1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * General FPU state handling cleanups 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 #include <asm/fpu/internal.h> 10 #include <asm/fpu/regset.h> 11 #include <asm/fpu/signal.h> 12 #include <asm/fpu/types.h> 13 #include <asm/traps.h> 14 #include <asm/irq_regs.h> 15 16 #include <linux/hardirq.h> 17 #include <linux/pkeys.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <asm/trace/fpu.h> 21 22 /* 23 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 24 * depending on the FPU hardware format: 25 */ 26 union fpregs_state init_fpstate __read_mostly; 27 28 /* 29 * Track whether the kernel is using the FPU state 30 * currently. 31 * 32 * This flag is used: 33 * 34 * - by IRQ context code to potentially use the FPU 35 * if it's unused. 36 * 37 * - to debug kernel_fpu_begin()/end() correctness 38 */ 39 static DEFINE_PER_CPU(bool, in_kernel_fpu); 40 41 /* 42 * Track which context is using the FPU on the CPU: 43 */ 44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 45 46 static bool kernel_fpu_disabled(void) 47 { 48 return this_cpu_read(in_kernel_fpu); 49 } 50 51 static bool interrupted_kernel_fpu_idle(void) 52 { 53 return !kernel_fpu_disabled(); 54 } 55 56 /* 57 * Were we in user mode (or vm86 mode) when we were 58 * interrupted? 59 * 60 * Doing kernel_fpu_begin/end() is ok if we are running 61 * in an interrupt context from user mode - we'll just 62 * save the FPU state as required. 63 */ 64 static bool interrupted_user_mode(void) 65 { 66 struct pt_regs *regs = get_irq_regs(); 67 return regs && user_mode(regs); 68 } 69 70 /* 71 * Can we use the FPU in kernel mode with the 72 * whole "kernel_fpu_begin/end()" sequence? 73 * 74 * It's always ok in process context (ie "not interrupt") 75 * but it is sometimes ok even from an irq. 76 */ 77 bool irq_fpu_usable(void) 78 { 79 return !in_interrupt() || 80 interrupted_user_mode() || 81 interrupted_kernel_fpu_idle(); 82 } 83 EXPORT_SYMBOL(irq_fpu_usable); 84 85 /* 86 * These must be called with preempt disabled. Returns 87 * 'true' if the FPU state is still intact and we can 88 * keep registers active. 89 * 90 * The legacy FNSAVE instruction cleared all FPU state 91 * unconditionally, so registers are essentially destroyed. 92 * Modern FPU state can be kept in registers, if there are 93 * no pending FP exceptions. 94 */ 95 int copy_fpregs_to_fpstate(struct fpu *fpu) 96 { 97 if (likely(use_xsave())) { 98 copy_xregs_to_kernel(&fpu->state.xsave); 99 100 /* 101 * AVX512 state is tracked here because its use is 102 * known to slow the max clock speed of the core. 103 */ 104 if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512) 105 fpu->avx512_timestamp = jiffies; 106 return 1; 107 } 108 109 if (likely(use_fxsr())) { 110 copy_fxregs_to_kernel(fpu); 111 return 1; 112 } 113 114 /* 115 * Legacy FPU register saving, FNSAVE always clears FPU registers, 116 * so we have to mark them inactive: 117 */ 118 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); 119 120 return 0; 121 } 122 EXPORT_SYMBOL(copy_fpregs_to_fpstate); 123 124 void kernel_fpu_begin_mask(unsigned int kfpu_mask) 125 { 126 preempt_disable(); 127 128 WARN_ON_FPU(!irq_fpu_usable()); 129 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 130 131 this_cpu_write(in_kernel_fpu, true); 132 133 if (!