xref: /linux/arch/x86/kernel/fpu/core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/traps.h>
12 
13 #include <linux/hardirq.h>
14 
15 /*
16  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
17  * depending on the FPU hardware format:
18  */
19 union fpregs_state init_fpstate __read_mostly;
20 
21 /*
22  * Track whether the kernel is using the FPU state
23  * currently.
24  *
25  * This flag is used:
26  *
27  *   - by IRQ context code to potentially use the FPU
28  *     if it's unused.
29  *
30  *   - to debug kernel_fpu_begin()/end() correctness
31  */
32 static DEFINE_PER_CPU(bool, in_kernel_fpu);
33 
34 /*
35  * Track which context is using the FPU on the CPU:
36  */
37 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
38 
39 static void kernel_fpu_disable(void)
40 {
41 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
42 	this_cpu_write(in_kernel_fpu, true);
43 }
44 
45 static void kernel_fpu_enable(void)
46 {
47 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
48 	this_cpu_write(in_kernel_fpu, false);
49 }
50 
51 static bool kernel_fpu_disabled(void)
52 {
53 	return this_cpu_read(in_kernel_fpu);
54 }
55 
56 /*
57  * Were we in an interrupt that interrupted kernel mode?
58  *
59  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
60  * pair does nothing at all: the thread must not have fpu (so
61  * that we don't try to save the FPU state), and TS must
62  * be set (so that the clts/stts pair does nothing that is
63  * visible in the interrupted kernel thread).
64  *
65  * Except for the eagerfpu case when we return true; in the likely case
66  * the thread has FPU but we are not going to set/clear TS.
67  */
68 static bool interrupted_kernel_fpu_idle(void)
69 {
70 	if (kernel_fpu_disabled())
71 		return false;
72 
73 	if (use_eager_fpu())
74 		return true;
75 
76 	return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
77 }
78 
79 /*
80  * Were we in user mode (or vm86 mode) when we were
81  * interrupted?
82  *
83  * Doing kernel_fpu_begin/end() is ok if we are running
84  * in an interrupt context from user mode - we'll just
85  * save the FPU state as required.
86  */
87 static bool interrupted_user_mode(void)
88 {
89 	struct pt_regs *regs = get_irq_regs();
90 	return regs && user_mode(regs);
91 }
92 
93 /*
94  * Can we use the FPU in kernel mode with the
95  * whole "kernel_fpu_begin/end()" sequence?
96  *
97  * It's always ok in process context (ie "not interrupt")
98  * but it is sometimes ok even from an irq.
99  */
100 bool irq_fpu_usable(void)
101 {
102 	return !in_interrupt() ||
103 		interrupted_user_mode() ||
104 		interrupted_kernel_fpu_idle();
105 }
106 EXPORT_SYMBOL(irq_fpu_usable);
107 
108 void __kernel_fpu_begin(void)
109 {
110 	struct fpu *fpu = &current->thread.fpu;
111 
112 	WARN_ON_FPU(!irq_fpu_usable());
113 
114 	kernel_fpu_disable();
115 
116 	if (fpu->fpregs_active) {
117 		/*
118 		 * Ignore return value -- we don't care if reg state
119 		 * is clobbered.
120 		 */
121 		copy_fpregs_to_fpstate(fpu);
122 	} else {
123 		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
124 		__fpregs_activate_hw();
125 	}
126 }
127 EXPORT_SYMBOL(__kernel_fpu_begin);
128 
129 void __kernel_fpu_end(void)
130 {
131 	struct fpu *fpu = &current->thread.fpu;
132 
133 	if (fpu->fpregs_active)
134 		copy_kernel_to_fpregs(&fpu->state);
135 	else
136 		__fpregs_deactivate_hw();
137 
138 	kernel_fpu_enable();
139 }
140 EXPORT_SYMBOL(__kernel_fpu_end);
141 
142 void kernel_fpu_begin(void)
143 {
144 	preempt_disable();
145 	__kernel_fpu_begin();
146 }
147 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
148 
149 void kernel_fpu_end(void)
150 {
151 	__kernel_fpu_end();
152 	preempt_enable();
153 }
154 EXPORT_SYMBOL_GPL(kernel_fpu_end);
155 
156 /*
157  * CR0::TS save/restore functions:
158  */
159 int irq_ts_save(void)
160 {
161 	/*
162 	 * If in process context and not atomic, we can take a spurious DNA fault.
