xref: /linux/arch/x86/kernel/fpu/core.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/internal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/types.h>
13 #include <asm/traps.h>
14 #include <asm/irq_regs.h>
15 
16 #include <linux/hardirq.h>
17 #include <linux/pkeys.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <asm/trace/fpu.h>
21 
22 /*
23  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
24  * depending on the FPU hardware format:
25  */
26 union fpregs_state init_fpstate __read_mostly;
27 
28 /*
29  * Track whether the kernel is using the FPU state
30  * currently.
31  *
32  * This flag is used:
33  *
34  *   - by IRQ context code to potentially use the FPU
35  *     if it's unused.
36  *
37  *   - to debug kernel_fpu_begin()/end() correctness
38  */
39 static DEFINE_PER_CPU(bool, in_kernel_fpu);
40 
41 /*
42  * Track which context is using the FPU on the CPU:
43  */
44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
45 
46 static bool kernel_fpu_disabled(void)
47 {
48 	return this_cpu_read(in_kernel_fpu);
49 }
50 
51 static bool interrupted_kernel_fpu_idle(void)
52 {
53 	return !kernel_fpu_disabled();
54 }
55 
56 /*
57  * Were we in user mode (or vm86 mode) when we were
58  * interrupted?
59  *
60  * Doing kernel_fpu_begin/end() is ok if we are running
61  * in an interrupt context from user mode - we'll just
62  * save the FPU state as required.
63  */
64 static bool interrupted_user_mode(void)
65 {
66 	struct pt_regs *regs = get_irq_regs();
67 	return regs && user_mode(regs);
68 }
69 
70 /*
71  * Can we use the FPU in kernel mode with the
72  * whole "kernel_fpu_begin/end()" sequence?
73  *
74  * It's always ok in process context (ie "not interrupt")
75  * but it is sometimes ok even from an irq.
76  */
77 bool irq_fpu_usable(void)
78 {
79 	return !in_interrupt() ||
80 		interrupted_user_mode() ||
81 		interrupted_kernel_fpu_idle();
82 }
83 EXPORT_SYMBOL(irq_fpu_usable);
84 
85 /*
86  * These must be called with preempt disabled. Returns
87  * 'true' if the FPU state is still intact and we can
88  * keep registers active.
89  *
90  * The legacy FNSAVE instruction cleared all FPU state
91  * unconditionally, so registers are essentially destroyed.
92  * Modern FPU state can be kept in registers, if there are
93  * no pending FP exceptions.
94  */
95 int copy_fpregs_to_fpstate(struct fpu *fpu)
96 {
97 	if (likely(use_xsave())) {
98 		copy_xregs_to_kernel(&fpu->state.xsave);
99 
100 		/*
101 		 * AVX512 state is tracked here because its use is
102 		 * known to slow the max clock speed of the core.
103 		 */
104 		if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
105 			fpu->avx512_timestamp = jiffies;
106 		return 1;
107 	}
108 
109 	if (likely(use_fxsr())) {
110 		copy_fxregs_to_kernel(fpu);
111 		return 1;
112 	}
113 
114 	/*
115 	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
116 	 * so we have to mark them inactive:
117 	 */
118 	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
119 
120 	return 0;
121 }
122 EXPORT_SYMBOL(copy_fpregs_to_fpstate);
123 
124 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
125 {
126 	preempt_disable();
127 
128 	WARN_ON_FPU(!irq_fpu_usable());
129 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
130 
131 	this_cpu_write(in_kernel_fpu, true);
132 
133 	if (!(current->flags & PF_KTHREAD) &&
134 	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
135 		set_thread_flag(TIF_NEED_FPU_LOAD);
136 		/*
137 		 * Ignore return value -- we don't care if reg state
138 		 * is clobbered.
