1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * General FPU state handling cleanups 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 #include <asm/fpu/api.h> 10 #include <asm/fpu/regset.h> 11 #include <asm/fpu/sched.h> 12 #include <asm/fpu/signal.h> 13 #include <asm/fpu/types.h> 14 #include <asm/msr.h> 15 #include <asm/traps.h> 16 #include <asm/irq_regs.h> 17 18 #include <uapi/asm/kvm.h> 19 20 #include <linux/hardirq.h> 21 #include <linux/kvm_types.h> 22 #include <linux/pkeys.h> 23 #include <linux/vmalloc.h> 24 25 #include "context.h" 26 #include "internal.h" 27 #include "legacy.h" 28 #include "xstate.h" 29 30 #define CREATE_TRACE_POINTS 31 #include <asm/trace/fpu.h> 32 33 #ifdef CONFIG_X86_64 34 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic); 35 DEFINE_PER_CPU(u64, xfd_state); 36 #endif 37 38 /* The FPU state configuration data for kernel and user space */ 39 struct fpu_state_config fpu_kernel_cfg __ro_after_init; 40 struct fpu_state_config fpu_user_cfg __ro_after_init; 41 struct vcpu_fpu_config guest_default_cfg __ro_after_init; 42 43 /* 44 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 45 * depending on the FPU hardware format: 46 */ 47 struct fpstate init_fpstate __ro_after_init; 48 49 /* 50 * Track FPU initialization and kernel-mode usage. 'true' means the FPU is 51 * initialized and is not currently being used by the kernel: 52 */ 53 DEFINE_PER_CPU(bool, kernel_fpu_allowed); 54 55 /* 56 * Track which context is using the FPU on the CPU: 57 */ 58 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 59 60 #ifdef CONFIG_X86_DEBUG_FPU 61 struct fpu *x86_task_fpu(struct task_struct *task) 62 { 63 if (WARN_ON_ONCE(task->flags & PF_KTHREAD)) 64 return NULL; 65 66 return (void *)task + sizeof(*task); 67 } 68 #endif 69 70 /* 71 * Can we use the FPU in kernel mode with the 72 * whole "kernel_fpu_begin/end()" sequence? 73 */ 74 bool irq_fpu_usable(void) 75 { 76 if (WARN_ON_ONCE(in_nmi())) 77 return false; 78 79 /* 80 * Return false in the following cases: 81 * 82 * - FPU is not yet initialized. This can happen only when the call is 83 * coming from CPU onlining, for example for microcode checksumming. 84 * - The kernel is already using the FPU, either because of explicit 85 * nesting (which should never be done), or because of implicit 86 * nesting when a hardirq interrupted a kernel-mode FPU section. 87 * 88 * The single boolean check below handles both cases: 89 */ 90 if (!this_cpu_read(kernel_fpu_allowed)) 91 return false; 92 93 /* 94 * When not in NMI or hard interrupt context, FPU can be used in: 95 * 96 * - Task context except from within fpregs_lock()'ed critical 97 * regions. 98 * 99 * - Soft interrupt processing context which cannot happen 100 * while in a fpregs_lock()'ed critical region. 101 */ 102 if (!in_hardirq()) 103 return true; 104 105 /* 106 * In hard interrupt context it's safe when soft interrupts 107 * are enabled, which means the interrupt did not hit in 108 * a fpregs_lock()'ed critical region. 109 */ 110 return !softirq_count(); 111 } 112 EXPORT_SYMBOL(irq_fpu_usable); 113 114 /* 115 * Track AVX512 state use because it is known to slow the max clock 116 * speed of the core. 117 */ 118 static void update_avx_timestamp(struct fpu *fpu) 119 { 120 121 #define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM) 122 123 if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK) 124 fpu->avx512_timestamp = jiffies; 125 } 126 127 /* 128 * Save the FPU register state in fpu->fpstate->regs. The register state is 129 * preserved. 130 * 131 * Must be called with fpregs_lock() held. 132 * 133 * The legacy FNSAVE instruction clears all FPU state unconditionally, so 134 * register state has to be reloaded. That might be a pointless exercise 135 * when the FPU is going to be used by another task right after that. But 136 * this only affects 20+ years old 32bit systems and avoids conditionals all 137 * over the place. 