163 	 * Otherwise, doing clts() in process context requires disabling preemption
164 	 * or some heavy lifting like kernel_fpu_begin()
165 	 */
166 	if (!in_atomic())
167 		return 0;
168 
169 	if (read_cr0() & X86_CR0_TS) {
170 		clts();
171 		return 1;
172 	}
173 
174 	return 0;
175 }
176 EXPORT_SYMBOL_GPL(irq_ts_save);
177 
178 void irq_ts_restore(int TS_state)
179 {
180 	if (TS_state)
181 		stts();
182 }
183 EXPORT_SYMBOL_GPL(irq_ts_restore);
184 
185 /*
186  * Save the FPU state (mark it for reload if necessary):
187  *
188  * This only ever gets called for the current task.
189  */
190 void fpu__save(struct fpu *fpu)
191 {
192 	WARN_ON_FPU(fpu != &current->thread.fpu);
193 
194 	preempt_disable();
195 	if (fpu->fpregs_active) {
196 		if (!copy_fpregs_to_fpstate(fpu)) {
197 			if (use_eager_fpu())
198 				copy_kernel_to_fpregs(&fpu->state);
199 			else
200 				fpregs_deactivate(fpu);
201 		}
202 	}
203 	preempt_enable();
204 }
205 EXPORT_SYMBOL_GPL(fpu__save);
206 
207 /*
208  * Legacy x87 fpstate state init:
209  */
210 static inline void fpstate_init_fstate(struct fregs_state *fp)
211 {
212 	fp->cwd = 0xffff037fu;
213 	fp->swd = 0xffff0000u;
214 	fp->twd = 0xffffffffu;
215 	fp->fos = 0xffff0000u;
216 }
217 
218 void fpstate_init(union fpregs_state *state)
219 {
220 	if (!static_cpu_has(X86_FEATURE_FPU)) {
221 		fpstate_init_soft(&state->soft);
222 		return;
223 	}
224 
225 	memset(state, 0, xstate_size);
226 
227 	if (static_cpu_has(X86_FEATURE_FXSR))
228 		fpstate_init_fxstate(&state->fxsave);
229 	else
230 		fpstate_init_fstate(&state->fsave);
231 }
232 EXPORT_SYMBOL_GPL(fpstate_init);
233 
234 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
235 {
236 	dst_fpu->counter = 0;
237 	dst_fpu->fpregs_active = 0;
238 	dst_fpu->last_cpu = -1;
239 
240 	if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
241 		return 0;
242 
243 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
244 
245 	/*
246 	 * Don't let 'init optimized' areas of the XSAVE area
247 	 * leak into the child task:
248 	 */
249 	if (use_eager_fpu())
250 		memset(&dst_fpu->state.xsave, 0, xstate_size);
251 
252 	/*
253 	 * Save current FPU registers directly into the child
254 	 * FPU context, without any memory-to-memory copying.
255 	 * In lazy mode, if the FPU context isn't loaded into
256 	 * fpregs, CR0.TS will be set and do_device_not_available
257 	 * will load the FPU context.
258 	 *
259 	 * We have to do all this with preemption disabled,
260 	 * mostly because of the FNSAVE case, because in that
261 	 * case we must not allow preemption in the window
262 	 * between the FNSAVE and us marking the context lazy.
263 	 *
264 	 * It shouldn't be an issue as even FNSAVE is plenty
265 	 * fast in terms of critical section length.
266 	 */
267 	preempt_disable();
268 	if (!copy_fpregs_to_fpstate(dst_fpu)) {
269 		memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
270 
271 		if (use_eager_fpu())
272 			copy_kernel_to_fpregs(&src_fpu->state);
273 		else
274 			fpregs_deactivate(src_fpu);
275 	}
276 	preempt_enable();
277 
278 	return 0;
279 }
280 
281 /*
282  * Activate the current task's in-memory FPU context,
283  * if it has not been used before:
284  */
285 void fpu__activate_curr(struct fpu *fpu)
286 {
287 	WARN_ON_FPU(fpu != &current->thread.fpu);
288 
289 	if (!fpu->fpstate_active) {
290 		fpstate_init(&fpu->state);
291 
292 		/* Safe to do for the current task: */
293 		fpu->fpstate_active = 1;
294 	}
295 }
296 EXPORT_SYMBOL_GPL(fpu__activate_curr);
297 
298 /*
299  * This function must be called before we read a task's fpstate.
300  *
301  * If the task has not used the FPU before then initialize its
302  * fpstate.
303  *
304  * If the task has used the FPU before then save it.
