1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * General FPU state handling cleanups 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 #include <asm/fpu/api.h> 10 #include <asm/fpu/regset.h> 11 #include <asm/fpu/sched.h> 12 #include <asm/fpu/signal.h> 13 #include <asm/fpu/types.h> 14 #include <asm/msr.h> 15 #include <asm/traps.h> 16 #include <asm/irq_regs.h> 17 18 #include <uapi/asm/kvm.h> 19 20 #include <linux/hardirq.h> 21 #include <linux/kvm_types.h> 22 #include <linux/pkeys.h> 23 #include <linux/vmalloc.h> 24 25 #include "context.h" 26 #include "internal.h" 27 #include "legacy.h" 28 #include "xstate.h" 29 30 #define CREATE_TRACE_POINTS 31 #include <asm/trace/fpu.h> 32 33 #ifdef CONFIG_X86_64 34 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic); 35 DEFINE_PER_CPU(u64, xfd_state); 36 #endif 37 38 /* The FPU state configuration data for kernel and user space */ 39 struct fpu_state_config fpu_kernel_cfg __ro_after_init; 40 struct fpu_state_config fpu_user_cfg __ro_after_init; 41 struct vcpu_fpu_config guest_default_cfg __ro_after_init; 42 43 /* 44 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 45 * depending on the FPU hardware format: 46 */ 47 struct fpstate init_fpstate __ro_after_init; 48 49 /* 50 * Track FPU initialization and kernel-mode usage. 'true' means the FPU is 51 * initialized and is not currently being used by the kernel: 52 */ 53 DEFINE_PER_CPU(bool, kernel_fpu_allowed); 54 55 /* 56 * Track which context is using the FPU on the CPU: 57 */ 58 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 59 60 #ifdef CONFIG_X86_DEBUG_FPU 61 struct fpu *x86_task_fpu(struct task_struct *task) 62 { 63 if (WARN_ON_ONCE(task->flags & PF_KTHREAD)) 64 return NULL; 65 66 return (void *)task + sizeof(*task); 67 } 68 #endif 69 70 /* 71 * Can we use the FPU in kernel mode with the 72 * whole "kernel_fpu_begin/end()" sequence? 73 */ 74 bool irq_fpu_usable(void) 75 { 76 if (WARN_ON_ONCE(in_nmi())) 77 return false; 78 79 /* 80 * Return false in the following cases: 81 * 82 * - FPU is not yet initialized. This can happen only when the call is 83 * coming from CPU onlining, for example for microcode checksumming. 84 * - The kernel is already using the FPU, either because of explicit 85 * nesting (which should never be done), or because of implicit 86 * nesting when a hardirq interrupted a kernel-mode FPU section. 87 * 88 * The single boolean check below handles both cases: 89 */ 90 if (!this_cpu_read(kernel_fpu_allowed)) 91 return false; 92 93 /* 94 * When not in NMI or hard interrupt context, FPU can be used in: 95 * 96 * - Task context except from within fpregs_lock()'ed critical 97 * regions. 98 * 99 * - Soft interrupt processing context which cannot happen 100 * while in a fpregs_lock()'ed critical region. 101 */ 102 if (!in_hardirq()) 103 return true; 104 105 /* 106 * In hard interrupt context it's safe when soft interrupts 107 * are enabled, which means the interrupt did not hit in 108 * a fpregs_lock()'ed critical region. 109 */ 110 return !softirq_count(); 111 } 112 EXPORT_SYMBOL(irq_fpu_usable); 113 114 /* 115 * Track AVX512 state use because it is known to slow the max clock 116 * speed of the core. 117 */ 118 static void update_avx_timestamp(struct fpu *fpu) 119 { 120 121 #define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM) 122 123 if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK) 124 fpu->avx512_timestamp = jiffies; 125 } 126 127 /* 128 * Save the FPU register state in fpu->fpstate->regs. The register state is 129 * preserved. 130 * 131 * Must be called with fpregs_lock() held. 132 * 133 * The legacy FNSAVE instruction clears all FPU state unconditionally, so 134 * register state has to be reloaded. That might be a pointless exercise 135 * when the FPU is going to be used by another task right after that. But 136 * this only affects 20+ years old 32bit systems and avoids conditionals all 137 * over the place. 