cleanups 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 #include <asm/fpu/api.h> 10 #include <asm/fpu/regset.h> 11 #include <asm/fpu/sched.h> 12 #include <asm/fpu/signal.h> 13 #include <asm/fpu/types.h> 14 #include <asm/traps.h> 15 #include <asm/irq_regs.h> 16 17 #include <linux/hardirq.h> 18 #include <linux/pkeys.h> 19 #include <linux/vmalloc.h> 20 21 #include "context.h" 22 #include "internal.h" 23 #include "legacy.h" 24 #include "xstate.h" 25 26 #define CREATE_TRACE_POINTS 27 #include <asm/trace/fpu.h> 28 29 #ifdef CONFIG_X86_64 30 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic); 31 DEFINE_PER_CPU(u64, xfd_state); 32 #endif 33 34 /* The FPU state configuration data for kernel and user space */ 35 struct fpu_state_config fpu_kernel_cfg __ro_after_init; 36 struct fpu_state_config fpu_user_cfg __ro_after_init; 37 38 /* 39 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 40 * depending on the FPU hardware format: 41 */ 42 struct fpstate init_fpstate __ro_after_init; 43 44 /* 45 * Track whether the kernel is using the FPU state 46 * currently. 47 * 48 * This flag is used: 49 * 50 * - by IRQ context code to potentially use the FPU 51 * if it's unused. 52 * 53 * - to debug kernel_fpu_begin()/end() correctness 54 */ 55 static DEFINE_PER_CPU(bool, in_kernel_fpu); 56 57 /* 58 * Track which context is using the FPU on the CPU: 59 */ 60 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 61 62 static bool kernel_fpu_disabled(void) 63 { 64 return this_cpu_read(in_kernel_fpu); 65 } 66 67 static bool interrupted_kernel_fpu_idle(void) 68 { 69 return !kernel_fpu_disabled(); 70 } 71 72 /* 73 * Were we in user mode (or vm86 mode) when we were 74 * interrupted? 75 * 76 * Doing kernel_fpu_begin/end() is ok if we are running 77 * in an interrupt context from user mode - we'll just 78 * save the FPU state as required. 79 */ 80 static bool interrupted_user_mode(void) 81 { 82 struct pt_regs *regs = get_irq_regs(); 83 return regs && user_mode(regs); 84 } 85 86 /* 87 * Can we use the FPU in kernel mode with the 88 * whole "kernel_fpu_begin/end()" sequence? 89 * 90 * It's always ok in process context (ie "not interrupt") 91 * but it is sometimes ok even from an irq. 92 */ 93 bool irq_fpu_usable(void) 94 { 95 return !in_interrupt() || 96 interrupted_user_mode() || 97 interrupted_kernel_fpu_idle(); 98 } 99 EXPORT_SYMBOL(irq_fpu_usable); 100 101 /* 102 * Track AVX512 state use because it is known to slow the max clock 103 * speed of the core. 104 */ 105 static void update_avx_timestamp(struct fpu *fpu) 106 { 107 108 #define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM) 109 110 if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK) 111 fpu->avx512_timestamp = jiffies; 112 } 113 114 /* 115 * Save the FPU register state in fpu->fpstate->regs. The register state is 116 * preserved. 117 * 118 * Must be called with fpregs_lock() held. 119 * 120 * The legacy FNSAVE instruction clears all FPU state unconditionally, so 121 * register state has to be reloaded. That might be a pointless exercise 122 * when the FPU is going to be used by another task right after that. But 123 * this only affects 20+ years old 32bit systems and avoids conditionals all 124 * over the place. 125 * 126 * FXSAVE and all XSAVE variants preserve the FPU register state. 127 */ 128 void save_fpregs_to_fpstate(struct fpu *fpu) 129 { 130 if (likely(use_xsave())) { 131 os_xsave(fpu->fpstate); 132 update_avx_timestamp(fpu); 133 return; 134 } 135 136 if (likely(use_fxsr())) { 137 fxsave(&fpu->fpstate->regs.fxsave); 138 return; 139 } 140 141 /* 142 * Legacy FPU register saving, FNSAVE always clears FPU registers, 143 * so we have to reload them from the memory state. 