305  */
306 void fpu__activate_fpstate_read(struct fpu *fpu)
307 {
308 	/*
309 	 * If fpregs are active (in the current CPU), then
310 	 * copy them to the fpstate:
311 	 */
312 	if (fpu->fpregs_active) {
313 		fpu__save(fpu);
314 	} else {
315 		if (!fpu->fpstate_active) {
316 			fpstate_init(&fpu->state);
317 
318 			/* Safe to do for current and for stopped child tasks: */
319 			fpu->fpstate_active = 1;
320 		}
321 	}
322 }
323 
324 /*
325  * This function must be called before we write a task's fpstate.
326  *
327  * If the task has used the FPU before then unlazy it.
328  * If the task has not used the FPU before then initialize its fpstate.
329  *
330  * After this function call, after registers in the fpstate are
331  * modified and the child task has woken up, the child task will
332  * restore the modified FPU state from the modified context. If we
333  * didn't clear its lazy status here then the lazy in-registers
334  * state pending on its former CPU could be restored, corrupting
335  * the modifications.
336  */
337 void fpu__activate_fpstate_write(struct fpu *fpu)
338 {
339 	/*
340 	 * Only stopped child tasks can be used to modify the FPU
341 	 * state in the fpstate buffer:
342 	 */
343 	WARN_ON_FPU(fpu == &current->thread.fpu);
344 
345 	if (fpu->fpstate_active) {
346 		/* Invalidate any lazy state: */
347 		fpu->last_cpu = -1;
348 	} else {
349 		fpstate_init(&fpu->state);
350 
351 		/* Safe to do for stopped child tasks: */
352 		fpu->fpstate_active = 1;
353 	}
354 }
355 
356 /*
357  * This function must be called before we write the current
358  * task's fpstate.
359  *
360  * This call gets the current FPU register state and moves
361  * it in to the 'fpstate'.  Preemption is disabled so that
362  * no writes to the 'fpstate' can occur from context
363  * swiches.
364  *
365  * Must be followed by a fpu__current_fpstate_write_end().
366  */
367 void fpu__current_fpstate_write_begin(void)
368 {
369 	struct fpu *fpu = &current->thread.fpu;
370 
371 	/*
372 	 * Ensure that the context-switching code does not write
373 	 * over the fpstate while we are doing our update.
374 	 */
375 	preempt_disable();
376 
377 	/*
378 	 * Move the fpregs in to the fpu's 'fpstate'.
379 	 */
380 	fpu__activate_fpstate_read(fpu);
381 
382 	/*
383 	 * The caller is about to write to 'fpu'.  Ensure that no
384 	 * CPU thinks that its fpregs match the fpstate.  This
385 	 * ensures we will not be lazy and skip a XRSTOR in the
386 	 * future.
387 	 */
388 	fpu->last_cpu = -1;
389 }
390 
391 /*
392  * This function must be paired with fpu__current_fpstate_write_begin()
393  *
394  * This will ensure that the modified fpstate gets placed back in
395  * the fpregs if necessary.
396  *
397  * Note: This function may be called whether or not an _actual_
398  * write to the fpstate occurred.
399  */
400 void fpu__current_fpstate_write_end(void)
401 {
402 	struct fpu *fpu = &current->thread.fpu;
403 
404 	/*
405 	 * 'fpu' now has an updated copy of the state, but the
406 	 * registers may still be out of date.  Update them with
407 	 * an XRSTOR if they are active.
408 	 */
409 	if (fpregs_active())
410 		copy_kernel_to_fpregs(&fpu->state);
411 
412 	/*
413 	 * Our update is done and the fpregs/fpstate are in sync
414 	 * if necessary.  Context switches can happen again.
415 	 */
416 	preempt_enable();
417 }
418 
419 /*
420  * 'fpu__restore()' is called to copy FPU registers from
421  * the FPU fpstate to the live hw registers and to activate
422  * access to the hardware registers, so that FPU instructions
423  * can be used afterwards.
424  *
425  * Must be called with kernel preemption disabled (for example
426  * with local interrupts disabled, as it is in the case of
427  * do_device_not_available()).
428  */
429 void fpu__restore(struct fpu *fpu)
430 {
431 	fpu__activate_curr(fpu);
432 
433 	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
434 	kernel_fpu_disable();
435 	fpregs_activate(fpu);
436 	copy_kernel_to_fpregs(&fpu->state);
437 	fpu->counter++;
438 	kernel_fpu_enable();
439 }
440 EXPORT_SYMBOL_GPL(fpu__restore);
441 
442 /*
443  * Drops current FPU state: deactivates the fpregs and
444  * the fpstate. NOTE: it still leaves previous contents
445  * in the fpregs in the eager-FPU case.