138 * 139 * FXSAVE and all XSAVE variants preserve the FPU register state. 140 */ 141 void save_fpregs_to_fpstate(struct fpu *fpu) 142 { 143 if (likely(use_xsave())) { 144 os_xsave(fpu->fpstate); 145 update_avx_timestamp(fpu); 146 return; 147 } 148 149 if (likely(use_fxsr())) { 150 fxsave(&fpu->fpstate->regs.fxsave); 151 return; 152 } 153 154 /* 155 * Legacy FPU register saving, FNSAVE always clears FPU registers, 156 * so we have to reload them from the memory state. 157 */ 158 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave)); 159 frstor(&fpu->fpstate->regs.fsave); 160 } 161 162 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask) 163 { 164 /* 165 * AMD K7/K8 and later CPUs up to Zen don't save/restore 166 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state 167 * here by setting it to fixed values. "m" is a random variable 168 * that should be in L1. 169 */ 170 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { 171 asm volatile( 172 "fnclex\n\t" 173 "emms\n\t" 174 "fildl %[addr]" /* set F?P to defined value */ 175 : : [addr] "m" (*fpstate)); 176 } 177 178 if (use_xsave()) { 179 /* 180 * Dynamically enabled features are enabled in XCR0, but 181 * usage requires also that the corresponding bits in XFD 182 * are cleared. If the bits are set then using a related 183 * instruction will raise #NM. This allows to do the 184 * allocation of the larger FPU buffer lazy from #NM or if 185 * the task has no permission to kill it which would happen 186 * via #UD if the feature is disabled in XCR0. 187 * 188 * XFD state is following the same life time rules as 189 * XSTATE and to restore state correctly XFD has to be 190 * updated before XRSTORS otherwise the component would 191 * stay in or go into init state even if the bits are set 192 * in fpstate::regs::xsave::xfeatures. 193 */ 194 xfd_update_state(fpstate); 195 196 /* 197 * Restoring state always needs to modify all features 198 * which are in @mask even if the current task cannot use 199 * extended features. 200 * 201 * So fpstate->xfeatures cannot be used here, because then 202 * a feature for which the task has no permission but was 203 * used by the previous task would not go into init state. 204 */ 205 mask = fpu_kernel_cfg.max_features & mask; 206 207 os_xrstor(fpstate, mask); 208 } else { 209 if (use_fxsr()) 210 fxrstor(&fpstate->regs.fxsave); 211 else 212 frstor(&fpstate->regs.fsave); 213 } 214 } 215 216 void fpu_reset_from_exception_fixup(void) 217 { 218 restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE); 219 } 220 221 #if IS_ENABLED(CONFIG_KVM) 222 static void __fpstate_reset(struct fpstate *fpstate); 223 224 static void fpu_lock_guest_permissions(void) 225 { 226 struct fpu_state_perm *fpuperm; 227 u64 perm; 228 229 if (!IS_ENABLED(CONFIG_X86_64)) 230 return; 231 232 spin_lock_irq(¤t->sighand->siglock); 233 fpuperm = &x86_task_fpu(current->group_leader)->guest_perm; 234 perm = fpuperm->__state_perm; 235 236 /* First fpstate allocation locks down permissions. */ 237 WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED); 238 239 spin_unlock_irq(¤t->sighand->siglock); 240 } 241 242 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu) 243 { 244 struct fpstate *fpstate; 245 unsigned int size; 246 247 size = guest_default_cfg.size + ALIGN(offsetof(struct fpstate, regs), 64); 248 249 fpstate = vzalloc(size); 250 if (!fpstate) 251 return false; 252 253 /* Initialize indicators to reflect properties of the fpstate */ 254 fpstate->is_valloc = true; 255 fpstate->is_guest = true; 256 257 __fpstate_reset(fpstate); 258 fpstate_init_user(fpstate); 259 260 