1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Low level x86 E820 memory map handling functions. 4 * 5 * The firmware and bootloader passes us the "E820 table", which is the primary 6 * physical memory layout description available about x86 systems. 7 * 8 * The kernel takes the E820 memory layout and optionally modifies it with 9 * quirks and other tweaks, and feeds that into the generic Linux memory 10 * allocation code routines via a platform independent interface (memblock, etc.). 11 */ 12 #include <linux/crash_dump.h> 13 #include <linux/memblock.h> 14 #include <linux/suspend.h> 15 #include <linux/acpi.h> 16 #include <linux/firmware-map.h> 17 #include <linux/sort.h> 18 #include <linux/memory_hotplug.h> 19 20 #include <asm/e820/api.h> 21 #include <asm/setup.h> 22 23 /* 24 * We organize the E820 table into three main data structures: 25 * 26 * - 'e820_table_firmware': the original firmware version passed to us by the 27 * bootloader - not modified by the kernel. It is composed of two parts: 28 * the first 128 E820 memory entries in boot_params.e820_table and the remaining 29 * (if any) entries of the SETUP_E820_EXT nodes. We use this to: 30 * 31 * - the hibernation code uses it to generate a kernel-independent CRC32 32 * checksum of the physical memory layout of a system. 33 * 34 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version 35 * passed to us by the bootloader - the major difference between 36 * e820_table_firmware[] and this one is that e820_table_kexec[] 37 * might be modified by the kexec itself to fake an mptable. 38 * We use this to: 39 * 40 * - kexec, which is a bootloader in disguise, uses the original E820 41 * layout to pass to the kexec-ed kernel. This way the original kernel 42 * can have a restricted E820 map while the kexec()-ed kexec-kernel 43 * can have access to full memory - etc. 44 * 45 * Export the memory layout via /sys/firmware/memmap. kexec-tools uses 46 * the entries to create an E820 table for the kexec kernel. 47 * 48 * kexec_file_load in-kernel code uses the table for the kexec kernel. 49 * 50 * - 'e820_table': this is the main E820 table that is massaged by the 51 * low level x86 platform code, or modified by boot parameters, before 52 * passed on to higher level MM layers. 53 * 54 * Once the E820 map has been converted to the standard Linux memory layout 55 * information its role stops - modifying it has no effect and does not get 56 * re-propagated. So its main role is a temporary bootstrap storage of firmware 57 * specific memory layout data during early bootup. 58 */ 59 static struct e820_table e820_table_init __initdata; 60 static struct e820_table e820_table_kexec_init __initdata; 61 static struct e820_table e820_table_firmware_init __initdata; 62 63 struct e820_table *e820_table __refdata = &e820_table_init; 64 struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; 65 struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; 66 67 /* For PCI or other memory-mapped resources */ 68 unsigned long pci_mem_start = 0xaeedbabe; 69 #ifdef CONFIG_PCI 70 EXPORT_SYMBOL(pci_mem_start); 71 #endif 72 73 /* 74 * This function checks if any part of the range <start,end> is mapped 75 * with type. 76 */ 77 static bool _e820__mapped_any(struct e820_table *table, 78 u64 start, u64 end, enum e820_type type) 79 { 80 int i; 81 82 for (i = 0; i < table->nr_entries; i++) { 83 struct e820_entry *entry = &table->entries[i]; 84 85 if (type && entry->type != type) 86 continue; 87 if (entry->addr >= end || entry->addr + entry->size <= start) 88 continue; 89 return true; 90 } 91 return false; 92 } 93 94 bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type) 95 { 96 return _e820__mapped_any(e820_table_firmware, start, end, type); 97 } 98 EXPORT_SYMBOL_GPL(e820__mapped_raw_any); 99 100 bool e820__mapped_any(u64 start, u64 end, enum e820_type type) 101 { 102 return _e820__mapped_any(e820_table, start, end, type); 103 } 104 EXPORT_SYMBOL_GPL(e820__mapped_any); 105 106 /* 107 * This function checks if the entire <start,end> range is mapped with 'type'. 108 * 109 * Note: this function only works correctly once the E820 table is sorted and 110 * not-overlapping (at least for the range specified), which is the case normally. 