1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * General FPU state handling cleanups 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 #include <asm/fpu/api.h> 10 #include <asm/fpu/regset.h> 11 #include <asm/fpu/sched.h> 12 #include <asm/fpu/signal.h> 13 #include <asm/fpu/types.h> 14 #include <asm/traps.h> 15 #include <asm/irq_regs.h> 16 17 #include <uapi/asm/kvm.h> 18 19 #include <linux/hardirq.h> 20 #include <linux/pkeys.h> 21 #include <linux/vmalloc.h> 22 23 #include "context.h" 24 #include "internal.h" 25 #include "legacy.h" 26 #include "xstate.h" 27 28 #define CREATE_TRACE_POINTS 29 #include <asm/trace/fpu.h> 30 31 #ifdef CONFIG_X86_64 32 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic); 33 DEFINE_PER_CPU(u64, xfd_state); 34 #endif 35 36 /* The FPU state configuration data for kernel and user space */ 37 struct fpu_state_config fpu_kernel_cfg __ro_after_init; 38 struct fpu_state_config fpu_user_cfg __ro_after_init; 39 40 /* 41 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 42 * depending on the FPU hardware format: 43 */ 44 struct fpstate init_fpstate __ro_after_init; 45 46 /* Track in-kernel FPU usage */ 47 static DEFINE_PER_CPU(bool, in_kernel_fpu); 48 49 /* 50 * Track which context is using the FPU on the CPU: 51 */ 52 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 53 54 /* 55 * Can we use the FPU in kernel mode with the 56 * whole "kernel_fpu_begin/end()" sequence? 57 */ 58 bool irq_fpu_usable(void) 59 { 60 if (WARN_ON_ONCE(in_nmi())) 61 return false; 62 63 /* 64 * In kernel FPU usage already active? This detects any explicitly 65 * nested usage in task or softirq context, which is unsupported. It 66 * also detects attempted usage in a hardirq that has interrupted a 67 * kernel-mode FPU section. 68 */ 69 if (this_cpu_read(in_kernel_fpu)) { 70 WARN_ON_FPU(!in_hardirq()); 71 return false; 72 } 73 74 /* 75 * When not in NMI or hard interrupt context, FPU can be used in: 76 * 77 * - Task context except from within fpregs_lock()'ed critical 78 * regions. 79 * 80 * - Soft interrupt processing context which cannot happen 81 * while in a fpregs_lock()'ed critical region. 82 */ 83 if (!in_hardirq()) 84 return true; 85 86 /* 87 * In hard interrupt context it's safe when soft interrupts 88 * are enabled, which means the interrupt did not hit in 89 * a fpregs_lock()'ed critical region. 90 */ 91 return !softirq_count(); 92 } 93 EXPORT_SYMBOL(irq_fpu_usable); 94 95 /* 96 * Track AVX512 state use because it is known to slow the max clock 97 * speed of the core. 98 */ 99 static void update_avx_timestamp(struct fpu *fpu) 100 { 101 102 #define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM) 103 104 if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK) 105 fpu->avx512_timestamp = jiffies; 106 } 107 108 /* 109 * Save the FPU register state in fpu->fpstate->regs. The register state is 110 * preserved. 111 * 112 * Must be called with fpregs_lock() held. 113 * 114 * The legacy FNSAVE instruction clears all FPU state unconditionally, so 115 * register state has to be reloaded. That might be a pointless exercise 116 * when the FPU is going to be used by another task right after that. But 117 * this only affects 20+ years old 32bit systems and avoids conditionals all 118 * over the place. 119 * 120 * FXSAVE and all XSAVE variants preserve the FPU register state. 121 */ 122 void save_fpregs_to_fpstate(struct fpu *fpu) 123 { 124 if (likely(use_xsave())) { 125 os_xsave(fpu->fpstate); 126 update_avx_timestamp(fpu); 127 return; 128 } 129 130 if (likely(use_fxsr())) { 131 fxsave(&fpu->fpstate->regs.fxsave); 132 return; 133 } 134 135 /* 136 * Legacy FPU register saving, FNSAVE always clears FPU registers, 137 * so we have to reload them from the memory state. 138 */ 139 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave)); 140 frstor(&fpu->fpstate->regs.fsave); 141 } 142 143 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask) 144 { 145 /* 146 * AMD K7/K8 and later CPUs up to Zen don't save/restore 147 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state 148 * here by setting it to fixed values. "m" is a random variable 149 * that should be in L1. 