1 /* 2 * Copyright (C) 1994 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * General FPU state handling cleanups 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 #include <asm/fpu/internal.h> 9 #include <asm/fpu/regset.h> 10 #include <asm/fpu/signal.h> 11 #include <asm/fpu/types.h> 12 #include <asm/fpu/xstate.h> 13 #include <asm/traps.h> 14 15 #include <linux/hardirq.h> 16 #include <linux/pkeys.h> 17 18 #define CREATE_TRACE_POINTS 19 #include <asm/trace/fpu.h> 20 21 /* 22 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 23 * depending on the FPU hardware format: 24 */ 25 union fpregs_state init_fpstate __read_mostly; 26 27 /* 28 * Track whether the kernel is using the FPU state 29 * currently. 30 * 31 * This flag is used: 32 * 33 * - by IRQ context code to potentially use the FPU 34 * if it's unused. 35 * 36 * - to debug kernel_fpu_begin()/end() correctness 37 */ 38 static DEFINE_PER_CPU(bool, in_kernel_fpu); 39 40 /* 41 * Track which context is using the FPU on the CPU: 42 */ 43 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 44 45 static void kernel_fpu_disable(void) 46 { 47 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 48 this_cpu_write(in_kernel_fpu, true); 49 } 50 51 static void kernel_fpu_enable(void) 52 { 53 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 54 this_cpu_write(in_kernel_fpu, false); 55 } 56 57 static bool kernel_fpu_disabled(void) 58 { 59 return this_cpu_read(in_kernel_fpu); 60 } 61 62 static bool interrupted_kernel_fpu_idle(void) 63 { 64 return !kernel_fpu_disabled(); 65 } 66 67 /* 68 * Were we in user mode (or vm86 mode) when we were 69 * interrupted? 70 * 71 * Doing kernel_fpu_begin/end() is ok if we are running 72 * in an interrupt context from user mode - we'll just 73 * save the FPU state as required. 74 */ 75 static bool interrupted_user_mode(void) 76 { 77 struct pt_regs *regs = get_irq_regs(); 78 return regs && user_mode(regs); 79 } 80 81 /* 82 * Can we use the FPU in kernel mode with the 83 * whole "kernel_fpu_begin/end()" sequence? 84 * 85 * It's always ok in process context (ie "not interrupt") 86 * but it is sometimes ok even from an irq. 87 */ 88 bool irq_fpu_usable(void) 89 { 90 return !in_interrupt() || 91 interrupted_user_mode() || 92 interrupted_kernel_fpu_idle(); 93 } 94 EXPORT_SYMBOL(irq_fpu_usable); 95 96 void __kernel_fpu_begin(void) 97 { 98 struct fpu *fpu = ¤t->thread.fpu; 99 100 WARN_ON_FPU(!irq_fpu_usable()); 101 102 kernel_fpu_disable(); 103 104 if (fpu->fpregs_active) { 105 /* 106 * Ignore return value -- we don't care if reg state 107 * is clobbered. 108 */ 109 copy_fpregs_to_fpstate(fpu); 110 } else { 111 __cpu_invalidate_fpregs_state(); 112 } 113 } 114 EXPORT_SYMBOL(__kernel_fpu_begin); 115 116 void __kernel_fpu_end(void) 117 { 118 struct fpu *fpu = ¤t->thread.fpu; 119 120 if (fpu->fpregs_active) 121 copy_kernel_to_fpregs(&fpu->state); 122 123 kernel_fpu_enable(); 124 } 125 EXPORT_SYMBOL(__kernel_fpu_end); 126 127 void kernel_fpu_begin(void) 128 { 129 preempt_disable(); 130 __kernel_fpu_begin(); 131 } 132 EXPORT_SYMBOL_GPL(kernel_fpu_begin); 133 134 void kernel_fpu_end(void) 135 { 136 __kernel_fpu_end(); 137 preempt_enable(); 138 } 139 EXPORT_SYMBOL_GPL(kernel_fpu_end); 140 141 /* 142 * Save the FPU state (mark it for reload if necessary): 143 * 144 * This only ever gets called for the current task. 145 */ 146 void fpu__save(struct fpu *fpu) 147 { 148 WARN_ON_FPU(fpu != ¤t->thread.fpu); 149 150 preempt_disable(); 151 trace_x86_fpu_before_save(fpu); 152 if (fpu->fpregs_active) { 153 if (!copy_fpregs_to_fpstate(fpu)) { 154 copy_kernel_to_fpregs(&fpu->state); 155 } 156 } 157 trace_x86_fpu_after_save(fpu); 158 preempt_enable(); 