gfpu->fpstate = fpstate; 261 gfpu->xfeatures = guest_default_cfg.features; 262 263 /* 264 * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state 265 * to userspace, even when XSAVE is unsupported, so that restoring FPU 266 * state on a different CPU that does support XSAVE can cleanly load 267 * the incoming state using its natural XSAVE. In other words, KVM's 268 * uABI size may be larger than this host's default size. Conversely, 269 * the default size should never be larger than KVM's base uABI size; 270 * all features that can expand the uABI size must be opt-in. 271 */ 272 gfpu->uabi_size = sizeof(struct kvm_xsave); 273 if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size)) 274 gfpu->uabi_size = fpu_user_cfg.default_size; 275 276 fpu_lock_guest_permissions(); 277 278 return true; 279 } 280 EXPORT_SYMBOL_FOR_KVM(fpu_alloc_guest_fpstate); 281 282 void fpu_free_guest_fpstate(struct fpu_guest *gfpu) 283 { 284 struct fpstate *fpstate = gfpu->fpstate; 285 286 if (!fpstate) 287 return; 288 289 if (WARN_ON_ONCE(!fpstate->is_valloc || !fpstate->is_guest || fpstate->in_use)) 290 return; 291 292 gfpu->fpstate = NULL; 293 vfree(fpstate); 294 } 295 EXPORT_SYMBOL_FOR_KVM(fpu_free_guest_fpstate); 296 297 /* 298 * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable 299 * @guest_fpu: Pointer to the guest FPU container 300 * @xfeatures: Features requested by guest CPUID 301 * 302 * Enable all dynamic xfeatures according to guest perm and requested CPUID. 303 * 304 * Return: 0 on success, error code otherwise 305 */ 306 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures) 307 { 308 lockdep_assert_preemption_enabled(); 309 310 /* Nothing to do if all requested features are already enabled. */ 311 xfeatures &= ~guest_fpu->xfeatures; 312 if (!xfeatures) 313 return 0; 314 315 return __xfd_enable_feature(xfeatures, guest_fpu); 316 } 317 EXPORT_SYMBOL_FOR_KVM(fpu_enable_guest_xfd_features); 318 319 #ifdef CONFIG_X86_64 320 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd) 321 { 322 fpregs_lock(); 323 guest_fpu->fpstate->xfd = xfd; 324 if (guest_fpu->fpstate->in_use) 325 xfd_update_state(guest_fpu->fpstate); 326 fpregs_unlock(); 327 } 328 EXPORT_SYMBOL_FOR_KVM(fpu_update_guest_xfd); 329 330 /** 331 * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state 332 * 333 * Must be invoked from KVM after a VMEXIT before enabling interrupts when 334 * XFD write emulation is disabled. This is required because the guest can 335 * freely modify XFD and the state at VMEXIT is not guaranteed to be the 336 * same as the state on VMENTER. So software state has to be updated before 337 * any operation which depends on it can take place. 338 * 339 * Note: It can be invoked unconditionally even when write emulation is 340 * enabled for the price of a then pointless MSR read. 341 */ 342 void fpu_sync_guest_vmexit_xfd_state(void) 343 { 344 struct fpstate *fpstate = x86_task_fpu(current)->fpstate; 345 346 lockdep_assert_irqs_disabled(); 347 if (fpu_state_size_dynamic()) { 348 rdmsrq(MSR_IA32_XFD, fpstate->xfd); 349 __this_cpu_write(xfd_state, fpstate->xfd); 350 } 351 } 352 EXPORT_SYMBOL_FOR_KVM(fpu_sync_guest_vmexit_xfd_state); 353 #endif /* CONFIG_X86_64 */ 354 355 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest) 356 { 357 struct fpstate *guest_fps = guest_fpu->fpstate; 358 struct fpu *fpu = x86_task_fpu(current); 359 struct fpstate *cur_fps = fpu->fpstate; 360 361 fpregs_lock(); 362 if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD)) 363 save_fpregs_to_fpstate(fpu); 364 365 /* Swap fpstate */ 366 if (enter_guest) { 367 fpu->__task_fpstate = cur_fps; 368 fpu->fpstate = guest_fps; 369 guest_fps->in_use = true; 370 } else { 371 guest_fps->in_use = false; 372 fpu->fpstate = fpu->__task_fpstate; 