138 * 139 * FXSAVE and all XSAVE variants preserve the FPU register state. 140 */ 141 void save_fpregs_to_fpstate(struct fpu *fpu) 142 { 143 if (likely(use_xsave())) { 144 os_xsave(fpu->fpstate); 145 update_avx_timestamp(fpu); 146 return; 147 } 148 149 if (likely(use_fxsr())) { 150 fxsave(&fpu->fpstate->regs.fxsave); 151 return; 152 } 153 154 /* 155 * Legacy FPU register saving, FNSAVE always clears FPU registers, 156 * so we have to reload them from the memory state. 157 */ 158 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave)); 159 frstor(&fpu->fpstate->regs.fsave); 160 } 161 162 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask) 163 { 164 /* 165 * AMD K7/K8 and later CPUs up to Zen don't save/restore 166 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state 167 * here by setting it to fixed values. "m" is a random variable 168 * that should be in L1. 169 */ 170 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { 171 asm volatile( 172 "fnclex\n\t" 173 "emms\n\t" 174 "fildl %[addr]" /* set F?P to defined value */ 175 : : [addr] "m" (*fpstate)); 176 } 177 178 if (use_xsave()) { 179 /* 180 * Dynamically enabled features are enabled in XCR0, but 181 * usage requires also that the corresponding bits in XFD 182 * are cleared. If the bits are set then using a related 183 * instruction will raise #NM. This allows to do the 184 * allocation of the larger FPU buffer lazy from #NM or if 185 * the task has no permission to kill it which would happen 186 * via #UD if the feature is disabled in XCR0. 187 * 188 * XFD state is following the same life time rules as 189 * XSTATE and to restore state correctly XFD has to be 190 * updated before XRSTORS otherwise the component would 191 * stay in or go into init state even if the bits are set 192 * in fpstate::regs::xsave::xfeatures. 193 */ 194 xfd_update_state(fpstate); 195 196 /* 197 * Restoring state always needs to modify all features 198 * which are in @mask even if the current task cannot use 199 * extended features. 200 * 201 * So fpstate->xfeatures cannot be used here, because then 202 * a feature for which the task has no permission but was 203 * used by the previous task would not go into init state. 204 */ 205 mask = fpu_kernel_cfg.max_features & mask; 206 207 os_xrstor(fpstate, mask); 208 } else { 209 if (use_fxsr()) 210 fxrstor(&fpstate->regs.fxsave); 211 else 212 frstor(&fpstate->regs.fsave); 213 } 214 } 215 216 void fpu_reset_from_exception_fixup(void) 217 { 218 restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE); 219 } 220 221 #if IS_ENABLED(CONFIG_KVM) 222 static void __fpstate_reset(struct fpstate *fpstate); 223 224 static void fpu_lock_guest_permissions(void) 225 { 226 struct fpu_state_perm *fpuperm; 227 u64 perm; 228 229 if (!IS_ENABLED(CONFIG_X86_64)) 230 return; 231 232 spin_lock_irq(¤t->sighand->siglock); 233 fpuperm = &x86_task_fpu(current->group_leader)->guest_perm; 234 perm = fpuperm->__state_perm; 235 236 /* First fpstate allocation locks down permissions. */ 237 WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED); 238 239 spin_unlock_irq(¤t->sighand->siglock); 240 } 241 242 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu) 243 { 244 struct fpstate *fpstate; 245 unsigned int size; 246 247 size = guest_default_cfg.size + ALIGN(offsetof(struct fpstate, regs), 64); 248 249 fpstate = vzalloc(size); 250 if (!fpstate) 251 return false; 252 253 /* Initialize indicators to reflect properties of the fpstate */ 254 fpstate->is_valloc = true; 255 fpstate->is_guest = true; 256 257 __fpstate_reset(fpstate); 258 fpstate_init_user(fpstate); 259 260 gfpu->fpstate = fpstate; 261 gfpu->xfeatures = guest_default_cfg.features; 262 263 /* 264 * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state 265 * to userspace, even when XSAVE is unsupported, so that restoring FPU 266 * state on a