150 */ 151 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { 152 asm volatile( 153 "fnclex\n\t" 154 "emms\n\t" 155 "fildl %[addr]" /* set F?P to defined value */ 156 : : [addr] "m" (*fpstate)); 157 } 158 159 if (use_xsave()) { 160 /* 161 * Dynamically enabled features are enabled in XCR0, but 162 * usage requires also that the corresponding bits in XFD 163 * are cleared. If the bits are set then using a related 164 * instruction will raise #NM. This allows to do the 165 * allocation of the larger FPU buffer lazy from #NM or if 166 * the task has no permission to kill it which would happen 167 * via #UD if the feature is disabled in XCR0. 168 * 169 * XFD state is following the same life time rules as 170 * XSTATE and to restore state correctly XFD has to be 171 * updated before XRSTORS otherwise the component would 172 * stay in or go into init state even if the bits are set 173 * in fpstate::regs::xsave::xfeatures. 174 */ 175 xfd_update_state(fpstate); 176 177 /* 178 * Restoring state always needs to modify all features 179 * which are in @mask even if the current task cannot use 180 * extended features. 181 * 182 * So fpstate->xfeatures cannot be used here, because then 183 * a feature for which the task has no permission but was 184 * used by the previous task would not go into init state. 185 */ 186 mask = fpu_kernel_cfg.max_features & mask; 187 188 os_xrstor(fpstate, mask); 189 } else { 190 if (use_fxsr()) 191 fxrstor(&fpstate->regs.fxsave); 192 else 193 frstor(&fpstate->regs.fsave); 194 } 195 } 196 197 void fpu_reset_from_exception_fixup(void) 198 { 199 restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE); 200 } 201 202 #if IS_ENABLED(CONFIG_KVM) 203 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd); 204 205 static void fpu_init_guest_permissions(struct fpu_guest *gfpu) 206 { 207 struct fpu_state_perm *fpuperm; 208 u64 perm; 209 210 if (!IS_ENABLED(CONFIG_X86_64)) 211 return; 212 213 spin_lock_irq(¤t->sighand->siglock); 214 fpuperm = ¤t->group_leader->thread.fpu.guest_perm; 215 perm = fpuperm->__state_perm; 216 217 /* First fpstate allocation locks down permissions. */ 218 WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED); 219 220 spin_unlock_irq(¤t->sighand->siglock); 221 222 gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED; 223 } 224 225 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu) 226 { 227 struct fpstate *fpstate; 228 unsigned int size; 229 230 size = fpu_kernel_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64); 231 fpstate = vzalloc(size); 232 if (!fpstate) 233 return false; 234 235 /* Leave xfd to 0 (the reset value defined by spec) */ 236 __fpstate_reset(fpstate, 0); 237 fpstate_init_user(fpstate); 238 fpstate->is_valloc = true; 239 fpstate->is_guest = true; 240 241 gfpu->fpstate = fpstate; 242 gfpu->xfeatures = fpu_kernel_cfg.default_features; 243 gfpu->perm = fpu_kernel_cfg.default_features; 244 245 /* 246 * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state 247 * to userspace, even when XSAVE is unsupported, so that restoring FPU 248 * state on a different CPU that does support XSAVE can cleanly load 249 * the incoming state using its natural XSAVE. In other words, KVM's 250 * uABI size may be larger than this host's default size. Conversely, 251 * the default size should never be larger than KVM's base uABI size; 252 * all features that can expand the uABI size must be opt-in. 253 */ 254 gfpu->uabi_size = sizeof(struct kvm_xsave); 255 if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size)) 256 gfpu->uabi_size = fpu_user_cfg.default_size; 257 258 fpu_init_guest_permissions(gfpu); 259 260 return true; 261 } 262 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate); 263 264 void fpu_free_guest_fpstate(struct fpu_guest *gfpu) 265 { 266 struct fpstate *fps = gfpu->fpstate; 267 268 if (!fps) 269 return; 270 271 if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use)) 272 return; 273 274 gfpu->fpstate = NULL; 275 vfree(fps); 276 } 277 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate); 278 279 /* 280 * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable 281 * @guest_fpu: Pointer to the guest FPU container 282 * @xfeatures: Features requested by guest CPUID 283 * 284 * Enable all dynamic xfeatures according to guest perm and requested CPUID. 