373 fpu->__task_fpstate = NULL; 374 } 375 376 cur_fps = fpu->fpstate; 377 378 if (!cur_fps->is_confidential) { 379 /* Includes XFD update */ 380 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE); 381 } else { 382 /* 383 * XSTATE is restored by firmware from encrypted 384 * memory. Make sure XFD state is correct while 385 * running with guest fpstate 386 */ 387 xfd_update_state(cur_fps); 388 } 389 390 fpregs_mark_activate(); 391 fpregs_unlock(); 392 return 0; 393 } 394 EXPORT_SYMBOL_FOR_KVM(fpu_swap_kvm_fpstate); 395 396 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf, 397 unsigned int size, u64 xfeatures, u32 pkru) 398 { 399 struct fpstate *kstate = gfpu->fpstate; 400 union fpregs_state *ustate = buf; 401 struct membuf mb = { .p = buf, .left = size }; 402 403 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) { 404 __copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru, 405 XSTATE_COPY_XSAVE); 406 } else { 407 memcpy(&ustate->fxsave, &kstate->regs.fxsave, 408 sizeof(ustate->fxsave)); 409 /* Make it restorable on a XSAVE enabled host */ 410 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE; 411 } 412 } 413 EXPORT_SYMBOL_FOR_KVM(fpu_copy_guest_fpstate_to_uabi); 414 415 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf, 416 u64 xcr0, u32 *vpkru) 417 { 418 struct fpstate *kstate = gfpu->fpstate; 419 const union fpregs_state *ustate = buf; 420 421 if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) { 422 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE) 423 return -EINVAL; 424 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask) 425 return -EINVAL; 426 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave)); 427 return 0; 428 } 429 430 if (ustate->xsave.header.xfeatures & ~xcr0) 431 return -EINVAL; 432 433 /* 434 * Nullify @vpkru to preserve its current value if PKRU's bit isn't set 435 * in the header. KVM's odd ABI is to leave PKRU untouched in this 436 * case (all other components are eventually re-initialized). 437 */ 438 if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU)) 439 vpkru = NULL; 440 441 return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru); 442 } 443 EXPORT_SYMBOL_FOR_KVM(fpu_copy_uabi_to_guest_fpstate); 444 #endif /* CONFIG_KVM */ 445 446 void kernel_fpu_begin_mask(unsigned int kfpu_mask) 447 { 448 if (!irqs_disabled()) 449 fpregs_lock(); 450 451 WARN_ON_FPU(!irq_fpu_usable()); 452 453 /* Toggle kernel_fpu_allowed to false: */ 454 WARN_ON_FPU(!this_cpu_read(kernel_fpu_allowed)); 455 this_cpu_write(kernel_fpu_allowed, false); 456 457 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) && 458 !test_thread_flag(TIF_NEED_FPU_LOAD)) { 459 set_thread_flag(TIF_NEED_FPU_LOAD); 460 save_fpregs_to_fpstate(x86_task_fpu(current)); 461 } 462 __cpu_invalidate_fpregs_state(); 463 464 /* Put sane initial values into the control registers. */ 465 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) 466 ldmxcsr(MXCSR_DEFAULT); 467 468 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) 469 asm volatile ("fninit"); 470 } 471 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); 472 473 void kernel_fpu_end(void) 474 { 475 /* Toggle kernel_fpu_allowed back to true: */ 476 WARN_ON_FPU(this_cpu_read(kernel_fpu_allowed)); 477 this_cpu_write(kernel_fpu_allowed, true); 478 479 if (!irqs_disabled()) 480 fpregs_unlock(); 481 } 482 EXPORT_SYMBOL_GPL(kernel_fpu_end); 483 484 /* 485 * Sync the FPU register state to current's memory register state when the 486 * current task owns the FPU. The hardware register state is preserved. 