different CPU that does support XSAVE can cleanly load 267 * the incoming state using its natural XSAVE. In other words, KVM's 268 * uABI size may be larger than this host's default size. Conversely, 269 * the default size should never be larger than KVM's base uABI size; 270 * all features that can expand the uABI size must be opt-in. 271 */ 272 gfpu->uabi_size = sizeof(struct kvm_xsave); 273 if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size)) 274 gfpu->uabi_size = fpu_user_cfg.default_size; 275 276 fpu_lock_guest_permissions(); 277 278 return true; 279 } 280 EXPORT_SYMBOL_FOR_KVM(fpu_alloc_guest_fpstate); 281 282 void fpu_free_guest_fpstate(struct fpu_guest *gfpu) 283 { 284 struct fpstate *fpstate = gfpu->fpstate; 285 286 if (!fpstate) 287 return; 288 289 if (WARN_ON_ONCE(!fpstate->is_valloc || !fpstate->is_guest || fpstate->in_use)) 290 return; 291 292 gfpu->fpstate = NULL; 293 vfree(fpstate); 294 } 295 EXPORT_SYMBOL_FOR_KVM(fpu_free_guest_fpstate); 296 297 /* 298 * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable 299 * @guest_fpu: Pointer to the guest FPU container 300 * @xfeatures: Features requested by guest CPUID 301 * 302 * Enable all dynamic xfeatures according to guest perm and requested CPUID. 303 * 304 * Return: 0 on success, error code otherwise 305 */ 306 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures) 307 { 308 lockdep_assert_preemption_enabled(); 309 310 /* Nothing to do if all requested features are already enabled. */ 311 xfeatures &= ~guest_fpu->xfeatures; 312 if (!xfeatures) 313 return 0; 314 315 return __xfd_enable_feature(xfeatures, guest_fpu); 316 } 317 EXPORT_SYMBOL_FOR_KVM(fpu_enable_guest_xfd_features); 318 319 #ifdef CONFIG_X86_64 320 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd) 321 { 322 struct fpstate *fpstate = guest_fpu->fpstate; 323 324 fpregs_lock(); 325 326 /* 327 * KVM's guest ABI is that setting XFD[i]=1 *can* immediately revert the 328 * save state to its initial configuration. Likewise, KVM_GET_XSAVE does 329 * the same as XSAVE and returns XSTATE_BV[i]=0 whenever XFD[i]=1. 330 * 331 * If the guest's FPU state is in hardware, just update XFD: the XSAVE 332 * in fpu_swap_kvm_fpstate will clear XSTATE_BV[i] whenever XFD[i]=1. 333 * 334 * If however the guest's FPU state is NOT resident in hardware, clear 335 * disabled components in XSTATE_BV now, or a subsequent XRSTOR will 336 * attempt to load disabled components and generate #NM _in the host_. 337 */ 338 if (xfd && test_thread_flag(TIF_NEED_FPU_LOAD)) 339 fpstate->regs.xsave.header.xfeatures &= ~xfd; 340 341 fpstate->xfd = xfd; 342 if (fpstate->in_use) 343 xfd_update_state(fpstate); 344 345 fpregs_unlock(); 346 } 347 EXPORT_SYMBOL_FOR_KVM(fpu_update_guest_xfd); 348 349 /** 350 * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state 351 * 352 * Must be invoked from KVM after a VMEXIT before enabling interrupts when 353 * XFD write emulation is disabled. This is required because the guest can 354 * freely modify XFD and the state at VMEXIT is not guaranteed to be the 355 * same as the state on VMENTER. So software state has to be updated before 356 * any operation which depends on it can take place. 357 * 358 * Note: It can be invoked unconditionally even when write emulation is 359 * enabled for the price of a then pointless MSR read. 360 */ 361 void fpu_sync_guest_vmexit_xfd_state(void) 362 { 363 struct fpstate *fpstate = x86_task_fpu(current)->fpstate; 364 365 lockdep_assert_irqs_disabled(); 366 if (fpu_state_size_dynamic()) { 367 rdmsrq(MSR_IA32_XFD, fpstate->xfd); 368 __this_cpu_write(xfd_state, fpstate->xfd); 369 } 370 } 371 EXPORT_SYMBOL_FOR_KVM(fpu_sync_guest_vmexit_xfd_state); 372 #endif /* CONFIG_X86_64 */ 373 374 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest) 375 { 376 struct fpstate *guest_fps = guest_fpu->fpstate; 377 struct fpu *fpu = x86_task_fpu(current); 378 