159 } 160 EXPORT_SYMBOL_GPL(fpu__save); 161 162 /* 163 * Legacy x87 fpstate state init: 164 */ 165 static inline void fpstate_init_fstate(struct fregs_state *fp) 166 { 167 fp->cwd = 0xffff037fu; 168 fp->swd = 0xffff0000u; 169 fp->twd = 0xffffffffu; 170 fp->fos = 0xffff0000u; 171 } 172 173 void fpstate_init(union fpregs_state *state) 174 { 175 if (!static_cpu_has(X86_FEATURE_FPU)) { 176 fpstate_init_soft(&state->soft); 177 return; 178 } 179 180 memset(state, 0, fpu_kernel_xstate_size); 181 182 /* 183 * XRSTORS requires that this bit is set in xcomp_bv, or 184 * it will #GP. Make sure it is replaced after the memset(). 185 */ 186 if (static_cpu_has(X86_FEATURE_XSAVES)) 187 state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | 188 xfeatures_mask; 189 190 if (static_cpu_has(X86_FEATURE_FXSR)) 191 fpstate_init_fxstate(&state->fxsave); 192 else 193 fpstate_init_fstate(&state->fsave); 194 } 195 EXPORT_SYMBOL_GPL(fpstate_init); 196 197 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu) 198 { 199 dst_fpu->fpregs_active = 0; 200 dst_fpu->last_cpu = -1; 201 202 if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU)) 203 return 0; 204 205 WARN_ON_FPU(src_fpu != ¤t->thread.fpu); 206 207 /* 208 * Don't let 'init optimized' areas of the XSAVE area 209 * leak into the child task: 210 */ 211 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); 212 213 /* 214 * Save current FPU registers directly into the child 215 * FPU context, without any memory-to-memory copying. 216 * In lazy mode, if the FPU context isn't loaded into 217 * fpregs, CR0.TS will be set and do_device_not_available 218 * will load the FPU context. 219 * 220 * We have to do all this with preemption disabled, 221 * mostly because of the FNSAVE case, because in that 222 * case we must not allow preemption in the window 223 * between the FNSAVE and us marking the context lazy. 224 * 225 * It shouldn't be an issue as even FNSAVE is plenty 226 * fast in terms of critical section length. 227 */ 228 preempt_disable(); 229 if (!copy_fpregs_to_fpstate(dst_fpu)) { 230 memcpy(&src_fpu->state, &dst_fpu->state, 231 fpu_kernel_xstate_size); 232 233 copy_kernel_to_fpregs(&src_fpu->state); 234 } 235 preempt_enable(); 236 237 trace_x86_fpu_copy_src(src_fpu); 238 trace_x86_fpu_copy_dst(dst_fpu); 239 240 return 0; 241 } 242 243 /* 244 * Activate the current task's in-memory FPU context, 245 * if it has not been used before: 246 */ 247 void fpu__activate_curr(struct fpu *fpu) 248 { 249 WARN_ON_FPU(fpu != ¤t->thread.fpu); 250 251 if (!fpu->fpstate_active) { 252 fpstate_init(&fpu->state); 253 trace_x86_fpu_init_state(fpu); 254 255 trace_x86_fpu_activate_state(fpu); 256 /* Safe to do for the current task: */ 257 fpu->fpstate_active = 1; 258 } 259 } 260 EXPORT_SYMBOL_GPL(fpu__activate_curr); 261 262 /* 263 * This function must be called before we read a task's fpstate. 264 * 265 * If the task has not used the FPU before then initialize its 266 * fpstate. 267 * 268 * If the task has used the FPU before then save it. 269 */ 270 void fpu__activate_fpstate_read(struct fpu *fpu) 271 { 272 /* 273 * If fpregs are active (in the current CPU), then 274 * copy them to the fpstate: 275 */ 276 if (fpu->fpregs_active) { 277 fpu__save(fpu); 278 } else { 279 if (!fpu->fpstate_active) { 280 fpstate_init(&fpu->state); 281 trace_x86_fpu_init_state(fpu); 282 283 trace_x86_fpu_activate_state(fpu); 284 /* Safe to do for current and for stopped child tasks: */ 285 fpu->fpstate_active = 1; 286 } 287 } 288 } 289 290 /* 291 * This function must be called before we write a task's fpstate. 292 * 293 * If the task has used the FPU before then unlazy it. 294 * If the task has not used the FPU before then initialize its fpstate. 