(current->flags & PF_KTHREAD) && 134 !test_thread_flag(TIF_NEED_FPU_LOAD)) { 135 set_thread_flag(TIF_NEED_FPU_LOAD); 136 /* 137 * Ignore return value -- we don't care if reg state 138 * is clobbered. 139 */ 140 copy_fpregs_to_fpstate(¤t->thread.fpu); 141 } 142 __cpu_invalidate_fpregs_state(); 143 144 /* Put sane initial values into the control registers. */ 145 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) 146 ldmxcsr(MXCSR_DEFAULT); 147 148 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) 149 asm volatile ("fninit"); 150 } 151 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); 152 153 void kernel_fpu_end(void) 154 { 155 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 156 157 this_cpu_write(in_kernel_fpu, false); 158 preempt_enable(); 159 } 160 EXPORT_SYMBOL_GPL(kernel_fpu_end); 161 162 /* 163 * Save the FPU state (mark it for reload if necessary): 164 * 165 * This only ever gets called for the current task. 166 */ 167 void fpu__save(struct fpu *fpu) 168 { 169 WARN_ON_FPU(fpu != ¤t->thread.fpu); 170 171 fpregs_lock(); 172 trace_x86_fpu_before_save(fpu); 173 174 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { 175 if (!copy_fpregs_to_fpstate(fpu)) { 176 copy_kernel_to_fpregs(&fpu->state); 177 } 178 } 179 180 trace_x86_fpu_after_save(fpu); 181 fpregs_unlock(); 182 } 183 184 /* 185 * Legacy x87 fpstate state init: 186 */ 187 static inline void fpstate_init_fstate(struct fregs_state *fp) 188 { 189 fp->cwd = 0xffff037fu; 190 fp->swd = 0xffff0000u; 191 fp->twd = 0xffffffffu; 192 fp->fos = 0xffff0000u; 193 } 194 195 void fpstate_init(union fpregs_state *state) 196 { 197 if (!static_cpu_has(X86_FEATURE_FPU)) { 198 fpstate_init_soft(&state->soft); 199 return; 200 } 201 202 memset(state, 0, fpu_kernel_xstate_size); 203 204 if (static_cpu_has(X86_FEATURE_XSAVES)) 205 fpstate_init_xstate(&state->xsave); 206 if (static_cpu_has(X86_FEATURE_FXSR)) 207 fpstate_init_fxstate(&state->fxsave); 208 else 209 fpstate_init_fstate(&state->fsave); 210 } 211 EXPORT_SYMBOL_GPL(fpstate_init); 212 213 int fpu__copy(struct task_struct *dst, struct task_struct *src) 214 { 215 struct fpu *dst_fpu = &dst->thread.fpu; 216 struct fpu *src_fpu = &src->thread.fpu; 217 218 dst_fpu->last_cpu = -1; 219 220 if (!static_cpu_has(X86_FEATURE_FPU)) 221 return 0; 222 223 WARN_ON_FPU(src_fpu != ¤t->thread.fpu); 224 225 /* 226 * Don't let 'init optimized' areas of the XSAVE area 227 * leak into the child task: 228 */ 229 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); 230 231 /* 232 * If the FPU registers are not current just memcpy() the state. 233 * Otherwise save current FPU registers directly into the child's FPU 234 * context, without any memory-to-memory copying. 235 * 236 * ( The function 'fails' in the FNSAVE case, which destroys 237 * register contents so we have to load them back. ) 238 */ 239 fpregs_lock(); 240 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 241 memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size); 242 243 else if (!copy_fpregs_to_fpstate(dst_fpu)) 244 copy_kernel_to_fpregs(&dst_fpu->state); 245 246 fpregs_unlock(); 247 248 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 249 250 trace_x86_fpu_copy_src(src_fpu); 251 trace_x86_fpu_copy_dst(dst_fpu); 252 253 return 0; 254 } 255 256 /* 257 * Activate the current task's in-memory FPU context, 258 * if it has not been used before: 259 */ 260 static void fpu__initialize(struct fpu *fpu) 261 { 262 WARN_ON_FPU(fpu != ¤t->thread.fpu); 263 264 set_thread_flag(TIF_NEED_FPU_LOAD); 265 fpstate_init(&fpu->state); 266 trace_x86_fpu_init_state(fpu); 267 } 268 269 /* 270 * This function must be called before we read a task's fpstate. 