struct fpstate *cur_fps = fpu->fpstate; 379 380 fpregs_lock(); 381 if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD)) 382 save_fpregs_to_fpstate(fpu); 383 384 /* Swap fpstate */ 385 if (enter_guest) { 386 fpu->__task_fpstate = cur_fps; 387 fpu->fpstate = guest_fps; 388 guest_fps->in_use = true; 389 } else { 390 guest_fps->in_use = false; 391 fpu->fpstate = fpu->__task_fpstate; 392 fpu->__task_fpstate = NULL; 393 } 394 395 cur_fps = fpu->fpstate; 396 397 if (!cur_fps->is_confidential) { 398 /* Includes XFD update */ 399 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE); 400 } else { 401 /* 402 * XSTATE is restored by firmware from encrypted 403 * memory. Make sure XFD state is correct while 404 * running with guest fpstate 405 */ 406 xfd_update_state(cur_fps); 407 } 408 409 fpregs_mark_activate(); 410 fpregs_unlock(); 411 return 0; 412 } 413 EXPORT_SYMBOL_FOR_KVM(fpu_swap_kvm_fpstate); 414 415 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf, 416 unsigned int size, u64 xfeatures, u32 pkru) 417 { 418 struct fpstate *kstate = gfpu->fpstate; 419 union fpregs_state *ustate = buf; 420 struct membuf mb = { .p = buf, .left = size }; 421 422 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) { 423 __copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru, 424 XSTATE_COPY_XSAVE); 425 } else { 426 memcpy(&ustate->fxsave, &kstate->regs.fxsave, 427 sizeof(ustate->fxsave)); 428 /* Make it restorable on a XSAVE enabled host */ 429 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE; 430 } 431 } 432 EXPORT_SYMBOL_FOR_KVM(fpu_copy_guest_fpstate_to_uabi); 433 434 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf, 435 u64 xcr0, u32 *vpkru) 436 { 437 struct fpstate *kstate = gfpu->fpstate; 438 const union fpregs_state *ustate = buf; 439 440 if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) { 441 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE) 442 return -EINVAL; 443 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask) 444 return -EINVAL; 445 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave)); 446 return 0; 447 } 448 449 if (ustate->xsave.header.xfeatures & ~xcr0) 450 return -EINVAL; 451 452 /* 453 * Disabled features must be in their initial state, otherwise XRSTOR 454 * causes an exception. 455 */ 456 if (WARN_ON_ONCE(ustate->xsave.header.xfeatures & kstate->xfd)) 457 return -EINVAL; 458 459 /* 460 * Nullify @vpkru to preserve its current value if PKRU's bit isn't set 461 * in the header. KVM's odd ABI is to leave PKRU untouched in this 462 * case (all other components are eventually re-initialized). 463 */ 464 if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU)) 465 vpkru = NULL; 466 467 return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru); 468 } 469 EXPORT_SYMBOL_FOR_KVM(fpu_copy_uabi_to_guest_fpstate); 470 #endif /* CONFIG_KVM */ 471 472 void kernel_fpu_begin_mask(unsigned int kfpu_mask) 473 { 474 if (!irqs_disabled()) 475 fpregs_lock(); 476 477 WARN_ON_FPU(!irq_fpu_usable()); 478 479 /* Toggle kernel_fpu_allowed to false: */ 480 WARN_ON_FPU(!this_cpu_read(kernel_fpu_allowed)); 481 this_cpu_write(kernel_fpu_allowed, false); 482 483 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) && 484 !test_thread_flag(TIF_NEED_FPU_LOAD)) { 485 set_thread_flag(TIF_NEED_FPU_LOAD); 486 save_fpregs_to_fpstate(x86_task_fpu(current)); 487 } 488 __cpu_invalidate_fpregs_state(); 489 490 /* Put sane initial values into the control registers. */ 491 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) 492 ldmxcsr(MXCSR_DEFAULT); 493 494 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) 495 asm volatile ("fninit"); 496 } 497 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); 498 499 void kernel_fpu_end(void) 500 { 501 /* Toggle kernel_fpu_allowed back to true: */ 502 WARN_ON_FPU(this_cpu_read(kernel_fpu_allowed)); 503 this_cpu_write(kernel_fpu_allowed, true); 504 505 if (!irqs_disabled()) 506 fpregs_unlock(); 507 } 508 EXPORT_SYMBOL_GPL(kernel_fpu_end); 509 510 /* 511 * Sync the FPU register state to current's memory register state when the 512 * current task owns the FPU. The hardware register state is preserved. 