xref: /linux/arch/x86/kernel/fpu/core.c (revision 145ff1ec090dce9beb5a9590b5dc288e7bb2e65d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/internal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/types.h>
13 #include <asm/traps.h>
14 #include <asm/irq_regs.h>
15 
16 #include <linux/hardirq.h>
17 #include <linux/pkeys.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <asm/trace/fpu.h>
21 
22 /*
23  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
24  * depending on the FPU hardware format:
25  */
26 union fpregs_state init_fpstate __read_mostly;
27 
28 /*
29  * Track whether the kernel is using the FPU state
30  * currently.
31  *
32  * This flag is used:
33  *
34  *   - by IRQ context code to potentially use the FPU
35  *     if it's unused.
36  *
37  *   - to debug kernel_fpu_begin()/end() correctness
38  */
39 static DEFINE_PER_CPU(bool, in_kernel_fpu);
40 
41 /*
42  * Track which context is using the FPU on the CPU:
43  */
44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
45 
46 static bool kernel_fpu_disabled(void)
47 {
48 	return this_cpu_read(in_kernel_fpu);
49 }
50 
51 static bool interrupted_kernel_fpu_idle(void)
52 {
53 	return !kernel_fpu_disabled();
54 }
55 
56 /*
57  * Were we in user mode (or vm86 mode) when we were
58  * interrupted?
59  *
60  * Doing kernel_fpu_begin/end() is ok if we are running
61  * in an interrupt context from user mode - we'll just
62  * save the FPU state as required.
63  */
64 static bool interrupted_user_mode(void)
65 {
66 	struct pt_regs *regs = get_irq_regs();
67 	return regs && user_mode(regs);
68 }
69 
70 /*
71  * Can we use the FPU in kernel mode with the
72  * whole "kernel_fpu_begin/end()" sequence?
73  *
74  * It's always ok in process context (ie "not interrupt")
75  * but it is sometimes ok even from an irq.
76  */
77 bool irq_fpu_usable(void)
78 {
79 	return !in_interrupt() ||
80 		interrupted_user_mode() ||
81 		interrupted_kernel_fpu_idle();
82 }
83 EXPORT_SYMBOL(irq_fpu_usable);
84 
85 void kernel_fpu_begin(void)
86 {
87 	preempt_disable();
88 
89 	WARN_ON_FPU(!irq_fpu_usable());
90 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
91 
92 	this_cpu_write(in_kernel_fpu, true);
93 
94 	if (!(current->flags & PF_KTHREAD) &&
95 	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
96 		set_thread_flag(TIF_NEED_FPU_LOAD);
97 		/*
98 		 * Ignore return value -- we don't care if reg state
99 		 * is clobbered.
100 		 */
101 		copy_fpregs_to_fpstate(&current->thread.fpu);
102 	}
103 	__cpu_invalidate_fpregs_state();
104 
105 	if (boot_cpu_has(X86_FEATURE_XMM))
106 		ldmxcsr(MXCSR_DEFAULT);
107 
108 	if (boot_cpu_has(X86_FEATURE_FPU))
109 		asm volatile ("fninit");
110 }
111 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
112 
113 void kernel_fpu_end(void)
114 {
115 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
116 
117 	this_cpu_write(in_kernel_fpu, false);
118 	preempt_enable();
119 }
120 EXPORT_SYMBOL_GPL(kernel_fpu_end);
121 
122 /*
123  * Save the FPU state (mark it for reload if necessary):
124  *
125  * This only ever gets called for the current task.
126  */
127 void fpu__save(struct fpu *fpu)
128 {
129 	WARN_ON_FPU(fpu != &current->thread.fpu);
130 
131 	fpregs_lock();
132 	trace_x86_fpu_before_save(fpu);
133 
134 	if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
135 		if (!copy_fpregs_to_fpstate(fpu)) {
136 			copy_kernel_to_fpregs(&fpu->state);
137 		}
138 	}
139 
140 	trace_x86_fpu_after_save(fpu);
141 	fpregs_unlock();
142 }
143 
144 /*
145  * Legacy x87 fpstate state init:
146  */
147 static inline void fpstate_init_fstate(struct fregs_state *fp)
148 {
149 	fp->cwd = 0xffff037fu;
150 	fp->swd = 0xffff0000u;
151 	fp->twd = 0xffffffffu;
152 	fp->fos = 0xffff0000u;
153 }
154 
155 void fpstate_init(union fpregs_state *state)
156 {
157 	if (!static_cpu_has(X86_FEATURE_FPU)) {
158 		fpstate_init_soft(&state->soft);
159 		return;
160 	}
161 
162 	memset(state, 0, fpu_kernel_xstate_size);
163 
164 	if (static_cpu_has(X86_FEATURE_XSAVES))
165 		fpstate_init_xstate(&state->xsave);
166 	if (static_cpu_has(X86_FEATURE_FXSR))
167 		fpstate_init_fxstate(&state->fxsave);
168 	else
169 		fpstate_init_fstate(&state->fsave);
170 }
171 EXPORT_SYMBOL_GPL(fpstate_init);
172 
173 int fpu__copy(struct task_struct *dst, struct task_struct *src)
174 {
175 	struct fpu *dst_fpu = &dst->thread.fpu;
176 	struct fpu *src_fpu = &src->thread.fpu;
177 
178 	dst_fpu->last_cpu = -1;
179 
180 	if (!static_cpu_has(X86_FEATURE_FPU))
181 		return 0;
182 
183 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
184 
185 	/*
186 	 * Don't let 'init optimized' areas of the XSAVE area
187 	 * leak into the child task:
188 	 */
189 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
190 
191 	/*
192 	 * If the FPU registers are not current just memcpy() the state.