295 * 296 * After this function call, after registers in the fpstate are 297 * modified and the child task has woken up, the child task will 298 * restore the modified FPU state from the modified context. If we 299 * didn't clear its lazy status here then the lazy in-registers 300 * state pending on its former CPU could be restored, corrupting 301 * the modifications. 302 */ 303 void fpu__activate_fpstate_write(struct fpu *fpu) 304 { 305 /* 306 * Only stopped child tasks can be used to modify the FPU 307 * state in the fpstate buffer: 308 */ 309 WARN_ON_FPU(fpu == ¤t->thread.fpu); 310 311 if (fpu->fpstate_active) { 312 /* Invalidate any lazy state: */ 313 __fpu_invalidate_fpregs_state(fpu); 314 } else { 315 fpstate_init(&fpu->state); 316 trace_x86_fpu_init_state(fpu); 317 318 trace_x86_fpu_activate_state(fpu); 319 /* Safe to do for stopped child tasks: */ 320 fpu->fpstate_active = 1; 321 } 322 } 323 324 /* 325 * This function must be called before we write the current 326 * task's fpstate. 327 * 328 * This call gets the current FPU register state and moves 329 * it in to the 'fpstate'. Preemption is disabled so that 330 * no writes to the 'fpstate' can occur from context 331 * swiches. 332 * 333 * Must be followed by a fpu__current_fpstate_write_end(). 334 */ 335 void fpu__current_fpstate_write_begin(void) 336 { 337 struct fpu *fpu = ¤t->thread.fpu; 338 339 /* 340 * Ensure that the context-switching code does not write 341 * over the fpstate while we are doing our update. 342 */ 343 preempt_disable(); 344 345 /* 346 * Move the fpregs in to the fpu's 'fpstate'. 347 */ 348 fpu__activate_fpstate_read(fpu); 349 350 /* 351 * The caller is about to write to 'fpu'. Ensure that no 352 * CPU thinks that its fpregs match the fpstate. This 353 * ensures we will not be lazy and skip a XRSTOR in the 354 * future. 355 */ 356 __fpu_invalidate_fpregs_state(fpu); 357 } 358 359 /* 360 * This function must be paired with fpu__current_fpstate_write_begin() 361 * 362 * This will ensure that the modified fpstate gets placed back in 363 * the fpregs if necessary. 364 * 365 * Note: This function may be called whether or not an _actual_ 366 * write to the fpstate occurred. 367 */ 368 void fpu__current_fpstate_write_end(void) 369 { 370 struct fpu *fpu = ¤t->thread.fpu; 371 372 /* 373 * 'fpu' now has an updated copy of the state, but the 374 * registers may still be out of date. Update them with 375 * an XRSTOR if they are active. 376 */ 377 if (fpregs_active()) 378 copy_kernel_to_fpregs(&fpu->state); 379 380 /* 381 * Our update is done and the fpregs/fpstate are in sync 382 * if necessary. Context switches can happen again. 383 */ 384 preempt_enable(); 385 } 386 387 /* 388 * 'fpu__restore()' is called to copy FPU registers from 389 * the FPU fpstate to the live hw registers and to activate 390 * access to the hardware registers, so that FPU instructions 391 * can be used afterwards. 392 * 393 * Must be called with kernel preemption disabled (for example 394 * with local interrupts disabled, as it is in the case of 395 * do_device_not_available()). 396 */ 397 void fpu__restore(struct fpu *fpu) 398 { 399 fpu__activate_curr(fpu); 400 401 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */ 402 kernel_fpu_disable(); 403 trace_x86_fpu_before_restore(fpu); 404 fpregs_activate(fpu); 405 copy_kernel_to_fpregs(&fpu->state); 406 trace_x86_fpu_after_restore(fpu); 407 kernel_fpu_enable(); 408 } 409 EXPORT_SYMBOL_GPL(fpu__restore); 410 411 /* 412 * Drops current FPU state: deactivates the fpregs and 413 * the fpstate. NOTE: it still leaves previous contents 414 * in the fpregs in the eager-FPU case. 415 * 416 * This function can be used in cases where we know that 417 * a state-restore is coming: either an explicit one, 418 * or a reschedule. 