144 */ 145 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave)); 146 frstor(&fpu->fpstate->regs.fsave); 147 } 148 149 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask) 150 { 151 /* 152 * AMD K7/K8 and later CPUs up to Zen don't save/restore 153 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state 154 * here by setting it to fixed values. "m" is a random variable 155 * that should be in L1. 156 */ 157 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { 158 asm volatile( 159 "fnclex\n\t" 160 "emms\n\t" 161 "fildl %P[addr]" /* set F?P to defined value */ 162 : : [addr] "m" (fpstate)); 163 } 164 165 if (use_xsave()) { 166 /* 167 * Dynamically enabled features are enabled in XCR0, but 168 * usage requires also that the corresponding bits in XFD 169 * are cleared. If the bits are set then using a related 170 * instruction will raise #NM. This allows to do the 171 * allocation of the larger FPU buffer lazy from #NM or if 172 * the task has no permission to kill it which would happen 173 * via #UD if the feature is disabled in XCR0. 174 * 175 * XFD state is following the same life time rules as 176 * XSTATE and to restore state correctly XFD has to be 177 * updated before XRSTORS otherwise the component would 178 * stay in or go into init state even if the bits are set 179 * in fpstate::regs::xsave::xfeatures. 180 */ 181 xfd_update_state(fpstate); 182 183 /* 184 * Restoring state always needs to modify all features 185 * which are in @mask even if the current task cannot use 186 * extended features. 187 * 188 * So fpstate->xfeatures cannot be used here, because then 189 * a feature for which the task has no permission but was 190 * used by the previous task would not go into init state. 191 */ 192 mask = fpu_kernel_cfg.max_features & mask; 193 194 os_xrstor(fpstate, mask); 195 } else { 196 if (use_fxsr()) 197 fxrstor(&fpstate->regs.fxsave); 198 else 199 frstor(&fpstate->regs.fsave); 200 } 201 } 202 203 void fpu_reset_from_exception_fixup(void) 204 { 205 restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE); 206 } 207 208 #if IS_ENABLED(CONFIG_KVM) 209 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd); 210 211 static void fpu_init_guest_permissions(struct fpu_guest *gfpu) 212 { 213 struct fpu_state_perm *fpuperm; 214 u64 perm; 215 216 if (!IS_ENABLED(CONFIG_X86_64)) 217 return; 218 219 spin_lock_irq(¤t->sighand->siglock); 220 fpuperm = ¤t->group_leader->thread.fpu.guest_perm; 221 perm = fpuperm->__state_perm; 222 223 /* First fpstate allocation locks down permissions. */ 224 WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED); 225 226 spin_unlock_irq(¤t->sighand->siglock); 227 228 gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED; 229 } 230 231 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu) 232 { 233 struct fpstate *fpstate; 234 unsigned int size; 235 236 size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64); 237 fpstate = vzalloc(size); 238 if (!fpstate) 239 return false; 240 241 /* Leave xfd to 0 (the reset value defined by spec) */ 242 __fpstate_reset(fpstate, 0); 243 fpstate_init_user(fpstate); 244 fpstate->is_valloc = true; 245 fpstate->is_guest = true; 246 247 gfpu->fpstate = fpstate; 248 gfpu->xfeatures = fpu_user_cfg.default_features; 249 gfpu->perm = fpu_user_cfg.default_features; 250 gfpu->uabi_size = fpu_user_cfg.default_size; 251 fpu_init_guest_permissions(gfpu); 252 253 return true; 254 } 255 