513 */ 514 void fpu_sync_fpstate(struct fpu *fpu) 515 { 516 WARN_ON_FPU(fpu != x86_task_fpu(current)); 517 518 fpregs_lock(); 519 trace_x86_fpu_before_save(fpu); 520 521 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 522 save_fpregs_to_fpstate(fpu); 523 524 trace_x86_fpu_after_save(fpu); 525 fpregs_unlock(); 526 } 527 528 static inline unsigned int init_fpstate_copy_size(void) 529 { 530 if (!use_xsave()) 531 return fpu_kernel_cfg.default_size; 532 533 /* XSAVE(S) just needs the legacy and the xstate header part */ 534 return sizeof(init_fpstate.regs.xsave); 535 } 536 537 static inline void fpstate_init_fxstate(struct fpstate *fpstate) 538 { 539 fpstate->regs.fxsave.cwd = 0x37f; 540 fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT; 541 } 542 543 /* 544 * Legacy x87 fpstate state init: 545 */ 546 static inline void fpstate_init_fstate(struct fpstate *fpstate) 547 { 548 fpstate->regs.fsave.cwd = 0xffff037fu; 549 fpstate->regs.fsave.swd = 0xffff0000u; 550 fpstate->regs.fsave.twd = 0xffffffffu; 551 fpstate->regs.fsave.fos = 0xffff0000u; 552 } 553 554 /* 555 * Used in two places: 556 * 1) Early boot to setup init_fpstate for non XSAVE systems 557 * 2) fpu_alloc_guest_fpstate() which is invoked from KVM 558 */ 559 void fpstate_init_user(struct fpstate *fpstate) 560 { 561 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 562 fpstate_init_soft(&fpstate->regs.soft); 563 return; 564 } 565 566 xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures); 567 568 if (cpu_feature_enabled(X86_FEATURE_FXSR)) 569 fpstate_init_fxstate(fpstate); 570 else 571 fpstate_init_fstate(fpstate); 572 } 573 574 static void __fpstate_reset(struct fpstate *fpstate) 575 { 576 /* 577 * Supervisor features (and thus sizes) may diverge between guest 578 * FPUs and host FPUs, as some supervisor features are supported 579 * for guests despite not being utilized by the host. User 580 * features and sizes are always identical, which allows for 581 * common guest and userspace ABI. 582 * 583 * For the host, set XFD to the kernel's desired initialization 584 * value. For guests, set XFD to its architectural RESET value. 585 */ 586 if (fpstate->is_guest) { 587 fpstate->size = guest_default_cfg.size; 588 fpstate->xfeatures = guest_default_cfg.features; 589 fpstate->xfd = 0; 590 } else { 591 fpstate->size = fpu_kernel_cfg.default_size; 592 fpstate->xfeatures = fpu_kernel_cfg.default_features; 593 fpstate->xfd = init_fpstate.xfd; 594 } 595 596 fpstate->user_size = fpu_user_cfg.default_size; 597 fpstate->user_xfeatures = fpu_user_cfg.default_features; 598 } 599 600 void fpstate_reset(struct fpu *fpu) 601 { 602 /* Set the fpstate pointer to the default fpstate */ 603 fpu->fpstate = &fpu->__fpstate; 604 __fpstate_reset(fpu->fpstate); 605 606 /* Initialize the permission related info in fpu */ 607 fpu->perm.__state_perm = fpu_kernel_cfg.default_features; 608 fpu->perm.__state_size = fpu_kernel_cfg.default_size; 609 fpu->perm.__user_state_size = fpu_user_cfg.default_size; 610 611 fpu->guest_perm.__state_perm = guest_default_cfg.features; 612 fpu->guest_perm.__state_size = guest_default_cfg.size; 613 /* 614 * User features and sizes are always identical between host and 615 * guest FPUs, which allows for common guest and userspace ABI. 616 */ 617 fpu->guest_perm.