139 		 */
140 		copy_fpregs_to_fpstate(&current->thread.fpu);
141 	}
142 	__cpu_invalidate_fpregs_state();
143 
144 	/* Put sane initial values into the control registers. */
145 	if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
146 		ldmxcsr(MXCSR_DEFAULT);
147 
148 	if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
149 		asm volatile ("fninit");
150 }
151 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
152 
153 void kernel_fpu_end(void)
154 {
155 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
156 
157 	this_cpu_write(in_kernel_fpu, false);
158 	preempt_enable();
159 }
160 EXPORT_SYMBOL_GPL(kernel_fpu_end);
161 
162 /*
163  * Save the FPU state (mark it for reload if necessary):
164  *
165  * This only ever gets called for the current task.
166  */
167 void fpu__save(struct fpu *fpu)
168 {
169 	WARN_ON_FPU(fpu != &current->thread.fpu);
170 
171 	fpregs_lock();
172 	trace_x86_fpu_before_save(fpu);
173 
174 	if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
175 		if (!copy_fpregs_to_fpstate(fpu)) {
176 			copy_kernel_to_fpregs(&fpu->state);
177 		}
178 	}
179 
180 	trace_x86_fpu_after_save(fpu);
181 	fpregs_unlock();
182 }
183 
184 /*
185  * Legacy x87 fpstate state init:
186  */
187 static inline void fpstate_init_fstate(struct fregs_state *fp)
188 {
189 	fp->cwd = 0xffff037fu;
190 	fp->swd = 0xffff0000u;
191 	fp->twd = 0xffffffffu;
192 	fp->fos = 0xffff0000u;
193 }
194 
195 void fpstate_init(union fpregs_state *state)
196 {
197 	if (!static_cpu_has(X86_FEATURE_FPU)) {
198 		fpstate_init_soft(&state->soft);
199 		return;
200 	}
201 
202 	memset(state, 0, fpu_kernel_xstate_size);
203 
204 	if (static_cpu_has(X86_FEATURE_XSAVES))
205 		fpstate_init_xstate(&state->xsave);
206 	if (static_cpu_has(X86_FEATURE_FXSR))
207 		fpstate_init_fxstate(&state->fxsave);
208 	else
209 		fpstate_init_fstate(&state->fsave);
210 }
211 EXPORT_SYMBOL_GPL(fpstate_init);
212 
213 int fpu__copy(struct task_struct *dst, struct task_struct *src)
214 {
215 	struct fpu *dst_fpu = &dst->thread.fpu;
216 	struct fpu *src_fpu = &src->thread.fpu;
217 
218 	dst_fpu->last_cpu = -1;
219 
220 	if (!static_cpu_has(X86_FEATURE_FPU))
221 		return 0;
222 
223 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
224 
225 	/*
226 	 * Don't let 'init optimized' areas of the XSAVE area
227 	 * leak into the child task:
228 	 */
229 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
230 
231 	/*
232 	 * If the FPU registers are not current just memcpy() the state.
233 	 * Otherwise save current FPU registers directly into the child's FPU
234 	 * context, without any memory-to-memory copying.
235 	 *
236 	 * ( The function 'fails' in the FNSAVE case, which destroys
237 	 *   register contents so we have to load them back. )
238 	 */
239 	fpregs_lock();
240 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
241 		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
242 
243 	else if (!copy_fpregs_to_fpstate(dst_fpu))
244 		copy_kernel_to_fpregs(&dst_fpu->state);
245 
246 	fpregs_unlock();
247 
248 	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
249 
250 	trace_x86_fpu_copy_src(src_fpu);
251 	trace_x86_fpu_copy_dst(dst_fpu);
252 
253 	return 0;
254 }
255 
256 /*
257  * Activate the current task's in-memory FPU context,
258  * if it has not been used before:
259  */
260 static void fpu__initialize(struct fpu *fpu)
261 {
262 	WARN_ON_FPU(fpu != &current->thread.fpu);
263 
264 	set_thread_flag(TIF_NEED_FPU_LOAD);
265 	fpstate_init(&fpu->state);
266 	trace_x86_fpu_init_state(fpu);
267 }
268 
269 /*
270  * This function must be called before we read a task's fpstate.