487 */ 488 void fpu_sync_fpstate(struct fpu *fpu) 489 { 490 WARN_ON_FPU(fpu != x86_task_fpu(current)); 491 492 fpregs_lock(); 493 trace_x86_fpu_before_save(fpu); 494 495 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 496 save_fpregs_to_fpstate(fpu); 497 498 trace_x86_fpu_after_save(fpu); 499 fpregs_unlock(); 500 } 501 502 static inline unsigned int init_fpstate_copy_size(void) 503 { 504 if (!use_xsave()) 505 return fpu_kernel_cfg.default_size; 506 507 /* XSAVE(S) just needs the legacy and the xstate header part */ 508 return sizeof(init_fpstate.regs.xsave); 509 } 510 511 static inline void fpstate_init_fxstate(struct fpstate *fpstate) 512 { 513 fpstate->regs.fxsave.cwd = 0x37f; 514 fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT; 515 } 516 517 /* 518 * Legacy x87 fpstate state init: 519 */ 520 static inline void fpstate_init_fstate(struct fpstate *fpstate) 521 { 522 fpstate->regs.fsave.cwd = 0xffff037fu; 523 fpstate->regs.fsave.swd = 0xffff0000u; 524 fpstate->regs.fsave.twd = 0xffffffffu; 525 fpstate->regs.fsave.fos = 0xffff0000u; 526 } 527 528 /* 529 * Used in two places: 530 * 1) Early boot to setup init_fpstate for non XSAVE systems 531 * 2) fpu_alloc_guest_fpstate() which is invoked from KVM 532 */ 533 void fpstate_init_user(struct fpstate *fpstate) 534 { 535 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 536 fpstate_init_soft(&fpstate->regs.soft); 537 return; 538 } 539 540 xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures); 541 542 if (cpu_feature_enabled(X86_FEATURE_FXSR)) 543 fpstate_init_fxstate(fpstate); 544 else 545 fpstate_init_fstate(fpstate); 546 } 547 548 static void __fpstate_reset(struct fpstate *fpstate) 549 { 550 /* 551 * Supervisor features (and thus sizes) may diverge between guest 552 * FPUs and host FPUs, as some supervisor features are supported 553 * for guests despite not being utilized by the host. User 554 * features and sizes are always identical, which allows for 555 * common guest and userspace ABI. 556 * 557 * For the host, set XFD to the kernel's desired initialization 558 * value. For guests, set XFD to its architectural RESET value. 559 */ 560 if (fpstate->is_guest) { 561 fpstate->size = guest_default_cfg.size; 562 fpstate->xfeatures = guest_default_cfg.features; 563 fpstate->xfd = 0; 564 } else { 565 fpstate->size = fpu_kernel_cfg.default_size; 566 fpstate->xfeatures = fpu_kernel_cfg.default_features; 567 fpstate->xfd = init_fpstate.xfd; 568 } 569 570 fpstate->user_size = fpu_user_cfg.default_size; 571 fpstate->user_xfeatures = fpu_user_cfg.default_features; 572 } 573 574 void fpstate_reset(struct fpu *fpu) 575 { 576 /* Set the fpstate pointer to the default fpstate */ 577 fpu->fpstate = &fpu->__fpstate; 578 __fpstate_reset(fpu->fpstate); 579 580 /* Initialize the permission related info in fpu */ 581 fpu->perm.__state_perm = fpu_kernel_cfg.default_features; 582 fpu->perm.__state_size = fpu_kernel_cfg.default_size; 583 fpu->perm.__user_state_size = fpu_user_cfg.default_size; 584 585 fpu->guest_perm.__state_perm = guest_default_cfg.features; 586 fpu->guest_perm.__state_size = guest_default_cfg.size; 587 /* 588 * User features and sizes are always identical between host and 589 * guest FPUs, which allows for common guest and userspace ABI. 590 */ 591 fpu->guest_perm.__user_state_size = fpu_user_cfg.default_size; 592 } 593 594 static inline void fpu_inherit_perms(struct fpu *dst_fpu) 595 { 596 if (fpu_state_size_dynamic()) { 597 struct fpu *src_fpu = x86_task_fpu(current->group_leader); 598 599 spin_lock_irq(¤t->sighand->siglock); 600 /* Fork also inherits the permissions of the parent */ 601 dst_fpu->perm = src_fpu->perm; 602 dst_fpu->guest_perm = src_fpu->guest_perm; 603 spin_unlock_irq(¤t->sighand->siglock); 604 } 605 } 606 607 /* A passed ssp of zero will not cause any update */ 608 static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp) 609 { 610 #ifdef CONFIG_X86_USER_SHADOW_STACK 611 struct cet_user_state *xstate; 612 613 /* If ssp update is not needed. */ 614 if (!ssp) 615 return 0; 616 617 xstate = get_xsave_addr(&x86_task_fpu(dst)->fpstate->regs.xsave, 618 XFEATURE_CET_USER); 619 620 /* 621 * If there is a non-zero ssp, then 'dst' must be configured with a shadow 622 * stack and the fpu state should be up to date since it was just copied 623 * from the parent in fpu_clone(). So there must be a valid non-init CET 624 * state location in the buffer. 