285 * 286 * Return: 0 on success, error code otherwise 287 */ 288 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures) 289 { 290 lockdep_assert_preemption_enabled(); 291 292 /* Nothing to do if all requested features are already enabled. */ 293 xfeatures &= ~guest_fpu->xfeatures; 294 if (!xfeatures) 295 return 0; 296 297 return __xfd_enable_feature(xfeatures, guest_fpu); 298 } 299 EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features); 300 301 #ifdef CONFIG_X86_64 302 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd) 303 { 304 fpregs_lock(); 305 guest_fpu->fpstate->xfd = xfd; 306 if (guest_fpu->fpstate->in_use) 307 xfd_update_state(guest_fpu->fpstate); 308 fpregs_unlock(); 309 } 310 EXPORT_SYMBOL_GPL(fpu_update_guest_xfd); 311 312 /** 313 * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state 314 * 315 * Must be invoked from KVM after a VMEXIT before enabling interrupts when 316 * XFD write emulation is disabled. This is required because the guest can 317 * freely modify XFD and the state at VMEXIT is not guaranteed to be the 318 * same as the state on VMENTER. So software state has to be updated before 319 * any operation which depends on it can take place. 320 * 321 * Note: It can be invoked unconditionally even when write emulation is 322 * enabled for the price of a then pointless MSR read. 323 */ 324 void fpu_sync_guest_vmexit_xfd_state(void) 325 { 326 struct fpstate *fps = current->thread.fpu.fpstate; 327 328 lockdep_assert_irqs_disabled(); 329 if (fpu_state_size_dynamic()) { 330 rdmsrl(MSR_IA32_XFD, fps->xfd); 331 __this_cpu_write(xfd_state, fps->xfd); 332 } 333 } 334 EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state); 335 #endif /* CONFIG_X86_64 */ 336 337 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest) 338 { 339 struct fpstate *guest_fps = guest_fpu->fpstate; 340 struct fpu *fpu = ¤t->thread.fpu; 341 struct fpstate *cur_fps = fpu->fpstate; 342 343 fpregs_lock(); 344 if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD)) 345 save_fpregs_to_fpstate(fpu); 346 347 /* Swap fpstate */ 348 if (enter_guest) { 349 fpu->__task_fpstate = cur_fps; 350 fpu->fpstate = guest_fps; 351 guest_fps->in_use = true; 352 } else { 353 guest_fps->in_use = false; 354 fpu->fpstate = fpu->__task_fpstate; 355 fpu->__task_fpstate = NULL; 356 } 357 358 cur_fps = fpu->fpstate; 359 360 if (!cur_fps->is_confidential) { 361 /* Includes XFD update */ 362 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE); 363 } else { 364 /* 365 * XSTATE is restored by firmware from encrypted 366 * memory. Make sure XFD state is correct while 367 * running with guest fpstate 368 */ 369 xfd_update_state(cur_fps); 370 } 371 372 fpregs_mark_activate(); 373 fpregs_unlock(); 374 return 0; 375 } 376 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate); 377 378 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf, 379 unsigned int size, u64 xfeatures, u32 pkru) 380 { 381 struct fpstate *kstate = gfpu->fpstate; 382 union fpregs_state *ustate = buf; 383 struct membuf mb = { .p = buf, .left = size }; 384 385 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) { 386 __copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru, 387 XSTATE_COPY_XSAVE); 388 } else { 389 memcpy(&ustate->fxsave, &kstate->regs.fxsave, 390 sizeof(ustate->fxsave)); 391 /* Make it restorable on a XSAVE enabled host */ 392 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE; 