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate); 256 257 void fpu_free_guest_fpstate(struct fpu_guest *gfpu) 258 { 259 struct fpstate *fps = gfpu->fpstate; 260 261 if (!fps) 262 return; 263 264 if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use)) 265 return; 266 267 gfpu->fpstate = NULL; 268 vfree(fps); 269 } 270 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate); 271 272 /* 273 * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable 274 * @guest_fpu: Pointer to the guest FPU container 275 * @xfeatures: Features requested by guest CPUID 276 * 277 * Enable all dynamic xfeatures according to guest perm and requested CPUID. 278 * 279 * Return: 0 on success, error code otherwise 280 */ 281 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures) 282 { 283 lockdep_assert_preemption_enabled(); 284 285 /* Nothing to do if all requested features are already enabled. */ 286 xfeatures &= ~guest_fpu->xfeatures; 287 if (!xfeatures) 288 return 0; 289 290 return __xfd_enable_feature(xfeatures, guest_fpu); 291 } 292 EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features); 293 294 #ifdef CONFIG_X86_64 295 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd) 296 { 297 fpregs_lock(); 298 guest_fpu->fpstate->xfd = xfd; 299 if (guest_fpu->fpstate->in_use) 300 xfd_update_state(guest_fpu->fpstate); 301 fpregs_unlock(); 302 } 303 EXPORT_SYMBOL_GPL(fpu_update_guest_xfd); 304 305 /** 306 * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state 307 * 308 * Must be invoked from KVM after a VMEXIT before enabling interrupts when 309 * XFD write emulation is disabled. This is required because the guest can 310 * freely modify XFD and the state at VMEXIT is not guaranteed to be the 311 * same as the state on VMENTER. So software state has to be udpated before 312 * any operation which depends on it can take place. 313 * 314 * Note: It can be invoked unconditionally even when write emulation is 315 * enabled for the price of a then pointless MSR read. 316 */ 317 void fpu_sync_guest_vmexit_xfd_state(void) 318 { 319 struct fpstate *fps = current->thread.fpu.fpstate; 320 321 lockdep_assert_irqs_disabled(); 322 if (fpu_state_size_dynamic()) { 323 rdmsrl(MSR_IA32_XFD, fps->xfd); 324 __this_cpu_write(xfd_state, fps->xfd); 325 } 326 } 327 EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state); 328 #endif /* CONFIG_X86_64 */ 329 330 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest) 331 { 332 struct fpstate *guest_fps = guest_fpu->fpstate; 333 struct fpu *fpu = ¤t->thread.fpu; 334 struct fpstate *cur_fps = fpu->fpstate; 335 336 fpregs_lock(); 337 if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD)) 338 save_fpregs_to_fpstate(fpu); 339 340 /* Swap fpstate */ 341 if (enter_guest) { 342 fpu->__task_fpstate = cur_fps; 343 fpu->fpstate = guest_fps; 344 guest_fps->in_use = true; 345 } else { 346 guest_fps->in_use = false; 347 fpu->fpstate = fpu->__task_fpstate; 348 fpu->__task_fpstate = NULL; 349 } 350 351 cur_fps = fpu->fpstate; 352 353 if (!cur_fps->is_confidential) { 354 /* Includes XFD update */ 355 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE); 356 } else { 357 /* 358 * XSTATE is restored by firmware from encrypted 359 * memory. Make sure XFD state is correct while 360 * running with guest fpstate 361 */ 362 xfd_update_state(cur_fps); 363 } 364 365 fpregs_mark_activate(); 366 fpregs_unlock(); 367 return 0; 368 } 369 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate); 370 371 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf, 372 unsigned int size, u32 pkru) 373 { 374 struct fpstate *kstate = gfpu->fpstate; 375 union fpregs_state *ustate = buf; 376 struct membuf mb = { .p = buf, .left = size }; 377 378 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) { 379 __copy_xstate_to_uabi_buf(mb, kstate, pkru, XSTATE_COPY_XSAVE); 380 } else { 381 memcpy(&ustate->fxsave, &kstate->regs.fxsave, 382 sizeof(ustate->fxsave)); 383 /* Make it restorable on a XSAVE enabled host */ 384 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE; 385 } 386 } 387 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi); 388 389 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf, 390 u64 xcr0, u32 *vpkru) 391 { 392 struct fpstate *kstate = gfpu->fpstate; 393 const union fpregs_state *ustate = buf; 394 struct pkru_state *xpkru; 395 int ret; 396 397 if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) { 398 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE) 399 return -EINVAL; 400 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask) 401 return -EINVAL; 402 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave)); 403 return 0; 404 } 405 406 if (ustate->xsave.header.xfeatures & ~xcr0) 407 return -EINVAL; 408 409 ret = copy_uabi_from_kernel_to_xstate(kstate, ustate); 410 if (ret) 411 return ret; 412 413 /* Retrieve PKRU if not in init state */ 414 if (kstate->regs.xsave.header.xfeatures & XFEATURE_MASK_PKRU) { 415 xpkru = get_xsave_addr(&kstate->regs.xsave, XFEATURE_PKRU); 416 *vpkru = xpkru->pkru; 417 } 418 419 /* Ensure that XCOMP_BV is set up for XSAVES */ 420 xstate_init_xcomp_bv(&kstate->regs.xsave, kstate->xfeatures); 421 return 0; 422 } 423 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate); 424 #endif /* CONFIG_KVM */ 425 426 void kernel_fpu_begin_mask(unsigned int kfpu_mask) 427 { 428 preempt_disable(); 429 430 WARN_ON_FPU(!irq_fpu_usable()); 431 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 432 433 this_cpu_write(in_kernel_fpu, true); 434 435 if (!(current->flags & PF_KTHREAD) && 436 !test_thread_flag(TIF_NEED_FPU_LOAD)) { 437 set_thread_flag(TIF_NEED_FPU_LOAD); 438 save_fpregs_to_fpstate(¤t->thread.fpu); 439 } 440 __cpu_invalidate_fpregs_state(); 441 442 /* Put sane initial values into the control registers. */ 443 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) 444 ldmxcsr(MXCSR_DEFAULT); 445 446 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) 447 asm volatile ("fninit"); 448 } 449 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); 450 451 void kernel_fpu_end(void) 452 { 453 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 454 455 this_cpu_write(in_kernel_fpu, false); 456 preempt_enable(); 457 } 458 EXPORT_SYMBOL_GPL(kernel_fpu_end); 459 460 /* 461 * Sync the FPU register state to current's memory register state when the 462 * current task owns the FPU. The hardware register state is preserved. 463 */ 464 void fpu_sync_fpstate(struct fpu *fpu) 465 { 466 WARN_ON_FPU(fpu != ¤t->thread.fpu); 467 468 fpregs_lock(); 469 trace_x86_fpu_before_save(fpu); 470 471 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 472 save_fpregs_to_fpstate(fpu); 473 474 trace_x86_fpu_after_save(fpu); 475 fpregs_unlock(); 476 } 477 478 static inline unsigned int init_fpstate_copy_size(void) 479 { 480 if (!use_xsave()) 481 return fpu_kernel_cfg.default_size; 482 483 /* XSAVE(S) just needs the legacy and the xstate header part */ 484 return sizeof(init_fpstate.regs.xsave); 485 } 486 487 static inline void fpstate_init_fxstate(struct fpstate *fpstate) 488 { 489 fpstate->regs.fxsave.cwd = 0x37f; 490 fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT; 491 } 492 