625 */ 626 if (WARN_ON_ONCE(!xstate)) 627 return 1; 628 629 xstate->user_ssp = (u64)ssp; 630 #endif 631 return 0; 632 } 633 634 /* Clone current's FPU state on fork */ 635 int fpu_clone(struct task_struct *dst, u64 clone_flags, bool minimal, 636 unsigned long ssp) 637 { 638 /* 639 * We allocate the new FPU structure right after the end of the task struct. 640 * task allocation size already took this into account. 641 * 642 * This is safe because task_struct size is a multiple of cacheline size, 643 * thus x86_task_fpu() will always be cacheline aligned as well. 644 */ 645 struct fpu *dst_fpu = (void *)dst + sizeof(*dst); 646 647 BUILD_BUG_ON(sizeof(*dst) % SMP_CACHE_BYTES != 0); 648 649 /* The new task's FPU state cannot be valid in the hardware. */ 650 dst_fpu->last_cpu = -1; 651 652 fpstate_reset(dst_fpu); 653 654 if (!cpu_feature_enabled(X86_FEATURE_FPU)) 655 return 0; 656 657 /* 658 * Enforce reload for user space tasks and prevent kernel threads 659 * from trying to save the FPU registers on context switch. 660 */ 661 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 662 663 /* 664 * No FPU state inheritance for kernel threads and IO 665 * worker threads. 666 */ 667 if (minimal) { 668 /* Clear out the minimal state */ 669 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs, 670 init_fpstate_copy_size()); 671 return 0; 672 } 673 674 /* 675 * If a new feature is added, ensure all dynamic features are 676 * caller-saved from here! 677 */ 678 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); 679 680 /* 681 * Save the default portion of the current FPU state into the 682 * clone. Assume all dynamic features to be defined as caller- 683 * saved, which enables skipping both the expansion of fpstate 684 * and the copying of any dynamic state. 685 * 686 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because 687 * copying is not valid when current uses non-default states. 688 */ 689 fpregs_lock(); 690 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 691 fpregs_restore_userregs(); 692 save_fpregs_to_fpstate(dst_fpu); 693 fpregs_unlock(); 694 if (!(clone_flags & CLONE_THREAD)) 695 fpu_inherit_perms(dst_fpu); 696 697 /* 698 * Children never inherit PASID state. 699 * Force it to have its init value: 700 */ 701 if (use_xsave()) 702 dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID; 703 704 /* 705 * Update shadow stack pointer, in case it changed during clone. 706 */ 707 if (update_fpu_shstk(dst, ssp)) 708 return 1; 709 710 trace_x86_fpu_copy_dst(dst_fpu); 711 712 return 0; 713 } 714 715 /* 716 * While struct fpu is no longer part of struct thread_struct, it is still 717 * allocated after struct task_struct in the "task_struct" kmem cache. But 718 * since FPU is expected to be part of struct thread_struct, we have to 719 * adjust for it here. 720 */ 721 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size) 722 { 723 /* The allocation follows struct task_struct. */ 724 *offset = sizeof(struct task_struct) - offsetof(struct task_struct, thread); 725 *offset += offsetof(struct fpu, __fpstate.regs); 726 *size = fpu_kernel_cfg.default_size; 727 } 728 729 /* 730 * Drops current FPU state: deactivates the fpregs and 731 * the fpstate. NOTE: it still leaves previous contents 732 * in the fpregs in the eager-FPU case. 733 * 734 * This function can be used in cases where we know that 735 * a state-restore is coming: either an explicit one, 736 * or a reschedule. 