446  *
447  * This function can be used in cases where we know that
448  * a state-restore is coming: either an explicit one,
449  * or a reschedule.
450  */
451 void fpu__drop(struct fpu *fpu)
452 {
453 	preempt_disable();
454 	fpu->counter = 0;
455 
456 	if (fpu->fpregs_active) {
457 		/* Ignore delayed exceptions from user space */
458 		asm volatile("1: fwait\n"
459 			     "2:\n"
460 			     _ASM_EXTABLE(1b, 2b));
461 		fpregs_deactivate(fpu);
462 	}
463 
464 	fpu->fpstate_active = 0;
465 
466 	preempt_enable();
467 }
468 
469 /*
470  * Clear FPU registers by setting them up from
471  * the init fpstate:
472  */
473 static inline void copy_init_fpstate_to_fpregs(void)
474 {
475 	if (use_xsave())
476 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
477 	else if (static_cpu_has(X86_FEATURE_FXSR))
478 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
479 	else
480 		copy_kernel_to_fregs(&init_fpstate.fsave);
481 }
482 
483 /*
484  * Clear the FPU state back to init state.
485  *
486  * Called by sys_execve(), by the signal handler code and by various
487  * error paths.
488  */
489 void fpu__clear(struct fpu *fpu)
490 {
491 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
492 
493 	if (!use_eager_fpu() || !static_cpu_has(X86_FEATURE_FPU)) {
494 		/* FPU state will be reallocated lazily at the first use. */
495 		fpu__drop(fpu);
496 	} else {
497 		if (!fpu->fpstate_active) {
498 			fpu__activate_curr(fpu);
499 			user_fpu_begin();
500 		}
501 		copy_init_fpstate_to_fpregs();
502 	}
503 }
504 
505 /*
506  * x87 math exception handling:
507  */
508 
509 int fpu__exception_code(struct fpu *fpu, int trap_nr)
510 {
511 	int err;
512 
513 	if (trap_nr == X86_TRAP_MF) {
514 		unsigned short cwd, swd;
515 		/*
516 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
517 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
518 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
519 		 * fault bit.  We should only be taking one exception at a time,
520 		 * so if this combination doesn't produce any single exception,
521 		 * then we have a bad program that isn't synchronizing its FPU usage
522 		 * and it will suffer the consequences since we won't be able to
523 		 * fully reproduce the context of the exception.
524 		 */
525 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
526 			cwd = fpu->state.fxsave.cwd;
527 			swd = fpu->state.fxsave.swd;
528 		} else {
529 			cwd = (unsigned short)fpu->state.fsave.cwd;
530 			swd = (unsigned short)fpu->state.fsave.swd;
531 		}
532 
533 		err = swd & ~cwd;
534 	} else {
535 		/*
536 		 * The SIMD FPU exceptions are handled a little differently, as there
537 		 * is only a single status/control register.  Thus, to determine which
538 		 * unmasked exception was caught we must mask the exception mask bits
539 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
540 		 */
541 		unsigned short mxcsr = MXCSR_DEFAULT;
542 
543 		if (boot_cpu_has(X86_FEATURE_XMM))
544 			mxcsr = fpu->state.fxsave.mxcsr;
545 
546 		err = ~(mxcsr >> 7) & mxcsr;
547 	}
548 
549 	if (err & 0x001) {	/* Invalid op */
550 		/*
551 		 * swd & 0x240 == 0x040: Stack Underflow
552 		 * swd & 0x240 == 0x240: Stack Overflow
553 		 * User must clear the SF bit (0x40) if set
554 		 */
555 		return FPE_FLTINV;
556 	} else if (err & 0x004) { /* Divide by Zero */
557 		return FPE_FLTDIV;
558 	} else if (err & 0x008) { /* Overflow */
559 		return FPE_FLTOVF;
560 	} else if (err & 0x012) { /* Denormal, Underflow */
561 		return FPE_FLTUND;
562 	} else if (err & 0x020) { /* Precision */
563 		return FPE_FLTRES;
564 	}
565 
566 	/*
567 	 * If we're using IRQ 13, or supposedly even some trap
568 	 * X86_TRAP_MF implementations, it's possible
569 	 * we get a spurious trap, which is not an error.
570 	 */
571 	return 0;
572 }
573