493 /* 494 * Legacy x87 fpstate state init: 495 */ 496 static inline void fpstate_init_fstate(struct fpstate *fpstate) 497 { 498 fpstate->regs.fsave.cwd = 0xffff037fu; 499 fpstate->regs.fsave.swd = 0xffff0000u; 500 fpstate->regs.fsave.twd = 0xffffffffu; 501 fpstate->regs.fsave.fos = 0xffff0000u; 502 } 503 504 /* 505 * Used in two places: 506 * 1) Early boot to setup init_fpstate for non XSAVE systems 507 * 2) fpu_init_fpstate_user() which is invoked from KVM 508 */ 509 void fpstate_init_user(struct fpstate *fpstate) 510 { 511 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 512 fpstate_init_soft(&fpstate->regs.soft); 513 return; 514 } 515 516 xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures); 517 518 if (cpu_feature_enabled(X86_FEATURE_FXSR)) 519 fpstate_init_fxstate(fpstate); 520 else 521 fpstate_init_fstate(fpstate); 522 } 523 524 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd) 525 { 526 /* Initialize sizes and feature masks */ 527 fpstate->size = fpu_kernel_cfg.default_size; 528 fpstate->user_size = fpu_user_cfg.default_size; 529 fpstate->xfeatures = fpu_kernel_cfg.default_features; 530 fpstate->user_xfeatures = fpu_user_cfg.default_features; 531 fpstate->xfd = xfd; 532 } 533 534 void fpstate_reset(struct fpu *fpu) 535 { 536 /* Set the fpstate pointer to the default fpstate */ 537 fpu->fpstate = &fpu->__fpstate; 538 __fpstate_reset(fpu->fpstate, init_fpstate.xfd); 539 540 /* Initialize the permission related info in fpu */ 541 fpu->perm.__state_perm = fpu_kernel_cfg.default_features; 542 fpu->perm.__state_size = fpu_kernel_cfg.default_size; 543 fpu->perm.__user_state_size = fpu_user_cfg.default_size; 544 /* Same defaults for guests */ 545 fpu->guest_perm = fpu->perm; 546 } 547 548 static inline void fpu_inherit_perms(struct fpu *dst_fpu) 549 { 550 if (fpu_state_size_dynamic()) { 551 struct fpu *src_fpu = ¤t->group_leader->thread.fpu; 552 553 spin_lock_irq(¤t->sighand->siglock); 554 /* Fork also inherits the permissions of the parent */ 555 dst_fpu->perm = src_fpu->perm; 556 dst_fpu->guest_perm = src_fpu->guest_perm; 557 spin_unlock_irq(¤t->sighand->siglock); 558 } 559 } 560 561 /* Clone current's FPU state on fork */ 562 int fpu_clone(struct task_struct *dst, unsigned long clone_flags) 563 { 564 struct fpu *src_fpu = ¤t->thread.fpu; 565 struct fpu *dst_fpu = &dst->thread.fpu; 566 567 /* The new task's FPU state cannot be valid in the hardware. */ 568 dst_fpu->last_cpu = -1; 569 570 fpstate_reset(dst_fpu); 571 572 if (!cpu_feature_enabled(X86_FEATURE_FPU)) 573 return 0; 574 575 /* 576 * Enforce reload for user space tasks and prevent kernel threads 577 * from trying to save the FPU registers on context switch. 578 */ 579 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 580 581 /* 582 * No FPU state inheritance for kernel threads and IO 583 * worker threads. 584 */ 585 if (dst->flags & (PF_KTHREAD | PF_IO_WORKER)) { 586 /* Clear out the minimal state */ 587 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs, 588 init_fpstate_copy_size()); 589 return 0; 590 } 591 592 /* 593 * If a new feature is added, ensure all dynamic features are 594 * caller-saved from here! 595 */ 596 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); 597 598 /* 599 * Save the default portion of the current FPU state into the 600 * clone. Assume all dynamic features to be defined as caller- 601 * saved, which enables skipping both the expansion of fpstate 602 * and the copying of any dynamic state. 603 * 604 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because 605 * copying is not valid when current uses non-default states. 