419 */ 420 void fpu__drop(struct fpu *fpu) 421 { 422 preempt_disable(); 423 424 if (fpu->fpregs_active) { 425 /* Ignore delayed exceptions from user space */ 426 asm volatile("1: fwait\n" 427 "2:\n" 428 _ASM_EXTABLE(1b, 2b)); 429 fpregs_deactivate(fpu); 430 } 431 432 fpu->fpstate_active = 0; 433 434 trace_x86_fpu_dropped(fpu); 435 436 preempt_enable(); 437 } 438 439 /* 440 * Clear FPU registers by setting them up from 441 * the init fpstate: 442 */ 443 static inline void copy_init_fpstate_to_fpregs(void) 444 { 445 if (use_xsave()) 446 copy_kernel_to_xregs(&init_fpstate.xsave, -1); 447 else if (static_cpu_has(X86_FEATURE_FXSR)) 448 copy_kernel_to_fxregs(&init_fpstate.fxsave); 449 else 450 copy_kernel_to_fregs(&init_fpstate.fsave); 451 452 if (boot_cpu_has(X86_FEATURE_OSPKE)) 453 copy_init_pkru_to_fpregs(); 454 } 455 456 /* 457 * Clear the FPU state back to init state. 458 * 459 * Called by sys_execve(), by the signal handler code and by various 460 * error paths. 461 */ 462 void fpu__clear(struct fpu *fpu) 463 { 464 WARN_ON_FPU(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */ 465 466 fpu__drop(fpu); 467 468 /* 469 * Make sure fpstate is cleared and initialized. 470 */ 471 if (static_cpu_has(X86_FEATURE_FPU)) { 472 fpu__activate_curr(fpu); 473 user_fpu_begin(); 474 copy_init_fpstate_to_fpregs(); 475 } 476 } 477 478 /* 479 * x87 math exception handling: 480 */ 481 482 int fpu__exception_code(struct fpu *fpu, int trap_nr) 483 { 484 int err; 485 486 if (trap_nr == X86_TRAP_MF) { 487 unsigned short cwd, swd; 488 /* 489 * (~cwd & swd) will mask out exceptions that are not set to unmasked 490 * status. 0x3f is the exception bits in these regs, 0x200 is the 491 * C1 reg you need in case of a stack fault, 0x040 is the stack 492 * fault bit. We should only be taking one exception at a time, 493 * so if this combination doesn't produce any single exception, 494 * then we have a bad program that isn't synchronizing its FPU usage 495 * and it will suffer the consequences since we won't be able to 496 * fully reproduce the context of the exception. 497 */ 498 if (boot_cpu_has(X86_FEATURE_FXSR)) { 499 cwd = fpu->state.fxsave.cwd; 500 swd = fpu->state.fxsave.swd; 501 } else { 502 cwd = (unsigned short)fpu->state.fsave.cwd; 503 swd = (unsigned short)fpu->state.fsave.swd; 504 } 505 506 err = swd & ~cwd; 507 } else { 508 /* 509 * The SIMD FPU exceptions are handled a little differently, as there 510 * is only a single status/control register. Thus, to determine which 511 * unmasked exception was caught we must mask the exception mask bits 512 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 513 */ 514 unsigned short mxcsr = MXCSR_DEFAULT; 515 516 if (boot_cpu_has(X86_FEATURE_XMM)) 517 mxcsr = fpu->state.fxsave.mxcsr; 518 519 err = ~(mxcsr >> 7) & mxcsr; 520 } 521 522 if (err & 0x001) { /* Invalid op */ 523 /* 524 * swd & 0x240 == 0x040: Stack Underflow 525 * swd & 0x240 == 0x240: Stack Overflow 526 * User must clear the SF bit (0x40) if set 527 */ 528 return FPE_FLTINV; 529 } else if (err & 0x004) { /* Divide by Zero */ 530 return FPE_FLTDIV; 531 } else if (err & 0x008) { /* Overflow */ 532 return FPE_FLTOVF; 533 } else if (err & 0x012) { /* Denormal, Underflow */ 534 return FPE_FLTUND; 535 } else if (err & 0x020) { /* Precision */ 536 return FPE_FLTRES; 537 } 538 539 /* 540 * If we're using IRQ 13, or supposedly even some trap 541 * X86_TRAP_MF implementations, it's possible 542 * we get a spurious trap, which is not an error. 543 */ 544 return 0; 545 } 546