193 	 * Otherwise save current FPU registers directly into the child's FPU
194 	 * context, without any memory-to-memory copying.
195 	 *
196 	 * ( The function 'fails' in the FNSAVE case, which destroys
197 	 *   register contents so we have to load them back. )
198 	 */
199 	fpregs_lock();
200 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
201 		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
202 
203 	else if (!copy_fpregs_to_fpstate(dst_fpu))
204 		copy_kernel_to_fpregs(&dst_fpu->state);
205 
206 	fpregs_unlock();
207 
208 	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
209 
210 	trace_x86_fpu_copy_src(src_fpu);
211 	trace_x86_fpu_copy_dst(dst_fpu);
212 
213 	return 0;
214 }
215 
216 /*
217  * Activate the current task's in-memory FPU context,
218  * if it has not been used before:
219  */
220 static void fpu__initialize(struct fpu *fpu)
221 {
222 	WARN_ON_FPU(fpu != &current->thread.fpu);
223 
224 	set_thread_flag(TIF_NEED_FPU_LOAD);
225 	fpstate_init(&fpu->state);
226 	trace_x86_fpu_init_state(fpu);
227 }
228 
229 /*
230  * This function must be called before we read a task's fpstate.
231  *
232  * There's two cases where this gets called:
233  *
234  * - for the current task (when coredumping), in which case we have
235  *   to save the latest FPU registers into the fpstate,
236  *
237  * - or it's called for stopped tasks (ptrace), in which case the
238  *   registers were already saved by the context-switch code when
239  *   the task scheduled out.
240  *
241  * If the task has used the FPU before then save it.
242  */
243 void fpu__prepare_read(struct fpu *fpu)
244 {
245 	if (fpu == &current->thread.fpu)
246 		fpu__save(fpu);
247 }
248 
249 /*
250  * This function must be called before we write a task's fpstate.
251  *
252  * Invalidate any cached FPU registers.
253  *
254  * After this function call, after registers in the fpstate are
255  * modified and the child task has woken up, the child task will
256  * restore the modified FPU state from the modified context. If we
257  * didn't clear its cached status here then the cached in-registers
258  * state pending on its former CPU could be restored, corrupting
259  * the modifications.
260  */
261 void fpu__prepare_write(struct fpu *fpu)
262 {
263 	/*
264 	 * Only stopped child tasks can be used to modify the FPU
265 	 * state in the fpstate buffer:
266 	 */
267 	WARN_ON_FPU(fpu == &current->thread.fpu);
268 
269 	/* Invalidate any cached state: */
270 	__fpu_invalidate_fpregs_state(fpu);
271 }
272 
273 /*
274  * Drops current FPU state: deactivates the fpregs and
275  * the fpstate. NOTE: it still leaves previous contents
276  * in the fpregs in the eager-FPU case.
277  *
278  * This function can be used in cases where we know that
279  * a state-restore is coming: either an explicit one,
280  * or a reschedule.
281  */
282 void fpu__drop(struct fpu *fpu)
283 {
284 	preempt_disable();
285 
286 	if (fpu == &current->thread.fpu) {
287 		/* Ignore delayed exceptions from user space */
288 		asm volatile("1: fwait\n"
289 			     "2:\n"
290 			     _ASM_EXTABLE(1b, 2b));
291 		fpregs_deactivate(fpu);
292 	}
293 
294 	trace_x86_fpu_dropped(fpu);
295 
296 	preempt_enable();
297 }
298 
299 /*
300  * Clear FPU registers by setting them up from the init fpstate.
301  * Caller must do fpregs_[un]lock() around it.
302  */
303 static inline void copy_init_fpstate_to_fpregs(u64 features_mask)
304 {
305 	if (use_xsave())
306 		copy_kernel_to_xregs(&init_fpstate.xsave, features_mask);
307 	else if (static_cpu_has(X86_FEATURE_FXSR))
308 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
309 	else
310 		copy_kernel_to_fregs(&init_fpstate.fsave);
311 
312 	if (boot_cpu_has(X86_FEATURE_OSPKE))
313 		copy_init_pkru_to_fpregs();
314 }
315 
316 /*
317  * Clear the FPU state back to init state.