606 */ 607 fpregs_lock(); 608 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 609 fpregs_restore_userregs(); 610 save_fpregs_to_fpstate(dst_fpu); 611 if (!(clone_flags & CLONE_THREAD)) 612 fpu_inherit_perms(dst_fpu); 613 fpregs_unlock(); 614 615 trace_x86_fpu_copy_src(src_fpu); 616 trace_x86_fpu_copy_dst(dst_fpu); 617 618 return 0; 619 } 620 621 /* 622 * Whitelist the FPU register state embedded into task_struct for hardened 623 * usercopy. 624 */ 625 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size) 626 { 627 *offset = offsetof(struct thread_struct, fpu.__fpstate.regs); 628 *size = fpu_kernel_cfg.default_size; 629 } 630 631 /* 632 * Drops current FPU state: deactivates the fpregs and 633 * the fpstate. NOTE: it still leaves previous contents 634 * in the fpregs in the eager-FPU case. 635 * 636 * This function can be used in cases where we know that 637 * a state-restore is coming: either an explicit one, 638 * or a reschedule. 639 */ 640 void fpu__drop(struct fpu *fpu) 641 { 642 preempt_disable(); 643 644 if (fpu == ¤t->thread.fpu) { 645 /* Ignore delayed exceptions from user space */ 646 asm volatile("1: fwait\n" 647 "2:\n" 648 _ASM_EXTABLE(1b, 2b)); 649 fpregs_deactivate(fpu); 650 } 651 652 trace_x86_fpu_dropped(fpu); 653 654 preempt_enable(); 655 } 656 657 /* 658 * Clear FPU registers by setting them up from the init fpstate. 659 * Caller must do fpregs_[un]lock() around it. 660 */ 661 static inline void restore_fpregs_from_init_fpstate(u64 features_mask) 662 { 663 if (use_xsave()) 664 os_xrstor(&init_fpstate, features_mask); 665 else if (use_fxsr()) 666 fxrstor(&init_fpstate.regs.fxsave); 667 else 668 frstor(&init_fpstate.regs.fsave); 669 670 pkru_write_default(); 671 } 672 673 /* 674 * Reset current->fpu memory state to the init values. 675 */ 676 static void fpu_reset_fpregs(void) 677 { 678 struct fpu *fpu = ¤t->thread.fpu; 679 680 fpregs_lock(); 681 fpu__drop(fpu); 682 /* 683 * This does not change the actual hardware registers. It just 684 * resets the memory image and sets TIF_NEED_FPU_LOAD so a 685 * subsequent return to usermode will reload the registers from the 686 * task's memory image. 687 * 688 * Do not use fpstate_init() here. Just copy init_fpstate which has 689 * the correct content already except for PKRU. 690 * 691 * PKRU handling does not rely on the xstate when restoring for 692 * user space as PKRU is eagerly written in switch_to() and 693 * flush_thread(). 694 */ 695 memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size()); 696 set_thread_flag(TIF_NEED_FPU_LOAD); 697 fpregs_unlock(); 698 } 699 700 /* 701 * Reset current's user FPU states to the init states. current's 702 * supervisor states, if any, are not modified by this function. The 703 * caller guarantees that the XSTATE header in memory is intact. 704 */ 705 void fpu__clear_user_states(struct fpu *fpu) 706 { 707 WARN_ON_FPU(fpu != ¤t->thread.fpu); 708 709 fpregs_lock(); 710 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 711 fpu_reset_fpregs(); 712 fpregs_unlock(); 713 return; 714 } 715 716 /* 717 * Ensure that current's supervisor states are loaded into their 718 * corresponding registers. 719 */ 720 if (xfeatures_mask_supervisor() && 721 !fpregs_state_valid(fpu, smp_processor_id())) 722 os_xrstor_supervisor(fpu->fpstate); 723 724 /* Reset user states in registers. */ 725 restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE); 726 727 /* 728 * Now all FPU registers have their desired values. Inform the FPU 729 * state machine that current's FPU registers are in the hardware 730 * registers. The memory image does not need to be updated because 731 * any operation relying on it has to save the registers first when 732 * current's FPU is marked active. 