271  *
272  * There's two cases where this gets called:
273  *
274  * - for the current task (when coredumping), in which case we have
275  *   to save the latest FPU registers into the fpstate,
276  *
277  * - or it's called for stopped tasks (ptrace), in which case the
278  *   registers were already saved by the context-switch code when
279  *   the task scheduled out.
280  *
281  * If the task has used the FPU before then save it.
282  */
283 void fpu__prepare_read(struct fpu *fpu)
284 {
285 	if (fpu == &current->thread.fpu)
286 		fpu__save(fpu);
287 }
288 
289 /*
290  * This function must be called before we write a task's fpstate.
291  *
292  * Invalidate any cached FPU registers.
293  *
294  * After this function call, after registers in the fpstate are
295  * modified and the child task has woken up, the child task will
296  * restore the modified FPU state from the modified context. If we
297  * didn't clear its cached status here then the cached in-registers
298  * state pending on its former CPU could be restored, corrupting
299  * the modifications.
300  */
301 void fpu__prepare_write(struct fpu *fpu)
302 {
303 	/*
304 	 * Only stopped child tasks can be used to modify the FPU
305 	 * state in the fpstate buffer:
306 	 */
307 	WARN_ON_FPU(fpu == &current->thread.fpu);
308 
309 	/* Invalidate any cached state: */
310 	__fpu_invalidate_fpregs_state(fpu);
311 }
312 
313 /*
314  * Drops current FPU state: deactivates the fpregs and
315  * the fpstate. NOTE: it still leaves previous contents
316  * in the fpregs in the eager-FPU case.
317  *
318  * This function can be used in cases where we know that
319  * a state-restore is coming: either an explicit one,
320  * or a reschedule.
321  */
322 void fpu__drop(struct fpu *fpu)
323 {
324 	preempt_disable();
325 
326 	if (fpu == &current->thread.fpu) {
327 		/* Ignore delayed exceptions from user space */
328 		asm volatile("1: fwait\n"
329 			     "2:\n"
330 			     _ASM_EXTABLE(1b, 2b));
331 		fpregs_deactivate(fpu);
332 	}
333 
334 	trace_x86_fpu_dropped(fpu);
335 
336 	preempt_enable();
337 }
338 
339 /*
340  * Clear FPU registers by setting them up from the init fpstate.
341  * Caller must do fpregs_[un]lock() around it.
342  */
343 static inline void copy_init_fpstate_to_fpregs(u64 features_mask)
344 {
345 	if (use_xsave())
346 		copy_kernel_to_xregs(&init_fpstate.xsave, features_mask);
347 	else if (static_cpu_has(X86_FEATURE_FXSR))
348 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
349 	else
350 		copy_kernel_to_fregs(&init_fpstate.fsave);
351 
352 	if (boot_cpu_has(X86_FEATURE_OSPKE))
353 		copy_init_pkru_to_fpregs();
354 }
355 
356 /*
357  * Clear the FPU state back to init state.
358  *
359  * Called by sys_execve(), by the signal handler code and by various
360  * error paths.
361  */
362 static void fpu__clear(struct fpu *fpu, bool user_only)
363 {
364 	WARN_ON_FPU(fpu != &current->thread.fpu);
365 
366 	if (!static_cpu_has(X86_FEATURE_FPU)) {
367 		fpu__drop(fpu);
368 		fpu__initialize(fpu);
369 		return;
370 	}
371 
372 	fpregs_lock();
373 
374 	if (user_only) {
375 		if (!fpregs_state_valid(fpu, smp_processor_id()) &&
376 		    xfeatures_mask_supervisor())
377 			copy_kernel_to_xregs(&fpu->state.xsave,
378 					     xfeatures_mask_supervisor());
379 		copy_init_fpstate_to_fpregs(xfeatures_mask_user());
380 	} else {
381 		copy_init_fpstate_to_fpregs(xfeatures_mask_all);
382 	}
383 
384 	fpregs_mark_activate();
385 	fpregs_unlock();
386 }
387 
388 void fpu__clear_user_states(struct fpu *fpu)
389 {
390 	fpu__clear(fpu, true);
391 }
392 
393 void fpu__clear_all(struct fpu *fpu)
394 {
395 	fpu__clear(fpu, false);
396 }
397 
398 /*
399  * Load FPU context before returning to userspace.