393 } 394 } 395 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi); 396 397 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf, 398 u64 xcr0, u32 *vpkru) 399 { 400 struct fpstate *kstate = gfpu->fpstate; 401 const union fpregs_state *ustate = buf; 402 403 if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) { 404 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE) 405 return -EINVAL; 406 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask) 407 return -EINVAL; 408 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave)); 409 return 0; 410 } 411 412 if (ustate->xsave.header.xfeatures & ~xcr0) 413 return -EINVAL; 414 415 /* 416 * Nullify @vpkru to preserve its current value if PKRU's bit isn't set 417 * in the header. KVM's odd ABI is to leave PKRU untouched in this 418 * case (all other components are eventually re-initialized). 419 */ 420 if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU)) 421 vpkru = NULL; 422 423 return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru); 424 } 425 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate); 426 #endif /* CONFIG_KVM */ 427 428 void kernel_fpu_begin_mask(unsigned int kfpu_mask) 429 { 430 if (!irqs_disabled()) 431 fpregs_lock(); 432 433 WARN_ON_FPU(!irq_fpu_usable()); 434 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 435 436 this_cpu_write(in_kernel_fpu, true); 437 438 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) && 439 !test_thread_flag(TIF_NEED_FPU_LOAD)) { 440 set_thread_flag(TIF_NEED_FPU_LOAD); 441 save_fpregs_to_fpstate(¤t->thread.fpu); 442 } 443 __cpu_invalidate_fpregs_state(); 444 445 /* Put sane initial values into the control registers. */ 446 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) 447 ldmxcsr(MXCSR_DEFAULT); 448 449 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) 450 asm volatile ("fninit"); 451 } 452 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); 453 454 void kernel_fpu_end(void) 455 { 456 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 457 458 this_cpu_write(in_kernel_fpu, false); 459 if (!irqs_disabled()) 460 fpregs_unlock(); 461 } 462 EXPORT_SYMBOL_GPL(kernel_fpu_end); 463 464 /* 465 * Sync the FPU register state to current's memory register state when the 466 * current task owns the FPU. The hardware register state is preserved. 467 */ 468 void fpu_sync_fpstate(struct fpu *fpu) 469 { 470 WARN_ON_FPU(fpu != ¤t->thread.fpu); 471 472 fpregs_lock(); 473 trace_x86_fpu_before_save(fpu); 474 475 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 476 save_fpregs_to_fpstate(fpu); 477 478 trace_x86_fpu_after_save(fpu); 479 fpregs_unlock(); 480 } 481 482 static inline unsigned int init_fpstate_copy_size(void) 483 { 484 if (!use_xsave()) 485 return fpu_kernel_cfg.default_size; 486 487 /* XSAVE(S) just needs the legacy and the xstate header part */ 488 return sizeof(init_fpstate.regs.xsave); 489 } 490 491 static inline void fpstate_init_fxstate(struct fpstate *fpstate) 492 { 493 fpstate->regs.fxsave.cwd = 0x37f; 494 fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT; 495 } 496 497 /* 498 * Legacy x87 fpstate state init: 499 */ 500 static inline void fpstate_init_fstate(struct fpstate *fpstate) 501 { 502 fpstate->regs.fsave.cwd = 0xffff037fu; 503 fpstate->regs.fsave.swd = 0xffff0000u; 504 fpstate->regs.fsave.twd = 0xffffffffu; 505 fpstate->regs.fsave.fos = 0xffff0000u; 506 } 507 508 /* 509 * Used in two places: 510 * 1) Early boot to setup init_fpstate for non XSAVE systems 511 * 2) fpu_alloc_guest_fpstate() which is invoked from KVM 512 */ 513 void fpstate_init_user(struct fpstate *fpstate) 514 { 515 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 516 fpstate_init_soft(&fpstate->regs.soft); 517 return; 518 } 519 520 xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures); 521 522 if (cpu_feature_enabled(X86_FEATURE_FXSR)) 523 fpstate_init_fxstate(fpstate); 524 else 525 fpstate_init_fstate(fpstate); 526 } 527 528 