733 */ 734 fpregs_mark_activate(); 735 fpregs_unlock(); 736 } 737 738 void fpu_flush_thread(void) 739 { 740 fpstate_reset(¤t->thread.fpu); 741 fpu_reset_fpregs(); 742 } 743 /* 744 * Load FPU context before returning to userspace. 745 */ 746 void switch_fpu_return(void) 747 { 748 if (!static_cpu_has(X86_FEATURE_FPU)) 749 return; 750 751 fpregs_restore_userregs(); 752 } 753 EXPORT_SYMBOL_GPL(switch_fpu_return); 754 755 #ifdef CONFIG_X86_DEBUG_FPU 756 /* 757 * If current FPU state according to its tracking (loaded FPU context on this 758 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 759 * loaded on return to userland. 760 */ 761 void fpregs_assert_state_consistent(void) 762 { 763 struct fpu *fpu = ¤t->thread.fpu; 764 765 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 766 return; 767 768 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 769 } 770 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); 771 #endif 772 773 void fpregs_mark_activate(void) 774 { 775 struct fpu *fpu = ¤t->thread.fpu; 776 777 fpregs_activate(fpu); 778 fpu->last_cpu = smp_processor_id(); 779 clear_thread_flag(TIF_NEED_FPU_LOAD); 780 } 781 782 /* 783 * x87 math exception handling: 784 */ 785 786 int fpu__exception_code(struct fpu *fpu, int trap_nr) 787 { 788 int err; 789 790 if (trap_nr == X86_TRAP_MF) { 791 unsigned short cwd, swd; 792 /* 793 * (~cwd & swd) will mask out exceptions that are not set to unmasked 794 * status. 0x3f is the exception bits in these regs, 0x200 is the 795 * C1 reg you need in case of a stack fault, 0x040 is the stack 796 * fault bit. We should only be taking one exception at a time, 797 * so if this combination doesn't produce any single exception, 798 * then we have a bad program that isn't synchronizing its FPU usage 799 * and it will suffer the consequences since we won't be able to 800 * fully reproduce the context of the exception. 801 */ 802 if (boot_cpu_has(X86_FEATURE_FXSR)) { 803 cwd = fpu->fpstate->regs.fxsave.cwd; 804 swd = fpu->fpstate->regs.fxsave.swd; 805 } else { 806 cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd; 807 swd = (unsigned short)fpu->fpstate->regs.fsave.swd; 808 } 809 810 err = swd & ~cwd; 811 } else { 812 /* 813 * The SIMD FPU exceptions are handled a little differently, as there 814 * is only a single status/control register. Thus, to determine which 815 * unmasked exception was caught we must mask the exception mask bits 816 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 817 */ 818 unsigned short mxcsr = MXCSR_DEFAULT; 819 820 if (boot_cpu_has(X86_FEATURE_XMM)) 821 mxcsr = fpu->fpstate->regs.fxsave.mxcsr; 822 823 err = ~(mxcsr >> 7) & mxcsr; 824 } 825 826 if (err & 0x001) { /* Invalid op */ 827 /* 828 * swd & 0x240 == 0x040: Stack Underflow 829 * swd & 0x240 == 0x240: Stack Overflow 830 * User must clear the SF bit (0x40) if set 831 */ 832 return FPE_FLTINV; 833 } else if (err & 0x004) { /* Divide by Zero */ 834 return FPE_FLTDIV; 835 } else if (err & 0x008) { /* Overflow */ 836 return FPE_FLTOVF; 837 } else if (err & 0x012) { /* Denormal, Underflow */ 838 return FPE_FLTUND; 839 } else if (err & 0x020) { /* Precision */ 840 return FPE_FLTRES; 841 } 842 843 /* 844 * If we're using IRQ 13, or supposedly even some trap 845 * X86_TRAP_MF implementations, it's possible 846 * we get a spurious trap, which is not an error. 847 */ 848 return 0; 849 } 850