400  */
401 void switch_fpu_return(void)
402 {
403 	if (!static_cpu_has(X86_FEATURE_FPU))
404 		return;
405 
406 	__fpregs_load_activate();
407 }
408 EXPORT_SYMBOL_GPL(switch_fpu_return);
409 
410 #ifdef CONFIG_X86_DEBUG_FPU
411 /*
412  * If current FPU state according to its tracking (loaded FPU context on this
413  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
414  * loaded on return to userland.
415  */
416 void fpregs_assert_state_consistent(void)
417 {
418 	struct fpu *fpu = &current->thread.fpu;
419 
420 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
421 		return;
422 
423 	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
424 }
425 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
426 #endif
427 
428 void fpregs_mark_activate(void)
429 {
430 	struct fpu *fpu = &current->thread.fpu;
431 
432 	fpregs_activate(fpu);
433 	fpu->last_cpu = smp_processor_id();
434 	clear_thread_flag(TIF_NEED_FPU_LOAD);
435 }
436 EXPORT_SYMBOL_GPL(fpregs_mark_activate);
437 
438 /*
439  * x87 math exception handling:
440  */
441 
442 int fpu__exception_code(struct fpu *fpu, int trap_nr)
443 {
444 	int err;
445 
446 	if (trap_nr == X86_TRAP_MF) {
447 		unsigned short cwd, swd;
448 		/*
449 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
450 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
451 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
452 		 * fault bit.  We should only be taking one exception at a time,
453 		 * so if this combination doesn't produce any single exception,
454 		 * then we have a bad program that isn't synchronizing its FPU usage
455 		 * and it will suffer the consequences since we won't be able to
456 		 * fully reproduce the context of the exception.
457 		 */
458 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
459 			cwd = fpu->state.fxsave.cwd;
460 			swd = fpu->state.fxsave.swd;
461 		} else {
462 			cwd = (unsigned short)fpu->state.fsave.cwd;
463 			swd = (unsigned short)fpu->state.fsave.swd;
464 		}
465 
466 		err = swd & ~cwd;
467 	} else {
468 		/*
469 		 * The SIMD FPU exceptions are handled a little differently, as there
470 		 * is only a single status/control register.  Thus, to determine which
471 		 * unmasked exception was caught we must mask the exception mask bits
472 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
473 		 */
474 		unsigned short mxcsr = MXCSR_DEFAULT;
475 
476 		if (boot_cpu_has(X86_FEATURE_XMM))
477 			mxcsr = fpu->state.fxsave.mxcsr;
478 
479 		err = ~(mxcsr >> 7) & mxcsr;
480 	}
481 
482 	if (err & 0x001) {	/* Invalid op */
483 		/*
484 		 * swd & 0x240 == 0x040: Stack Underflow
485 		 * swd & 0x240 == 0x240: Stack Overflow
486 		 * User must clear the SF bit (0x40) if set
487 		 */
488 		return FPE_FLTINV;
489 	} else if (err & 0x004) { /* Divide by Zero */
490 		return FPE_FLTDIV;
491 	} else if (err & 0x008) { /* Overflow */
492 		return FPE_FLTOVF;
493 	} else if (err & 0x012) { /* Denormal, Underflow */
494 		return FPE_FLTUND;
495 	} else if (err & 0x020) { /* Precision */
496 		return FPE_FLTRES;
497 	}
498 
499 	/*
500 	 * If we're using IRQ 13, or supposedly even some trap
501 	 * X86_TRAP_MF implementations, it's possible
502 	 * we get a spurious trap, which is not an error.
503 	 */
504 	return 0;
505 }
506