271 * 272 * There's two cases where this gets called: 273 * 274 * - for the current task (when coredumping), in which case we have 275 * to save the latest FPU registers into the fpstate, 276 * 277 * - or it's called for stopped tasks (ptrace), in which case the 278 * registers were already saved by the context-switch code when 279 * the task scheduled out. 280 * 281 * If the task has used the FPU before then save it. 282 */ 283 void fpu__prepare_read(struct fpu *fpu) 284 { 285 if (fpu == ¤t->thread.fpu) 286 fpu__save(fpu); 287 } 288 289 /* 290 * This function must be called before we write a task's fpstate. 291 * 292 * Invalidate any cached FPU registers. 293 * 294 * After this function call, after registers in the fpstate are 295 * modified and the child task has woken up, the child task will 296 * restore the modified FPU state from the modified context. If we 297 * didn't clear its cached status here then the cached in-registers 298 * state pending on its former CPU could be restored, corrupting 299 * the modifications. 300 */ 301 void fpu__prepare_write(struct fpu *fpu) 302 { 303 /* 304 * Only stopped child tasks can be used to modify the FPU 305 * state in the fpstate buffer: 306 */ 307 WARN_ON_FPU(fpu == ¤t->thread.fpu); 308 309 /* Invalidate any cached state: */ 310 __fpu_invalidate_fpregs_state(fpu); 311 } 312 313 /* 314 * Drops current FPU state: deactivates the fpregs and 315 * the fpstate. NOTE: it still leaves previous contents 316 * in the fpregs in the eager-FPU case. 317 * 318 * This function can be used in cases where we know that 319 * a state-restore is coming: either an explicit one, 320 * or a reschedule. 321 */ 322 void fpu__drop(struct fpu *fpu) 323 { 324 preempt_disable(); 325 326 if (fpu == ¤t->thread.fpu) { 327 /* Ignore delayed exceptions from user space */ 328 asm volatile("1: fwait\n" 329 "2:\n" 330 _ASM_EXTABLE(1b, 2b)); 331 fpregs_deactivate(fpu); 332 } 333 334 trace_x86_fpu_dropped(fpu); 335 336 preempt_enable(); 337 } 338 339 /* 340 * Clear FPU registers by setting them up from the init fpstate. 341 * Caller must do fpregs_[un]lock() around it. 342 */ 343 static inline void copy_init_fpstate_to_fpregs(u64 features_mask) 344 { 345 if (use_xsave()) 346 copy_kernel_to_xregs(&init_fpstate.xsave, features_mask); 347 else if (static_cpu_has(X86_FEATURE_FXSR)) 348 copy_kernel_to_fxregs(&init_fpstate.fxsave); 349 else 350 copy_kernel_to_fregs(&init_fpstate.fsave); 351 352 if (boot_cpu_has(X86_FEATURE_OSPKE)) 353 copy_init_pkru_to_fpregs(); 354 } 355 356 /* 357 * Clear the FPU state back to init state. 358 * 359 * Called by sys_execve(), by the signal handler code and by various 360 * error paths. 361 */ 362 static void fpu__clear(struct fpu *fpu, bool user_only) 363 { 364 WARN_ON_FPU(fpu != ¤t->thread.fpu); 365 366 if (!static_cpu_has(X86_FEATURE_FPU)) { 367 fpu__drop(fpu); 368 fpu__initialize(fpu); 369 return; 370 } 371 372 fpregs_lock(); 373 374 if (user_only) { 375 if (!fpregs_state_valid(fpu, smp_processor_id()) && 376 xfeatures_mask_supervisor()) 377 copy_kernel_to_xregs(&fpu->state.xsave, 378 xfeatures_mask_supervisor()); 379 copy_init_fpstate_to_fpregs(xfeatures_mask_user()); 380 } else { 381 copy_init_fpstate_to_fpregs(xfeatures_mask_all); 382 } 383 384 fpregs_mark_activate(); 385 fpregs_unlock(); 386 } 387 388 void fpu__clear_user_states(struct fpu *fpu) 389 { 390 fpu__clear(fpu, true); 391 } 392 393 void fpu__clear_all(struct fpu *fpu) 394 { 395 fpu__clear(fpu, false); 396 } 397 398 /* 399 * Load FPU context before returning to userspace. 