737 */ 738 void fpu__drop(struct task_struct *tsk) 739 { 740 struct fpu *fpu; 741 742 if (test_tsk_thread_flag(tsk, TIF_NEED_FPU_LOAD)) 743 return; 744 745 fpu = x86_task_fpu(tsk); 746 747 preempt_disable(); 748 749 if (fpu == x86_task_fpu(current)) { 750 /* Ignore delayed exceptions from user space */ 751 asm volatile("1: fwait\n" 752 "2:\n" 753 _ASM_EXTABLE(1b, 2b)); 754 fpregs_deactivate(fpu); 755 } 756 757 trace_x86_fpu_dropped(fpu); 758 759 preempt_enable(); 760 } 761 762 /* 763 * Clear FPU registers by setting them up from the init fpstate. 764 * Caller must do fpregs_[un]lock() around it. 765 */ 766 static inline void restore_fpregs_from_init_fpstate(u64 features_mask) 767 { 768 if (use_xsave()) 769 os_xrstor(&init_fpstate, features_mask); 770 else if (use_fxsr()) 771 fxrstor(&init_fpstate.regs.fxsave); 772 else 773 frstor(&init_fpstate.regs.fsave); 774 775 pkru_write_default(); 776 } 777 778 /* 779 * Reset current->fpu memory state to the init values. 780 */ 781 static void fpu_reset_fpstate_regs(void) 782 { 783 struct fpu *fpu = x86_task_fpu(current); 784 785 fpregs_lock(); 786 __fpu_invalidate_fpregs_state(fpu); 787 /* 788 * This does not change the actual hardware registers. It just 789 * resets the memory image and sets TIF_NEED_FPU_LOAD so a 790 * subsequent return to usermode will reload the registers from the 791 * task's memory image. 792 * 793 * Do not use fpstate_init() here. Just copy init_fpstate which has 794 * the correct content already except for PKRU. 795 * 796 * PKRU handling does not rely on the xstate when restoring for 797 * user space as PKRU is eagerly written in switch_to() and 798 * flush_thread(). 799 */ 800 memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size()); 801 set_thread_flag(TIF_NEED_FPU_LOAD); 802 fpregs_unlock(); 803 } 804 805 /* 806 * Reset current's user FPU states to the init states. current's 807 * supervisor states, if any, are not modified by this function. The 808 * caller guarantees that the XSTATE header in memory is intact. 809 */ 810 void fpu__clear_user_states(struct fpu *fpu) 811 { 812 WARN_ON_FPU(fpu != x86_task_fpu(current)); 813 814 fpregs_lock(); 815 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 816 fpu_reset_fpstate_regs(); 817 fpregs_unlock(); 818 return; 819 } 820 821 /* 822 * Ensure that current's supervisor states are loaded into their 823 * corresponding registers. 824 */ 825 if (xfeatures_mask_supervisor() && 826 !fpregs_state_valid(fpu, smp_processor_id())) 827 os_xrstor_supervisor(fpu->fpstate); 828 829 /* Ensure XFD state is in sync before reloading XSTATE */ 830 xfd_update_state(fpu->fpstate); 831 832 /* Reset user states in registers. */ 833 restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE); 834 835 /* 836 * Now all FPU registers have their desired values. Inform the FPU 837 * state machine that current's FPU registers are in the hardware 838 * registers. The memory image does not need to be updated because 839 * any operation relying on it has to save the registers first when 840 * current's FPU is marked active. 841 */ 842 fpregs_mark_activate(); 843 fpregs_unlock(); 844 } 845 846 void fpu_flush_thread(void) 847 { 848 fpstate_reset(x86_task_fpu(current)); 849 fpu_reset_fpstate_regs(); 850 } 851 /* 852 * Load FPU context before returning to userspace. 853 */ 854 void switch_fpu_return(void) 855 { 856 if (!static_cpu_has(X86_FEATURE_FPU)) 857 return; 858 859 fpregs_restore_userregs(); 860 } 861 EXPORT_SYMBOL_FOR_KVM(switch_fpu_return); 862 863 void fpregs_lock_and_load(void) 864 { 865 /* 866 * fpregs_lock() only disables preemption (mostly). So modifying state 867 * in an interrupt could screw up some in progress fpregs operation. 