111 */ 112 static struct e820_entry *__e820__mapped_all(u64 start, u64 end, 113 enum e820_type type) 114 { 115 int i; 116 117 for (i = 0; i < e820_table->nr_entries; i++) { 118 struct e820_entry *entry = &e820_table->entries[i]; 119 120 if (type && entry->type != type) 121 continue; 122 123 /* Is the region (part) in overlap with the current region? */ 124 if (entry->addr >= end || entry->addr + entry->size <= start) 125 continue; 126 127 /* 128 * If the region is at the beginning of <start,end> we move 129 * 'start' to the end of the region since it's ok until there 130 */ 131 if (entry->addr <= start) 132 start = entry->addr + entry->size; 133 134 /* 135 * If 'start' is now at or beyond 'end', we're done, full 136 * coverage of the desired range exists: 137 */ 138 if (start >= end) 139 return entry; 140 } 141 142 return NULL; 143 } 144 145 /* 146 * This function checks if the entire range <start,end> is mapped with type. 147 */ 148 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) 149 { 150 return __e820__mapped_all(start, end, type); 151 } 152 153 /* 154 * This function returns the type associated with the range <start,end>. 155 */ 156 int e820__get_entry_type(u64 start, u64 end) 157 { 158 struct e820_entry *entry = __e820__mapped_all(start, end, 0); 159 160 return entry ? entry->type : -EINVAL; 161 } 162 163 /* 164 * Add a memory region to the kernel E820 map. 165 */ 166 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) 167 { 168 int x = table->nr_entries; 169 170 if (x >= ARRAY_SIZE(table->entries)) { 171 pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n", 172 start, start + size - 1); 173 return; 174 } 175 176 table->entries[x].addr = start; 177 table->entries[x].size = size; 178 table->entries[x].type = type; 179 table->nr_entries++; 180 } 181 182 void __init e820__range_add(u64 start, u64 size, enum e820_type type) 183 { 184 __e820__range_add(e820_table, start, size, type); 185 } 186 187 static void __init e820_print_type(enum e820_type type) 188 { 189 switch (type) { 190 case E820_TYPE_RAM: pr_cont("usable"); break; 191 case E820_TYPE_RESERVED: pr_cont("reserved"); break; 192 case E820_TYPE_SOFT_RESERVED: pr_cont("soft reserved"); break; 193 case E820_TYPE_ACPI: pr_cont("ACPI data"); break; 194 case E820_TYPE_NVS: pr_cont("ACPI NVS"); break; 195 case E820_TYPE_UNUSABLE: pr_cont("unusable"); break; 196 case E820_TYPE_PMEM: /* Fall through: */ 197 case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break; 198 default: pr_cont("type %u", type); break; 199 } 200 } 201 202 void __init e820__print_table(char *who) 203 { 204 int i; 205 206 for (i = 0; i < e820_table->nr_entries; i++) { 207 pr_info("%s: [mem %#018Lx-%#018Lx] ", 208 who, 209 e820_table->entries[i].addr, 210 e820_table->entries[i].addr + e820_table->entries[i].size - 1); 211 212 e820_print_type(e820_table->entries[i].type); 213 pr_cont("\n"); 214 } 215 } 216 217 /* 218 * Sanitize an E820 map. 219 * 220 * Some E820 layouts include overlapping entries. The following 221 * replaces the original E820 map with a new one, removing overlaps, 222 * and resolving conflicting memory types in favor of highest 223 * numbered type. 224 * 225 * The input parameter 'entries' points to an array of 'struct 226 * e820_entry' which on entry has elements in the range [0, *nr_entries) 227 * valid, and which has space for up to max_nr_entries entries. 228 * On return, the resulting sanitized E820 map entries will be in 229 * overwritten in the same location, starting at 'entries'. 230 * 231 * The integer pointed to by nr_entries must be valid on entry (the 232 * current number of valid entries located at 'entries'). If the 233 * sanitizing succeeds the *nr_entries will be updated with the new 234 * number of valid entries (something no more than max_nr_entries). 235 * 236 * The return value from e820__update_table() is zero if it 237 * successfully 'sanitized' the map entries passed in, and is -1 238 * if it did nothing, which can happen if either of (1) it was 239 * only passed one map entry, or (2) any of the input map entries 240 * were invalid (start + size < start, meaning that the size was 241 * so big the described memory range wrapped around through zero.) 242 * 243 * Visually we're performing the following 244 * (1,2,3,4 = memory types)... 245 * 246 * Sample memory map (w/overlaps): 247 * ____22__________________ 248 * ______________________4_ 249 * ____1111________________ 250 * _44_____________________ 251 * 11111111________________ 252 * ____________________33__ 253 * ___________44___________ 254 * __________33333_________ 255 * ______________22________ 256 * ___________________2222_ 257 * _________111111111______ 258 * _____________________11_ 259 * _________________4______ 260 * 261 * Sanitized equivalent (no overlap): 262 * 1_______________________ 263 * _44_____________________ 264 * ___1____________________ 265 * ____22__________________ 266 * ______11________________ 267 * _________1______________ 268 * __________3_____________ 269 * ___________44___________ 270 * _____________33_________ 271 * _______________2________ 272 * ________________1_______ 273 * _________________4______ 274 * ___________________2____ 275 * ____________________33__ 276 * ______________________4_ 277 */ 278 struct change_member { 279 /* Pointer to the original entry: */ 280 struct e820_entry *entry; 281 /* Address for this change point: */ 282 unsigned long long addr; 283 }; 284 285 static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; 286 static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; 287 static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; 288 static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; 289 290 static int __init cpcompare(const void *a, const void *b) 291 { 292 struct change_member * const *app = a, * const *bpp = b; 293 const struct change_member *ap = *app, *bp = *bpp; 294 295 /* 296 * Inputs are pointers to two elements of change_point[]. If their 297 * addresses are not equal, their difference dominates. If the addresses 298 * are equal, then consider one that represents the end of its region 299 * to be greater than one that does not. 300 */ 301 if (ap->addr != bp->addr) 302 return ap->addr > bp->addr ? 1 : -1; 303 304 return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); 305 } 306 307 static bool e820_nomerge(enum e820_type type) 308 { 309 /* 310 * These types may indicate distinct platform ranges aligned to 311 * numa node, protection domain, performance domain, or other 312 * boundaries. Do not merge them. 313 */ 314 if (type == E820_TYPE_PRAM) 315 return true; 316 if (type == E820_TYPE_SOFT_RESERVED) 317 return true; 318 return false; 319 } 320 321 int __init e820__update_table(struct e820_table *table) 322 { 323 struct e820_entry *entries = table->entries; 324 u32 max_nr_entries = ARRAY_SIZE(table->entries); 325 enum e820_type current_type, last_type; 326 unsigned long long last_addr; 327 u32 new_nr_entries, overlap_entries; 328 u32 i, chg_idx, chg_nr; 329 330 /* If there's only one memory region, don't bother: */ 331 if (table->nr_entries < 2) 332 return -1; 333 334 BUG_ON(table->nr_entries > max_nr_entries); 335 336 /* Bail out if we find any unreasonable addresses in the map: */ 337 for (i = 0; i < table->nr_entries; i++) { 338 if (entries[i].addr + entries[i].size < entries[i].addr) 339 return -1; 340 } 341 342 /* Create pointers for initial change-point information (for sorting): */ 343 for (i = 0; i < 2 * table->nr_entries; i++) 344 change_point[i] = &change_point_list[i]; 345 346 /* 347 * Record all known change-points (starting and ending addresses), 348 * omitting empty memory regions: 349 */ 350 chg_idx = 0; 351 for (i = 0; i < table->nr_entries; i++) { 352 if (entries[i].size != 0) { 353 change_point[chg_idx]->addr = entries[i].addr; 354 change_point[chg_idx++]->entry = &entries[i]; 355 change_point[chg_idx]->addr = entries[i].addr + entries[i].size; 356 change_point[chg_idx++]->entry = &entries[i]; 357 } 358 } 359 chg_nr = chg_idx; 360 361 /* Sort change-point list by memory addresses (low -> high): */ 362 sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); 363 364 /* Create a new memory map, removing overlaps: */ 365 overlap_entries = 0; /* Number of entries in the overlap table */ 366 new_nr_entries = 0; /* Index for creating new map entries */ 367 last_type = 0; /* Start with undefined memory type */ 368 last_addr = 0; /* Start with 0 as last starting address */ 369 370 /* Loop through change-points, determining effect on the new map: */ 371 for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { 372 /* Keep track of all overlapping entries */ 373 if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { 374 /* Add map entry to overlap list (> 1 entry implies an overlap) */ 375 overlap_list[overlap_entries++] = change_point[chg_idx]->entry; 376 } else { 377 /* Remove entry from list (order independent, so swap with last): */ 378 for (i = 0; i < overlap_entries; i++) { 379 if (overlap_list[i] == change_point[chg_idx]->entry) 380 overlap_list[i] = overlap_list[overlap_entries-1]; 381 } 382 overlap_entries--; 383 } 384 /* 385 * If there are overlapping entries, decide which 386 * "type" to use (larger value takes precedence -- 387 * 1=usable, 2,3,4,4+=unusable) 388 */ 389 current_type = 0; 390 for (i = 0; i < overlap_entries; i++) { 391 if (overlap_list[i]->type > current_type) 392 current_type = overlap_list[i]->type; 393 } 394 395 /* Continue building up new map based on this information: */ 396 if (current_type != last_type || e820_nomerge(current_type)) { 397 if (last_type) { 398 new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; 399 /* Move forward only if the new size was non-zero: */ 400 if (new_entries[new_nr_entries].size != 0) 401 /* No more space left for new entries? */ 402 if (++new_nr_entries >= max_nr_entries) 403 break; 404 } 405 if (current_type) { 406 new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; 407 new_entries[new_nr_entries].type = current_type; 408 last_addr = change_point[chg_idx]->addr; 409 } 410 last_type = current_type; 411 } 412 } 413 414 /* Copy the new entries into the original location: */ 415 memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); 416 table->nr_entries = new_nr_entries; 417 418 return 0; 419 } 420 421 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 422 { 423 struct boot_e820_entry *entry = entries; 424 425 while (nr_entries) { 426 u64 start = entry->addr; 427 u64 size = entry->size; 428 u64 end = start + size - 1; 429 u32 type = entry->type; 430 431 /* Ignore the entry on 64-bit overflow: */ 432 if (start > end && likely(size)) 433 return -1; 434 435 e820__range_add(start, size, type); 436 437 entry++; 438 nr_entries--; 439 } 440 return 0; 441 } 442 443 /* 444 * Copy the BIOS E820 map into a safe place. 445 * 446 * Sanity-check it while we're at it.. 447 * 448 * If we're lucky and live on a modern system, the setup code 449 * will have given us a memory map that we can use to properly 450 * set up memory. If we aren't, we'll fake a memory map. 451 */ 452 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 453 { 454 /* Only one memory region (or negative)? Ignore it */ 455 if (nr_entries < 2) 456 return -1; 457 458 return __append_e820_table(entries, nr_entries); 459 } 460 461 static u64 __init 462 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 463 { 464 u64 end; 465 unsigned int i; 466 u64 real_updated_size = 0; 467 468 BUG_ON(old_type == new_type); 469 470 if (size > (ULLONG_MAX - start)) 471 size = ULLONG_MAX - start; 472 473 end = start + size; 474 printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); 475 e820_print_type(old_type); 476 pr_cont(" ==> "); 477 e820_print_type(new_type); 478 pr_cont("\n"); 479 480 for (i = 0; i < table->nr_entries; i++) { 481 struct e820_entry *entry = &table->entries[i]; 482 u64 final_start, final_end; 483 u64 entry_end; 484 485 if (entry->type != old_type) 486 continue; 487 488 entry_end = entry->addr + entry->size; 489 490 /* Completely covered by new range? */ 491 if (entry->addr >= start && entry_end <= end) { 492 entry->type = new_type; 493 real_updated_size += entry->size; 494 continue; 495 } 496 497 /* New range is completely covered? */ 498 if (entry->addr < start && entry_end > end) { 499 __e820__range_add(table, start, size, new_type); 500 __e820__range_add(table, end, entry_end - end, entry->type); 501 entry->size = start - entry->addr; 502 real_updated_size += size; 503 continue; 504 } 505 506 /* Partially covered: */ 507 final_start = max(start, entry->addr); 508 final_end = min(end, entry_end); 509 if (final_start >= final_end) 510 continue; 511 512 __e820__range_add(table, final_start, final_end - final_start, new_type); 513 514 real_updated_size += final_end - final_start; 515 516 /* 517 * Left range could be head or tail, so need to update 518 * its size first: 519 */ 520 entry->size -= final_end - final_start; 521 if (entry->addr < final_start) 522 continue; 523 524 entry->addr = final_end; 525 } 526 return real_updated_size; 527 } 528 529 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 530 { 531 return __e820__range_update(e820_table, start, size, old_type, new_type); 532 } 533 534 u64 __init e820__range_update_table(struct e820_table *t, u64 start, u64 size, 535 enum e820_type old_type, enum e820_type new_type) 536 { 537 return __e820__range_update(t, start, size, old_type, new_type); 538 } 539 540 /* Remove a range of memory from the E820 table: */ 541 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) 542 { 543 int i; 544 u64 end; 545 u64 real_removed_size = 0; 546 547 if (size > (ULLONG_MAX - start)) 548 size = ULLONG_MAX - start; 549 550 end = start + size; 551 printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); 552 if (check_type) 553 e820_print_type(old_type); 554 pr_cont("\n"); 555 556 for (i = 0; i < e820_table->nr_entries; i++) { 557 struct e820_entry *entry = &e820_table->entries[i]; 558 u64 final_start, final_end; 559 u64 entry_end; 560 561 if (check_type && entry->type != old_type) 562 continue; 563 564 entry_end = entry->addr + entry->size; 565 566 /* Completely covered? */ 567 if (entry->addr >= start && entry_end <= end) { 568 real_removed_size += entry->size; 569 memset(entry, 0, sizeof(*entry)); 570 continue; 571 } 572 573 /* Is the new range completely covered? */ 574 if (entry->addr < start && entry_end > end) { 575 e820__range_add(end, entry_end - end, entry->type); 576 entry->size = start - entry->addr; 577 real_removed_size += size; 578 continue; 579 } 580 581 /* Partially covered: */ 582 final_start = max(start, entry->addr); 583 final_end = min(end, entry_end); 584 if (final_start >= final_end) 585 continue; 586 587 real_removed_size += final_end - final_start; 588 589 /* 590 * Left range could be head or tail, so need to update 591 * the size first: 592 */ 593 entry->size -= final_end - final_start; 594 if (entry->addr < final_start) 595 continue; 596 597 entry->addr = final_end; 598 } 599 return real_removed_size; 600 } 601 602 void __init e820__update_table_print(void) 603 { 604 if (e820__update_table(e820_table)) 605 return; 606 607 pr_info("modified physical RAM map:\n"); 608 e820__print_table("modified"); 609 } 610 611 static void __init e820__update_table_kexec(void) 612 { 613 e820__update_table(e820_table_kexec); 614 } 615 616 #define MAX_GAP_END 0x100000000ull 617 618 /* 619 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). 620 */ 621 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) 622 { 623 unsigned long long last = MAX_GAP_END; 624 int i = e820_table->nr_entries; 625 int found = 0; 626 627 while (--i >= 0) { 628 unsigned long long start = e820_table->entries[i].addr; 629 unsigned long long end = start + e820_table->entries[i].size; 630 631 /* 632 * Since "last" is at most 4GB, we know we'll 633 * fit in 32 bits if this condition is true: 634 */ 635 if (last > end) { 636 unsigned long gap = last - end; 637 638 if (gap >= *gapsize) { 639 *gapsize = gap; 640 *gapstart = end; 641 found = 1; 642 } 643 } 644 if (start < last) 645 last = start; 646 } 647 return found; 648 } 649 650 /* 651 * Search for the biggest gap in the low 32 bits of the E820 652 * memory space. We pass this space to the PCI subsystem, so 653 * that it can assign MMIO resources for hotplug or 654 * unconfigured devices in. 655 * 656 * Hopefully the BIOS let enough space left. 657 */ 658 __init void e820__setup_pci_gap(void) 659 { 660 unsigned long gapstart, gapsize; 661 int found; 662 663 gapsize = 0x400000; 664 found = e820_search_gap(&gapstart, &gapsize); 665 666 if (!found) { 667 #ifdef CONFIG_X86_64 668 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 669 pr_err("Cannot find an available gap in the 32-bit address range\n"); 670 pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); 671 #else 672 gapstart = 0x10000000; 673 #endif 674 } 675 676 /* 677 * e820__reserve_resources_late() protects stolen RAM already: 678 */ 679 pci_mem_start = gapstart; 680 681 pr_info("[mem %#010lx-%#010lx] available for PCI devices\n", 682 gapstart, gapstart + gapsize - 1); 683 } 684 685 /* 686 * Called late during init, in free_initmem(). 687 * 688 * Initial e820_table and e820_table_kexec are largish __initdata arrays. 689 * 690 * Copy them to a (usually much smaller) dynamically allocated area that is 691 * sized precisely after the number of e820 entries. 692 * 693 * This is done after we've performed all the fixes and tweaks to the tables. 694 * All functions which modify them are __init functions, which won't exist 695 * after free_initmem(). 696 */ 697 __init void e820__reallocate_tables(void) 698 { 699 struct e820_table *n; 700 int size; 701 702 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; 703 n = kmemdup(e820_table, size, GFP_KERNEL); 704 BUG_ON(!n); 705 e820_table = n; 706 707 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; 708 n = kmemdup(e820_table_kexec, size, GFP_KERNEL); 709 BUG_ON(!n); 710 e820_table_kexec = n; 711 712 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; 713 n = kmemdup(e820_table_firmware, size, GFP_KERNEL); 714 BUG_ON(!n); 715 e820_table_firmware = n; 716 } 717 718 /* 719 * Because of the small fixed size of struct boot_params, only the first 720 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, 721 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of 722 * struct setup_data, which is parsed here. 723 */ 724 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) 725 { 726 int entries; 727 struct boot_e820_entry *extmap; 728 struct setup_data *sdata; 729 730 sdata = early_memremap(phys_addr, data_len); 731 entries = sdata->len / sizeof(*extmap); 732 extmap = (struct boot_e820_entry *)(sdata->data); 733 734 __append_e820_table(extmap, entries); 735 e820__update_table(e820_table); 736 737 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 738 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 739 740 early_memunmap(sdata, data_len); 741 pr_info("extended physical RAM map:\n"); 742 e820__print_table("extended"); 743 } 744 745 /* 746 * Find the ranges of physical addresses that do not correspond to 747 * E820 RAM areas and register the corresponding pages as 'nosave' for 748 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). 