400 */ 401 void switch_fpu_return(void) 402 { 403 if (!static_cpu_has(X86_FEATURE_FPU)) 404 return; 405 406 __fpregs_load_activate(); 407 } 408 EXPORT_SYMBOL_GPL(switch_fpu_return); 409 410 #ifdef CONFIG_X86_DEBUG_FPU 411 /* 412 * If current FPU state according to its tracking (loaded FPU context on this 413 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 414 * loaded on return to userland. 415 */ 416 void fpregs_assert_state_consistent(void) 417 { 418 struct fpu *fpu = ¤t->thread.fpu; 419 420 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 421 return; 422 423 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 424 } 425 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); 426 #endif 427 428 void fpregs_mark_activate(void) 429 { 430 struct fpu *fpu = ¤t->thread.fpu; 431 432 fpregs_activate(fpu); 433 fpu->last_cpu = smp_processor_id(); 434 clear_thread_flag(TIF_NEED_FPU_LOAD); 435 } 436 EXPORT_SYMBOL_GPL(fpregs_mark_activate); 437 438 /* 439 * x87 math exception handling: 440 */ 441 442 int fpu__exception_code(struct fpu *fpu, int trap_nr) 443 { 444 int err; 445 446 if (trap_nr == X86_TRAP_MF) { 447 unsigned short cwd, swd; 448 /* 449 * (~cwd & swd) will mask out exceptions that are not set to unmasked 450 * status. 0x3f is the exception bits in these regs, 0x200 is the 451 * C1 reg you need in case of a stack fault, 0x040 is the stack 452 * fault bit. We should only be taking one exception at a time, 453 * so if this combination doesn't produce any single exception, 454 * then we have a bad program that isn't synchronizing its FPU usage 455 * and it will suffer the consequences since we won't be able to 456 * fully reproduce the context of the exception. 457 */ 458 if (boot_cpu_has(X86_FEATURE_FXSR)) { 459 cwd = fpu->state.fxsave.cwd; 460 swd = fpu->state.fxsave.swd; 461 } else { 462 cwd = (unsigned short)fpu->state.fsave.cwd; 463 swd = (unsigned short)fpu->state.fsave.swd; 464 } 465 466 err = swd & ~cwd; 467 } else { 468 /* 469 * The SIMD FPU exceptions are handled a little differently, as there 470 * is only a single status/control register. Thus, to determine which 471 * unmasked exception was caught we must mask the exception mask bits 472 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 473 */ 474 unsigned short mxcsr = MXCSR_DEFAULT; 475 476 if (boot_cpu_has(X86_FEATURE_XMM)) 477 mxcsr = fpu->state.fxsave.mxcsr; 478 479 err = ~(mxcsr >> 7) & mxcsr; 480 } 481 482 if (err & 0x001) { /* Invalid op */ 483 /* 484 * swd & 0x240 == 0x040: Stack Underflow 485 * swd & 0x240 == 0x240: Stack Overflow 486 * User must clear the SF bit (0x40) if set 487 */ 488 return FPE_FLTINV; 489 } else if (err & 0x004) { /* Divide by Zero */ 490 return FPE_FLTDIV; 491 } else if (err & 0x008) { /* Overflow */ 492 return FPE_FLTOVF; 493 } else if (err & 0x012) { /* Denormal, Underflow */ 494 return FPE_FLTUND; 495 } else if (err & 0x020) { /* Precision */ 496 return FPE_FLTRES; 497 } 498 499 /* 500 * If we're using IRQ 13, or supposedly even some trap 501 * X86_TRAP_MF implementations, it's possible 502 * we get a spurious trap, which is not an error. 503 */ 504 return 0; 505 } 506