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd) 529 { 530 /* Initialize sizes and feature masks */ 531 fpstate->size = fpu_kernel_cfg.default_size; 532 fpstate->user_size = fpu_user_cfg.default_size; 533 fpstate->xfeatures = fpu_kernel_cfg.default_features; 534 fpstate->user_xfeatures = fpu_user_cfg.default_features; 535 fpstate->xfd = xfd; 536 } 537 538 void fpstate_reset(struct fpu *fpu) 539 { 540 /* Set the fpstate pointer to the default fpstate */ 541 fpu->fpstate = &fpu->__fpstate; 542 __fpstate_reset(fpu->fpstate, init_fpstate.xfd); 543 544 /* Initialize the permission related info in fpu */ 545 fpu->perm.__state_perm = fpu_kernel_cfg.default_features; 546 fpu->perm.__state_size = fpu_kernel_cfg.default_size; 547 fpu->perm.__user_state_size = fpu_user_cfg.default_size; 548 /* Same defaults for guests */ 549 fpu->guest_perm = fpu->perm; 550 } 551 552 static inline void fpu_inherit_perms(struct fpu *dst_fpu) 553 { 554 if (fpu_state_size_dynamic()) { 555 struct fpu *src_fpu = ¤t->group_leader->thread.fpu; 556 557 spin_lock_irq(¤t->sighand->siglock); 558 /* Fork also inherits the permissions of the parent */ 559 dst_fpu->perm = src_fpu->perm; 560 dst_fpu->guest_perm = src_fpu->guest_perm; 561 spin_unlock_irq(¤t->sighand->siglock); 562 } 563 } 564 565 /* A passed ssp of zero will not cause any update */ 566 static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp) 567 { 568 #ifdef CONFIG_X86_USER_SHADOW_STACK 569 struct cet_user_state *xstate; 570 571 /* If ssp update is not needed. */ 572 if (!ssp) 573 return 0; 574 575 xstate = get_xsave_addr(&dst->thread.fpu.fpstate->regs.xsave, 576 XFEATURE_CET_USER); 577 578 /* 579 * If there is a non-zero ssp, then 'dst' must be configured with a shadow 580 * stack and the fpu state should be up to date since it was just copied 581 * from the parent in fpu_clone(). So there must be a valid non-init CET 582 * state location in the buffer. 583 */ 584 if (WARN_ON_ONCE(!xstate)) 585 return 1; 586 587 xstate->user_ssp = (u64)ssp; 588 #endif 589 return 0; 590 } 591 592 /* Clone current's FPU state on fork */ 593 int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal, 594 unsigned long ssp) 595 { 596 struct fpu *src_fpu = ¤t->thread.fpu; 597 struct fpu *dst_fpu = &dst->thread.fpu; 598 599 /* The new task's FPU state cannot be valid in the hardware. */ 600 dst_fpu->last_cpu = -1; 601 602 fpstate_reset(dst_fpu); 603 604 if (!cpu_feature_enabled(X86_FEATURE_FPU)) 605 return 0; 606 607 /* 608 * Enforce reload for user space tasks and prevent kernel threads 609 * from trying to save the FPU registers on context switch. 610 */ 611 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 612 613 /* 614 * No FPU state inheritance for kernel threads and IO 615 * worker threads. 616 */ 617 if (minimal) { 618 /* Clear out the minimal state */ 619 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs, 620 init_fpstate_copy_size()); 621 return 0; 622 } 623 624 /* 625 * If a new feature is added, ensure all dynamic features are 626 * caller-saved from here! 627 */ 628 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); 629 630 /* 631 * Save the default portion of the current FPU state into the 632 * clone. Assume all dynamic features to be defined as caller- 633 * saved, which enables skipping both the expansion of fpstate 634 * and the copying of any dynamic state. 635 * 636 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because 637 * copying is not valid when current uses non-default states. 638 */ 639 fpregs_lock(); 640 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 641 fpregs_restore_userregs(); 642 save_fpregs_to_fpstate(dst_fpu); 643 fpregs_unlock(); 644 if (!(clone_flags & CLONE_THREAD)) 645 fpu_inherit_perms(dst_fpu); 646 647 /* 648 * Children never inherit PASID state. 649 * Force it to have its init value: 650 */ 651 if (use_xsave()) 652 dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID; 653 654 /* 655 * Update shadow stack pointer, in case it changed during clone. 