__user_state_size = fpu_user_cfg.default_size; 618 } 619 620 static inline void fpu_inherit_perms(struct fpu *dst_fpu) 621 { 622 if (fpu_state_size_dynamic()) { 623 struct fpu *src_fpu = x86_task_fpu(current->group_leader); 624 625 spin_lock_irq(¤t->sighand->siglock); 626 /* Fork also inherits the permissions of the parent */ 627 dst_fpu->perm = src_fpu->perm; 628 dst_fpu->guest_perm = src_fpu->guest_perm; 629 spin_unlock_irq(¤t->sighand->siglock); 630 } 631 } 632 633 /* A passed ssp of zero will not cause any update */ 634 static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp) 635 { 636 #ifdef CONFIG_X86_USER_SHADOW_STACK 637 struct cet_user_state *xstate; 638 639 /* If ssp update is not needed. */ 640 if (!ssp) 641 return 0; 642 643 xstate = get_xsave_addr(&x86_task_fpu(dst)->fpstate->regs.xsave, 644 XFEATURE_CET_USER); 645 646 /* 647 * If there is a non-zero ssp, then 'dst' must be configured with a shadow 648 * stack and the fpu state should be up to date since it was just copied 649 * from the parent in fpu_clone(). So there must be a valid non-init CET 650 * state location in the buffer. 651 */ 652 if (WARN_ON_ONCE(!xstate)) 653 return 1; 654 655 xstate->user_ssp = (u64)ssp; 656 #endif 657 return 0; 658 } 659 660 /* Clone current's FPU state on fork */ 661 int fpu_clone(struct task_struct *dst, u64 clone_flags, bool minimal, 662 unsigned long ssp) 663 { 664 /* 665 * We allocate the new FPU structure right after the end of the task struct. 666 * task allocation size already took this into account. 667 * 668 * This is safe because task_struct size is a multiple of cacheline size, 669 * thus x86_task_fpu() will always be cacheline aligned as well. 670 */ 671 struct fpu *dst_fpu = (void *)dst + sizeof(*dst); 672 673 BUILD_BUG_ON(sizeof(*dst) % SMP_CACHE_BYTES != 0); 674 675 /* The new task's FPU state cannot be valid in the hardware. */ 676 dst_fpu->last_cpu = -1; 677 678 fpstate_reset(dst_fpu); 679 680 if (!cpu_feature_enabled(X86_FEATURE_FPU)) 681 return 0; 682 683 /* 684 * Enforce reload for user space tasks and prevent kernel threads 685 * from trying to save the FPU registers on context switch. 686 */ 687 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 688 689 /* 690 * No FPU state inheritance for kernel threads and IO 691 * worker threads. 692 */ 693 if (minimal) { 694 /* Clear out the minimal state */ 695 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs, 696 init_fpstate_copy_size()); 697 return 0; 698 } 699 700 /* 701 * If a new feature is added, ensure all dynamic features are 702 * caller-saved from here! 703 */ 704 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); 705 706 /* 707 * Save the default portion of the current FPU state into the 708 * clone. Assume all dynamic features to be defined as caller- 709 * saved, which enables skipping both the expansion of fpstate 710 * and the copying of any dynamic state. 711 * 712 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because 713 * copying is not valid when current uses non-default states. 714 */ 715 fpregs_lock(); 716 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 717 fpregs_restore_userregs(); 718 save_fpregs_to_fpstate(dst_fpu); 719 fpregs_unlock(); 720 if (!(clone_flags & CLONE_THREAD)) 721 fpu_inherit_perms(dst_fpu); 722 723 /* 724 * Children never inherit PASID state. 725 * Force it to have its init value: 726 */ 727 if (use_xsave()) 728 dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID; 729 730 /* 731 * Update shadow stack pointer, in case it changed during clone. 732 */ 733 if (update_fpu_shstk(dst, ssp)) 734 return 1; 735 736 trace_x86_fpu_copy_dst(dst_fpu); 737 738 return 0; 739 } 740 741 /* 742 * While struct fpu is no longer part of struct thread_struct, it is still 743 * allocated after struct task_struct in the "task_struct" kmem cache. But 744 * since FPU is expected to be part of struct thread_struct, we have to 745 * adjust for it here. 746 */ 747 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size) 748 { 749 /* The allocation follows struct task_struct. */ 750 *offset = sizeof(struct task_struct) - offsetof(struct task_struct, thread); 751 *offset += offsetof(struct fpu, __fpstate.regs); 752 *size = fpu_kernel_cfg.default_size; 753 } 754 755 /* 756 * Drops current FPU state: deactivates the fpregs and 757 * the fpstate. NOTE: it still leaves previous contents 758 * in the fpregs in the eager-FPU case. 759 * 760 * This function can be used in cases where we know that 761 * a state-restore is coming: either an explicit one, 762 * or a reschedule. 