749 * 750 * This function requires the E820 map to be sorted and without any 751 * overlapping entries. 752 */ 753 void __init e820__register_nosave_regions(unsigned long limit_pfn) 754 { 755 int i; 756 u64 last_addr = 0; 757 758 for (i = 0; i < e820_table->nr_entries; i++) { 759 struct e820_entry *entry = &e820_table->entries[i]; 760 761 if (entry->type != E820_TYPE_RAM) 762 continue; 763 764 if (last_addr < entry->addr) 765 register_nosave_region(PFN_DOWN(last_addr), PFN_UP(entry->addr)); 766 767 last_addr = entry->addr + entry->size; 768 } 769 770 register_nosave_region(PFN_DOWN(last_addr), limit_pfn); 771 } 772 773 #ifdef CONFIG_ACPI 774 /* 775 * Register ACPI NVS memory regions, so that we can save/restore them during 776 * hibernation and the subsequent resume: 777 */ 778 static int __init e820__register_nvs_regions(void) 779 { 780 int i; 781 782 for (i = 0; i < e820_table->nr_entries; i++) { 783 struct e820_entry *entry = &e820_table->entries[i]; 784 785 if (entry->type == E820_TYPE_NVS) 786 acpi_nvs_register(entry->addr, entry->size); 787 } 788 789 return 0; 790 } 791 core_initcall(e820__register_nvs_regions); 792 #endif 793 794 /* 795 * Allocate the requested number of bytes with the requested alignment 796 * and return (the physical address) to the caller. Also register this 797 * range in the 'kexec' E820 table as a reserved range. 798 * 799 * This allows kexec to fake a new mptable, as if it came from the real 800 * system. 801 */ 802 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) 803 { 804 u64 addr; 805 806 addr = memblock_phys_alloc(size, align); 807 if (addr) { 808 e820__range_update_table(e820_table_kexec, addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 809 pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); 810 e820__update_table_kexec(); 811 } 812 813 return addr; 814 } 815 816 #ifdef CONFIG_X86_32 817 # ifdef CONFIG_X86_PAE 818 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 819 # else 820 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 821 # endif 822 #else /* CONFIG_X86_32 */ 823 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 824 #endif 825 826 /* 827 * Find the highest page frame number we have available 828 */ 829 static unsigned long __init e820__end_ram_pfn(unsigned long limit_pfn) 830 { 831 int i; 832 unsigned long last_pfn = 0; 833 unsigned long max_arch_pfn = MAX_ARCH_PFN; 834 835 for (i = 0; i < e820_table->nr_entries; i++) { 836 struct e820_entry *entry = &e820_table->entries[i]; 837 unsigned long start_pfn; 838 unsigned long end_pfn; 839 840 if (entry->type != E820_TYPE_RAM && 841 entry->type != E820_TYPE_ACPI) 842 continue; 843 844 start_pfn = entry->addr >> PAGE_SHIFT; 845 end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; 846 847 if (start_pfn >= limit_pfn) 848 continue; 849 if (end_pfn > limit_pfn) { 850 last_pfn = limit_pfn; 851 break; 852 } 853 if (end_pfn > last_pfn) 854 last_pfn = end_pfn; 855 } 856 857 if (last_pfn > max_arch_pfn) 858 last_pfn = max_arch_pfn; 859 860 pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", 861 last_pfn, max_arch_pfn); 862 return last_pfn; 863 } 864 865 unsigned long __init e820__end_of_ram_pfn(void) 866 { 867 return e820__end_ram_pfn(MAX_ARCH_PFN); 868 } 869 870 unsigned long __init e820__end_of_low_ram_pfn(void) 871 { 872 return e820__end_ram_pfn(1UL << (32 - PAGE_SHIFT)); 873 } 874 875 static void __init early_panic(char *msg) 876 { 877 early_printk(msg); 878 panic(msg); 879 } 880 881 static int userdef __initdata; 882 883 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ 884 static int __init parse_memopt(char *p) 885 { 886 u64 mem_size; 887 888 if (!p) 889 return -EINVAL; 890 891 if (!strcmp(p, "nopentium")) { 892 #ifdef CONFIG_X86_32 893 setup_clear_cpu_cap(X86_FEATURE_PSE); 894 return 0; 895 #else 896 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); 897 return -EINVAL; 898 #endif 899 } 900 901 userdef = 1; 902 mem_size = memparse(p, &p); 903 904 /* Don't remove all memory when getting "mem={invalid}" parameter: */ 905 if (mem_size == 0) 906 return -EINVAL; 907 908 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 909 910 #ifdef CONFIG_MEMORY_HOTPLUG 911 max_mem_size = mem_size; 912 #endif 913 914 return 0; 915 } 916 early_param("mem", parse_memopt); 917 918 static int __init parse_memmap_one(char *p) 919 { 920 char *oldp; 921 u64 start_at, mem_size; 922 923 if (!p) 924 return -EINVAL; 925 926 if (!strncmp(p, "exactmap", 