868 * Warn about it. 869 */ 870 WARN_ON_ONCE(!irq_fpu_usable()); 871 WARN_ON_ONCE(current->flags & PF_KTHREAD); 872 873 fpregs_lock(); 874 875 fpregs_assert_state_consistent(); 876 877 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 878 fpregs_restore_userregs(); 879 } 880 881 #ifdef CONFIG_X86_DEBUG_FPU 882 /* 883 * If current FPU state according to its tracking (loaded FPU context on this 884 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 885 * loaded on return to userland. 886 */ 887 void fpregs_assert_state_consistent(void) 888 { 889 struct fpu *fpu = x86_task_fpu(current); 890 891 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 892 return; 893 894 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 895 } 896 EXPORT_SYMBOL_FOR_KVM(fpregs_assert_state_consistent); 897 #endif 898 899 void fpregs_mark_activate(void) 900 { 901 struct fpu *fpu = x86_task_fpu(current); 902 903 fpregs_activate(fpu); 904 fpu->last_cpu = smp_processor_id(); 905 clear_thread_flag(TIF_NEED_FPU_LOAD); 906 } 907 908 /* 909 * x87 math exception handling: 910 */ 911 912 int fpu__exception_code(struct fpu *fpu, int trap_nr) 913 { 914 int err; 915 916 if (trap_nr == X86_TRAP_MF) { 917 unsigned short cwd, swd; 918 /* 919 * (~cwd & swd) will mask out exceptions that are not set to unmasked 920 * status. 0x3f is the exception bits in these regs, 0x200 is the 921 * C1 reg you need in case of a stack fault, 0x040 is the stack 922 * fault bit. We should only be taking one exception at a time, 923 * so if this combination doesn't produce any single exception, 924 * then we have a bad program that isn't synchronizing its FPU usage 925 * and it will suffer the consequences since we won't be able to 926 * fully reproduce the context of the exception. 927 */ 928 if (boot_cpu_has(X86_FEATURE_FXSR)) { 929 cwd = fpu->fpstate->regs.fxsave.cwd; 930 swd = fpu->fpstate->regs.fxsave.swd; 931 } else { 932 cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd; 933 swd = (unsigned short)fpu->fpstate->regs.fsave.swd; 934 } 935 936 err = swd & ~cwd; 937 } else { 938 /* 939 * The SIMD FPU exceptions are handled a little differently, as there 940 * is only a single status/control register. Thus, to determine which 941 * unmasked exception was caught we must mask the exception mask bits 942 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 943 */ 944 unsigned short mxcsr = MXCSR_DEFAULT; 945 946 if (boot_cpu_has(X86_FEATURE_XMM)) 947 mxcsr = fpu->fpstate->regs.fxsave.mxcsr; 948 949 err = ~(mxcsr >> 7) & mxcsr; 950 } 951 952 if (err & 0x001) { /* Invalid op */ 953 /* 954 * swd & 0x240 == 0x040: Stack Underflow 955 * swd & 0x240 == 0x240: Stack Overflow 956 * User must clear the SF bit (0x40) if set 957 */ 958 return FPE_FLTINV; 959 } else if (err & 0x004) { /* Divide by Zero */ 960 return FPE_FLTDIV; 961 } else if (err & 0x008) { /* Overflow */ 962 return FPE_FLTOVF; 963 } else if (err & 0x012) { /* Denormal, Underflow */ 964 return FPE_FLTUND; 965 } else if (err & 0x020) { /* Precision */ 966 return FPE_FLTRES; 967 } 968 969 /* 970 * If we're using IRQ 13, or supposedly even some trap 971 * X86_TRAP_MF implementations, it's possible 972 * we get a spurious trap, which is not an error. 973 */ 974 return 0; 975 } 976 977 /* 978 * Initialize register state that may prevent from entering low-power idle. 979 * This function will be invoked from the cpuidle driver only when needed. 980 */ 981 noinstr void fpu_idle_fpregs(void) 982 { 983 /* Note: AMX_TILE being enabled implies XGETBV1 support */ 984 if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) && 985 (xfeatures_in_use() & XFEATURE_MASK_XTILE)) { 986 tile_release(); 987 __this_cpu_write(fpu_fpregs_owner_ctx, NULL); 988 } 989 } 990