656 */ 657 if (update_fpu_shstk(dst, ssp)) 658 return 1; 659 660 trace_x86_fpu_copy_src(src_fpu); 661 trace_x86_fpu_copy_dst(dst_fpu); 662 663 return 0; 664 } 665 666 /* 667 * Whitelist the FPU register state embedded into task_struct for hardened 668 * usercopy. 669 */ 670 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size) 671 { 672 *offset = offsetof(struct thread_struct, fpu.__fpstate.regs); 673 *size = fpu_kernel_cfg.default_size; 674 } 675 676 /* 677 * Drops current FPU state: deactivates the fpregs and 678 * the fpstate. NOTE: it still leaves previous contents 679 * in the fpregs in the eager-FPU case. 680 * 681 * This function can be used in cases where we know that 682 * a state-restore is coming: either an explicit one, 683 * or a reschedule. 684 */ 685 void fpu__drop(struct fpu *fpu) 686 { 687 preempt_disable(); 688 689 if (fpu == ¤t->thread.fpu) { 690 /* Ignore delayed exceptions from user space */ 691 asm volatile("1: fwait\n" 692 "2:\n" 693 _ASM_EXTABLE(1b, 2b)); 694 fpregs_deactivate(fpu); 695 } 696 697 trace_x86_fpu_dropped(fpu); 698 699 preempt_enable(); 700 } 701 702 /* 703 * Clear FPU registers by setting them up from the init fpstate. 704 * Caller must do fpregs_[un]lock() around it. 705 */ 706 static inline void restore_fpregs_from_init_fpstate(u64 features_mask) 707 { 708 if (use_xsave()) 709 os_xrstor(&init_fpstate, features_mask); 710 else if (use_fxsr()) 711 fxrstor(&init_fpstate.regs.fxsave); 712 else 713 frstor(&init_fpstate.regs.fsave); 714 715 pkru_write_default(); 716 } 717 718 /* 719 * Reset current->fpu memory state to the init values. 720 */ 721 static void fpu_reset_fpregs(void) 722 { 723 struct fpu *fpu = ¤t->thread.fpu; 724 725 fpregs_lock(); 726 __fpu_invalidate_fpregs_state(fpu); 727 /* 728 * This does not change the actual hardware registers. It just 729 * resets the memory image and sets TIF_NEED_FPU_LOAD so a 730 * subsequent return to usermode will reload the registers from the 731 * task's memory image. 732 * 733 * Do not use fpstate_init() here. Just copy init_fpstate which has 734 * the correct content already except for PKRU. 735 * 736 * PKRU handling does not rely on the xstate when restoring for 737 * user space as PKRU is eagerly written in switch_to() and 738 * flush_thread(). 739 */ 740 memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size()); 741 set_thread_flag(TIF_NEED_FPU_LOAD); 742 fpregs_unlock(); 743 } 744 745 /* 746 * Reset current's user FPU states to the init states. current's 747 * supervisor states, if any, are not modified by this function. The 748 * caller guarantees that the XSTATE header in memory is intact. 749 */ 750 void fpu__clear_user_states(struct fpu *fpu) 751 { 752 WARN_ON_FPU(fpu != ¤t->thread.fpu); 753 754 fpregs_lock(); 755 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 756 fpu_reset_fpregs(); 757 fpregs_unlock(); 758 return; 759 } 760 761 /* 762 * Ensure that current's supervisor states are loaded into their 763 * corresponding registers. 764 */ 765 if (xfeatures_mask_supervisor() && 766 !fpregs_state_valid(fpu, smp_processor_id())) 767 os_xrstor_supervisor(fpu->fpstate); 768 769 /* Reset user states in registers. */ 770 restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE); 771 772 /* 773 * Now all FPU registers have their desired values. Inform the FPU 774 * state machine that current's FPU registers are in the hardware 775 * registers. The memory image does not need to be updated because 776 * any operation relying on it has to save the registers first when 777 * current's FPU is marked active. 778 */ 779 fpregs_mark_activate(); 780 fpregs_unlock(); 781 } 782 783 void fpu_flush_thread(void) 784 { 785 fpstate_reset(¤t->thread.fpu); 786 fpu_reset_fpregs(); 787 } 788 /* 789 * Load FPU context before returning to userspace. 