318  *
319  * Called by sys_execve(), by the signal handler code and by various
320  * error paths.
321  */
322 static void fpu__clear(struct fpu *fpu, bool user_only)
323 {
324 	WARN_ON_FPU(fpu != &current->thread.fpu);
325 
326 	if (!static_cpu_has(X86_FEATURE_FPU)) {
327 		fpu__drop(fpu);
328 		fpu__initialize(fpu);
329 		return;
330 	}
331 
332 	fpregs_lock();
333 
334 	if (user_only) {
335 		if (!fpregs_state_valid(fpu, smp_processor_id()) &&
336 		    xfeatures_mask_supervisor())
337 			copy_kernel_to_xregs(&fpu->state.xsave,
338 					     xfeatures_mask_supervisor());
339 		copy_init_fpstate_to_fpregs(xfeatures_mask_user());
340 	} else {
341 		copy_init_fpstate_to_fpregs(xfeatures_mask_all);
342 	}
343 
344 	fpregs_mark_activate();
345 	fpregs_unlock();
346 }
347 
348 void fpu__clear_user_states(struct fpu *fpu)
349 {
350 	fpu__clear(fpu, true);
351 }
352 
353 void fpu__clear_all(struct fpu *fpu)
354 {
355 	fpu__clear(fpu, false);
356 }
357 
358 /*
359  * Load FPU context before returning to userspace.
360  */
361 void switch_fpu_return(void)
362 {
363 	if (!static_cpu_has(X86_FEATURE_FPU))
364 		return;
365 
366 	__fpregs_load_activate();
367 }
368 EXPORT_SYMBOL_GPL(switch_fpu_return);
369 
370 #ifdef CONFIG_X86_DEBUG_FPU
371 /*
372  * If current FPU state according to its tracking (loaded FPU context on this
373  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
374  * loaded on return to userland.
375  */
376 void fpregs_assert_state_consistent(void)
377 {
378 	struct fpu *fpu = &current->thread.fpu;
379 
380 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
381 		return;
382 
383 	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
384 }
385 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
386 #endif
387 
388 void fpregs_mark_activate(void)
389 {
390 	struct fpu *fpu = &current->thread.fpu;
391 
392 	fpregs_activate(fpu);
393 	fpu->last_cpu = smp_processor_id();
394 	clear_thread_flag(TIF_NEED_FPU_LOAD);
395 }
396 EXPORT_SYMBOL_GPL(fpregs_mark_activate);
397 
398 /*
399  * x87 math exception handling:
400  */
401 
402 int fpu__exception_code(struct fpu *fpu, int trap_nr)
403 {
404 	int err;
405 
406 	if (trap_nr == X86_TRAP_MF) {
407 		unsigned short cwd, swd;
408 		/*
409 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
410 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
411 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
412 		 * fault bit.  We should only be taking one exception at a time,
413 		 * so if this combination doesn't produce any single exception,
414 		 * then we have a bad program that isn't synchronizing its FPU usage
415 		 * and it will suffer the consequences since we won't be able to
416 		 * fully reproduce the context of the exception.
417 		 */
418 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
419 			cwd = fpu->state.fxsave.cwd;
420 			swd = fpu->state.fxsave.swd;
421 		} else {
422 			cwd = (unsigned short)fpu->state.fsave.cwd;
423 			swd = (unsigned short)fpu->state.fsave.swd;
424 		}
425 
426 		err = swd & ~cwd;
427 	} else {
428 		/*
429 		 * The SIMD FPU exceptions are handled a little differently, as there
430 		 * is only a single status/control register.  Thus, to determine which
431 		 * unmasked exception was caught we must mask the exception mask bits
432 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
433 		 */
434 		unsigned short mxcsr = MXCSR_DEFAULT;
435 
436 		if (boot_cpu_has(X86_FEATURE_XMM))
437 			mxcsr = fpu->state.fxsave.mxcsr;
438 
439 		err = ~(mxcsr >> 7) & mxcsr;
440 	}
441 
442 	if (err & 0x001) {	/* Invalid op */
443 		/*
444 		 * swd & 0x240 == 0x040: Stack Underflow
445 		 * swd & 0x240 == 0x240: Stack Overflow
446 		 * User must clear the SF bit (0x40) if set
447 		 */
448 		return FPE_FLTINV;
449 	} else if (err & 0x004) { /* Divide by Zero */
450 		return FPE_FLTDIV;
451 	} else if (err & 0x008) { /* Overflow */
452 		return FPE_FLTOVF;
453 	} else if (err & 0x012) { /* Denormal, Underflow */
454 		return FPE_FLTUND;
455 	} else if (err & 0x020) { /* Precision */
456 		return FPE_FLTRES;
457 	}
458 
459 	/*
460 	 * If we're using IRQ 13, or supposedly even some trap
461 	 * X86_TRAP_MF implementations, it's possible
462 	 * we get a spurious trap, which is not an error.
463 	 */
464 	return 0;
465 }
466