763 */ 764 void fpu__drop(struct task_struct *tsk) 765 { 766 struct fpu *fpu; 767 768 if (test_tsk_thread_flag(tsk, TIF_NEED_FPU_LOAD)) 769 return; 770 771 fpu = x86_task_fpu(tsk); 772 773 preempt_disable(); 774 775 if (fpu == x86_task_fpu(current)) { 776 /* Ignore delayed exceptions from user space */ 777 asm volatile("1: fwait\n" 778 "2:\n" 779 _ASM_EXTABLE(1b, 2b)); 780 fpregs_deactivate(fpu); 781 } 782 783 trace_x86_fpu_dropped(fpu); 784 785 preempt_enable(); 786 } 787 788 /* 789 * Clear FPU registers by setting them up from the init fpstate. 790 * Caller must do fpregs_[un]lock() around it. 791 */ 792 static inline void restore_fpregs_from_init_fpstate(u64 features_mask) 793 { 794 if (use_xsave()) 795 os_xrstor(&init_fpstate, features_mask); 796 else if (use_fxsr()) 797 fxrstor(&init_fpstate.regs.fxsave); 798 else 799 frstor(&init_fpstate.regs.fsave); 800 801 pkru_write_default(); 802 } 803 804 /* 805 * Reset current->fpu memory state to the init values. 806 */ 807 static void fpu_reset_fpstate_regs(void) 808 { 809 struct fpu *fpu = x86_task_fpu(current); 810 811 fpregs_lock(); 812 __fpu_invalidate_fpregs_state(fpu); 813 /* 814 * This does not change the actual hardware registers. It just 815 * resets the memory image and sets TIF_NEED_FPU_LOAD so a 816 * subsequent return to usermode will reload the registers from the 817 * task's memory image. 818 * 819 * Do not use fpstate_init() here. Just copy init_fpstate which has 820 * the correct content already except for PKRU. 821 * 822 * PKRU handling does not rely on the xstate when restoring for 823 * user space as PKRU is eagerly written in switch_to() and 824 * flush_thread(). 825 */ 826 memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size()); 827 set_thread_flag(TIF_NEED_FPU_LOAD); 828 fpregs_unlock(); 829 } 830 831 /* 832 * Reset current's user FPU states to the init states. current's 833 * supervisor states, if any, are not modified by this function. The 834 * caller guarantees that the XSTATE header in memory is intact. 835 */ 836 void fpu__clear_user_states(struct fpu *fpu) 837 { 838 WARN_ON_FPU(fpu != x86_task_fpu(current)); 839 840 fpregs_lock(); 841 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 842 fpu_reset_fpstate_regs(); 843 fpregs_unlock(); 844 return; 845 } 846 847 /* 848 * Ensure that current's supervisor states are loaded into their 849 * corresponding registers. 850 */ 851 if (xfeatures_mask_supervisor() && 852 !fpregs_state_valid(fpu, smp_processor_id())) 853 os_xrstor_supervisor(fpu->fpstate); 854 855 /* Ensure XFD state is in sync before reloading XSTATE */ 856 xfd_update_state(fpu->fpstate); 857 858 /* Reset user states in registers. */ 859 restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE); 860 861 /* 862 * Now all FPU registers have their desired values. Inform the FPU 863 * state machine that current's FPU registers are in the hardware 864 * registers. The memory image does not need to be updated because 865 * any operation relying on it has to save the registers first when 866 * current's FPU is marked active. 867 */ 868 fpregs_mark_activate(); 869 fpregs_unlock(); 870 } 871 872 void fpu_flush_thread(void) 873 { 874 fpstate_reset(x86_task_fpu(current)); 875 fpu_reset_fpstate_regs(); 876 } 877 /* 878 * Load FPU context before returning to userspace. 879 */ 880 void switch_fpu_return(void) 881 { 882 if (!static_cpu_has(X86_FEATURE_FPU)) 883 return; 884 885 fpregs_restore_userregs(); 886 } 887 EXPORT_SYMBOL_FOR_KVM(switch_fpu_return); 888 889 void fpregs_lock_and_load(void) 890 { 891 /* 892 * fpregs_lock() only disables preemption (mostly). So modifying state 893 * in an interrupt could screw up some in progress fpregs operation. 