8)) { 927 e820_table->nr_entries = 0; 928 userdef = 1; 929 return 0; 930 } 931 932 oldp = p; 933 mem_size = memparse(p, &p); 934 if (p == oldp) 935 return -EINVAL; 936 937 userdef = 1; 938 if (*p == '@') { 939 start_at = memparse(p+1, &p); 940 e820__range_add(start_at, mem_size, E820_TYPE_RAM); 941 } else if (*p == '#') { 942 start_at = memparse(p+1, &p); 943 e820__range_add(start_at, mem_size, E820_TYPE_ACPI); 944 } else if (*p == '$') { 945 start_at = memparse(p+1, &p); 946 e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); 947 } else if (*p == '!') { 948 start_at = memparse(p+1, &p); 949 e820__range_add(start_at, mem_size, E820_TYPE_PRAM); 950 } else if (*p == '%') { 951 enum e820_type from = 0, to = 0; 952 953 start_at = memparse(p + 1, &p); 954 if (*p == '-') 955 from = simple_strtoull(p + 1, &p, 0); 956 if (*p == '+') 957 to = simple_strtoull(p + 1, &p, 0); 958 if (*p != '\0') 959 return -EINVAL; 960 if (from && to) 961 e820__range_update(start_at, mem_size, from, to); 962 else if (to) 963 e820__range_add(start_at, mem_size, to); 964 else if (from) 965 e820__range_remove(start_at, mem_size, from, 1); 966 else 967 e820__range_remove(start_at, mem_size, 0, 0); 968 } else { 969 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 970 } 971 972 return *p == '\0' ? 0 : -EINVAL; 973 } 974 975 static int __init parse_memmap_opt(char *str) 976 { 977 while (str) { 978 char *k = strchr(str, ','); 979 980 if (k) 981 *k++ = 0; 982 983 parse_memmap_one(str); 984 str = k; 985 } 986 987 return 0; 988 } 989 early_param("memmap", parse_memmap_opt); 990 991 /* 992 * Called after parse_early_param(), after early parameters (such as mem=) 993 * have been processed, in which case we already have an E820 table filled in 994 * via the parameter callback function(s), but it's not sorted and printed yet: 995 */ 996 void __init e820__finish_early_params(void) 997 { 998 if (userdef) { 999 if (e820__update_table(e820_table) < 0) 1000 early_panic("Invalid user supplied memory map"); 1001 1002 pr_info("user-defined physical RAM map:\n"); 1003 e820__print_table("user"); 1004 } 1005 } 1006 1007 static const char *__init e820_type_to_string(struct e820_entry *entry) 1008 { 1009 switch (entry->type) { 1010 case E820_TYPE_RAM: return "System RAM"; 1011 case E820_TYPE_ACPI: return "ACPI Tables"; 1012 case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; 1013 case E820_TYPE_UNUSABLE: return "Unusable memory"; 1014 case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; 1015 case E820_TYPE_PMEM: return "Persistent Memory"; 1016 case E820_TYPE_RESERVED: return "Reserved"; 1017 case E820_TYPE_SOFT_RESERVED: return "Soft Reserved"; 1018 default: return "Unknown E820 type"; 1019 } 1020 } 1021 1022 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) 1023 { 1024 switch (entry->type) { 1025 case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; 1026 case E820_TYPE_ACPI: /* Fall-through: */ 1027 case E820_TYPE_NVS: /* Fall-through: */ 1028 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1029 case E820_TYPE_PRAM: /* Fall-through: */ 1030 case E820_TYPE_PMEM: /* Fall-through: */ 1031 case E820_TYPE_RESERVED: /* Fall-through: */ 1032 case E820_TYPE_SOFT_RESERVED: /* Fall-through: */ 1033 default: return IORESOURCE_MEM; 1034 } 1035 } 1036 1037 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) 1038 { 1039 switch (entry->type) { 1040 case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; 1041 case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; 1042 case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; 1043 case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; 1044 case E820_TYPE_RESERVED: return IORES_DESC_RESERVED; 1045 case E820_TYPE_SOFT_RESERVED: return IORES_DESC_SOFT_RESERVED; 1046 case E820_TYPE_RAM: /* Fall-through: */ 1047 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1048 default: return IORES_DESC_NONE; 1049 } 1050 } 1051 1052 static bool __init do_mark_busy(enum e820_type type, struct resource *res) 1053 { 1054 /* this is the legacy bios/dos rom-shadow + mmio region */ 1055 if (res->start < (1ULL<<20)) 1056 return true; 1057 1058 /* 1059 * Treat persistent memory and other special memory ranges like 1060 * device memory, i.e. reserve it for exclusive use of a driver 1061 */ 1062 switch (type) { 1063 case E820_TYPE_RESERVED: 1064 case E820_TYPE_SOFT_RESERVED: 1065 case E820_TYPE_PRAM: 1066 case E820_TYPE_PMEM: 1067 return false; 1068 case E820_TYPE_RAM: 1069 case E820_TYPE_ACPI: 1070 case E820_TYPE_NVS: 1071 case E820_TYPE_UNUSABLE: 1072 default: 1073 return true; 1074 } 1075 } 1076 1077 /* 1078 * Mark E820 reserved areas as busy for