790 */ 791 void switch_fpu_return(void) 792 { 793 if (!static_cpu_has(X86_FEATURE_FPU)) 794 return; 795 796 fpregs_restore_userregs(); 797 } 798 EXPORT_SYMBOL_GPL(switch_fpu_return); 799 800 void fpregs_lock_and_load(void) 801 { 802 /* 803 * fpregs_lock() only disables preemption (mostly). So modifying state 804 * in an interrupt could screw up some in progress fpregs operation. 805 * Warn about it. 806 */ 807 WARN_ON_ONCE(!irq_fpu_usable()); 808 WARN_ON_ONCE(current->flags & PF_KTHREAD); 809 810 fpregs_lock(); 811 812 fpregs_assert_state_consistent(); 813 814 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 815 fpregs_restore_userregs(); 816 } 817 818 #ifdef CONFIG_X86_DEBUG_FPU 819 /* 820 * If current FPU state according to its tracking (loaded FPU context on this 821 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 822 * loaded on return to userland. 823 */ 824 void fpregs_assert_state_consistent(void) 825 { 826 struct fpu *fpu = ¤t->thread.fpu; 827 828 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 829 return; 830 831 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 832 } 833 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); 834 #endif 835 836 void fpregs_mark_activate(void) 837 { 838 struct fpu *fpu = ¤t->thread.fpu; 839 840 fpregs_activate(fpu); 841 fpu->last_cpu = smp_processor_id(); 842 clear_thread_flag(TIF_NEED_FPU_LOAD); 843 } 844 845 /* 846 * x87 math exception handling: 847 */ 848 849 int fpu__exception_code(struct fpu *fpu, int trap_nr) 850 { 851 int err; 852 853 if (trap_nr == X86_TRAP_MF) { 854 unsigned short cwd, swd; 855 /* 856 * (~cwd & swd) will mask out exceptions that are not set to unmasked 857 * status. 0x3f is the exception bits in these regs, 0x200 is the 858 * C1 reg you need in case of a stack fault, 0x040 is the stack 859 * fault bit. We should only be taking one exception at a time, 860 * so if this combination doesn't produce any single exception, 861 * then we have a bad program that isn't synchronizing its FPU usage 862 * and it will suffer the consequences since we won't be able to 863 * fully reproduce the context of the exception. 864 */ 865 if (boot_cpu_has(X86_FEATURE_FXSR)) { 866 cwd = fpu->fpstate->regs.fxsave.cwd; 867 swd = fpu->fpstate->regs.fxsave.swd; 868 } else { 869 cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd; 870 swd = (unsigned short)fpu->fpstate->regs.fsave.swd; 871 } 872 873 err = swd & ~cwd; 874 } else { 875 /* 876 * The SIMD FPU exceptions are handled a little differently, as there 877 * is only a single status/control register. Thus, to determine which 878 * unmasked exception was caught we must mask the exception mask bits 879 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 880 */ 881 unsigned short mxcsr = MXCSR_DEFAULT; 882 883 if (boot_cpu_has(X86_FEATURE_XMM)) 884 mxcsr = fpu->fpstate->regs.fxsave.mxcsr; 885 886 err = ~(mxcsr >> 7) & mxcsr; 887 } 888 889 if (err & 0x001) { /* Invalid op */ 890 /* 891 * swd & 0x240 == 0x040: Stack Underflow 892 * swd & 0x240 == 0x240: Stack Overflow 893 * User must clear the SF bit (0x40) if set 894 */ 895 return FPE_FLTINV; 896 } else if (err & 0x004) { /* Divide by Zero */ 897 return FPE_FLTDIV; 898 } else if (err & 0x008) { /* Overflow */ 899 return FPE_FLTOVF; 900 } else if (err & 0x012) { /* Denormal, Underflow */ 901 return FPE_FLTUND; 902 } else if (err & 0x020) { /* Precision */ 903 return FPE_FLTRES; 904 } 905 906 /* 907 * If we're using IRQ 13, or supposedly even some trap 908 * X86_TRAP_MF implementations, it's possible 909 * we get a spurious trap, which is not an error. 910 */ 911 return 0; 912 } 913 914 /* 915 * Initialize register state that may prevent from entering low-power idle. 916 * This function will be invoked from the cpuidle driver only when needed. 917 */ 918 noinstr void fpu_idle_fpregs(void) 919 { 920 /* Note: AMX_TILE being enabled implies XGETBV1 support */ 921 if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) && 922 (xfeatures_in_use() & XFEATURE_MASK_XTILE)) { 923 tile_release(); 924 __this_cpu_write(fpu_fpregs_owner_ctx, NULL); 925 } 926 } 927