894 * Warn about it. 895 */ 896 WARN_ON_ONCE(!irq_fpu_usable()); 897 WARN_ON_ONCE(current->flags & PF_KTHREAD); 898 899 fpregs_lock(); 900 901 fpregs_assert_state_consistent(); 902 903 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 904 fpregs_restore_userregs(); 905 } 906 907 #ifdef CONFIG_X86_DEBUG_FPU 908 /* 909 * If current FPU state according to its tracking (loaded FPU context on this 910 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 911 * loaded on return to userland. 912 */ 913 void fpregs_assert_state_consistent(void) 914 { 915 struct fpu *fpu = x86_task_fpu(current); 916 917 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 918 return; 919 920 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 921 } 922 EXPORT_SYMBOL_FOR_KVM(fpregs_assert_state_consistent); 923 #endif 924 925 void fpregs_mark_activate(void) 926 { 927 struct fpu *fpu = x86_task_fpu(current); 928 929 fpregs_activate(fpu); 930 fpu->last_cpu = smp_processor_id(); 931 clear_thread_flag(TIF_NEED_FPU_LOAD); 932 } 933 934 /* 935 * x87 math exception handling: 936 */ 937 938 int fpu__exception_code(struct fpu *fpu, int trap_nr) 939 { 940 int err; 941 942 if (trap_nr == X86_TRAP_MF) { 943 unsigned short cwd, swd; 944 /* 945 * (~cwd & swd) will mask out exceptions that are not set to unmasked 946 * status. 0x3f is the exception bits in these regs, 0x200 is the 947 * C1 reg you need in case of a stack fault, 0x040 is the stack 948 * fault bit. We should only be taking one exception at a time, 949 * so if this combination doesn't produce any single exception, 950 * then we have a bad program that isn't synchronizing its FPU usage 951 * and it will suffer the consequences since we won't be able to 952 * fully reproduce the context of the exception. 953 */ 954 if (boot_cpu_has(X86_FEATURE_FXSR)) { 955 cwd = fpu->fpstate->regs.fxsave.cwd; 956 swd = fpu->fpstate->regs.fxsave.swd; 957 } else { 958 cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd; 959 swd = (unsigned short)fpu->fpstate->regs.fsave.swd; 960 } 961 962 err = swd & ~cwd; 963 } else { 964 /* 965 * The SIMD FPU exceptions are handled a little differently, as there 966 * is only a single status/control register. Thus, to determine which 967 * unmasked exception was caught we must mask the exception mask bits 968 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 969 */ 970 unsigned short mxcsr = MXCSR_DEFAULT; 971 972 if (boot_cpu_has(X86_FEATURE_XMM)) 973 mxcsr = fpu->fpstate->regs.fxsave.mxcsr; 974 975 err = ~(mxcsr >> 7) & mxcsr; 976 } 977 978 if (err & 0x001) { /* Invalid op */ 979 /* 980 * swd & 0x240 == 0x040: Stack Underflow 981 * swd & 0x240 == 0x240: Stack Overflow 982 * User must clear the SF bit (0x40) if set 983 */ 984 return FPE_FLTINV; 985 } else if (err & 0x004) { /* Divide by Zero */ 986 return FPE_FLTDIV; 987 } else if (err & 0x008) { /* Overflow */ 988 return FPE_FLTOVF; 989 } else if (err & 0x012) { /* Denormal, Underflow */ 990 return FPE_FLTUND; 991 } else if (err & 0x020) { /* Precision */ 992 return FPE_FLTRES; 993 } 994 995 /* 996 * If we're using IRQ 13, or supposedly even some trap 997 * X86_TRAP_MF implementations, it's possible 998 * we get a spurious trap, which is not an error. 999 */ 1000 return 0; 1001 } 1002 1003 /* 1004 * Initialize register state that may prevent from entering low-power idle. 1005 * This function will be invoked from the cpuidle driver only when needed. 1006 */ 1007 noinstr void fpu_idle_fpregs(void) 1008 { 1009 /* Note: AMX_TILE being enabled implies XGETBV1 support */ 1010 if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) && 1011 (xfeatures_in_use() & XFEATURE_MASK_XTILE)) { 1012 tile_release(); 1013 __this_cpu_write(fpu_fpregs_owner_ctx, NULL); 1014 } 1015 } 1016