the resource manager: 1079 */ 1080 1081 static struct resource __initdata *e820_res; 1082 1083 void __init e820__reserve_resources(void) 1084 { 1085 int i; 1086 struct resource *res; 1087 u64 end; 1088 1089 res = memblock_alloc_or_panic(sizeof(*res) * e820_table->nr_entries, 1090 SMP_CACHE_BYTES); 1091 e820_res = res; 1092 1093 for (i = 0; i < e820_table->nr_entries; i++) { 1094 struct e820_entry *entry = e820_table->entries + i; 1095 1096 end = entry->addr + entry->size - 1; 1097 if (end != (resource_size_t)end) { 1098 res++; 1099 continue; 1100 } 1101 res->start = entry->addr; 1102 res->end = end; 1103 res->name = e820_type_to_string(entry); 1104 res->flags = e820_type_to_iomem_type(entry); 1105 res->desc = e820_type_to_iores_desc(entry); 1106 1107 /* 1108 * Don't register the region that could be conflicted with 1109 * PCI device BAR resources and insert them later in 1110 * pcibios_resource_survey(): 1111 */ 1112 if (do_mark_busy(entry->type, res)) { 1113 res->flags |= IORESOURCE_BUSY; 1114 insert_resource(&iomem_resource, res); 1115 } 1116 res++; 1117 } 1118 1119 /* Expose the kexec e820 table to the sysfs. */ 1120 for (i = 0; i < e820_table_kexec->nr_entries; i++) { 1121 struct e820_entry *entry = e820_table_kexec->entries + i; 1122 1123 firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); 1124 } 1125 } 1126 1127 /* 1128 * How much should we pad the end of RAM, depending on where it is? 1129 */ 1130 static unsigned long __init ram_alignment(resource_size_t pos) 1131 { 1132 unsigned long mb = pos >> 20; 1133 1134 /* To 64kB in the first megabyte */ 1135 if (!mb) 1136 return 64*1024; 1137 1138 /* To 1MB in the first 16MB */ 1139 if (mb < 16) 1140 return 1024*1024; 1141 1142 /* To 64MB for anything above that */ 1143 return 64*1024*1024; 1144 } 1145 1146 #define MAX_RESOURCE_SIZE ((resource_size_t)-1) 1147 1148 void __init e820__reserve_resources_late(void) 1149 { 1150 int i; 1151 struct resource *res; 1152 1153 res = e820_res; 1154 for (i = 0; i < e820_table->nr_entries; i++) { 1155 if (!res->parent && res->end) 1156 insert_resource_expand_to_fit(&iomem_resource, res); 1157 res++; 1158 } 1159 1160 /* 1161 * Try to bump up RAM regions to reasonable boundaries, to 1162 * avoid stolen RAM: 1163 */ 1164 for (i = 0; i < e820_table->nr_entries; i++) { 1165 struct e820_entry *entry = &e820_table->entries[i]; 1166 u64 start, end; 1167 1168 if (entry->type != E820_TYPE_RAM) 1169 continue; 1170 1171 start = entry->addr + entry->size; 1172 end = round_up(start, ram_alignment(start)) - 1; 1173 if (end > MAX_RESOURCE_SIZE) 1174 end = MAX_RESOURCE_SIZE; 1175 if (start >= end) 1176 continue; 1177 1178 printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); 1179 reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); 1180 } 1181 } 1182 1183 /* 1184 * Pass the firmware (bootloader) E820 map to the kernel and process it: 1185 */ 1186 char *__init e820__memory_setup_default(void) 1187 { 1188 char *who = "BIOS-e820"; 1189 1190 /* 1191 * Try to copy the BIOS-supplied E820-map. 1192 * 1193 * Otherwise fake a memory map; one section from 0k->640k, 1194 * the next section from 1mb->appropriate_mem_k 1195 */ 1196 if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { 1197 u64 mem_size; 1198 1199 /* Compare results from other methods and take the one that gives more RAM: */ 1200 if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { 1201 mem_size = boot_params.screen_info.ext_mem_k; 1202 who = "BIOS-88"; 1203 } else { 1204 mem_size = boot_params.alt_mem_k; 1205 who = "BIOS-e801"; 1206 } 1207 1208 e820_table->nr_entries = 0; 1209 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); 1210 e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); 1211 } 1212 1213 /* We just appended a lot of ranges, sanitize the table: */ 1214 e820__update_table(e820_table); 1215 1216 return who; 1217 } 1218 1219 /* 1220 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader 1221 * E820 map - with an optional platform quirk available for virtual platforms 1222 * to override this method of boot environment processing: 1223 */ 1224 void __init e820__memory_setup(void) 1225 { 1226 char *who; 1227 1228 /* This is a firmware interface ABI - make sure we don't break it: */ 1229 BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); 1230 1231 who = x86_init.resources.memory_setup(); 1232 1233 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 1234 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 1235 1236 pr_info("BIOS-provided physical RAM map:\n"); 1237 e820__print_table(who); 1238 } 1239 1240 void __init e820__memblock_setup(void) 1241 { 1242 int i; 1243 u64 end; 1244 1245 #ifdef CONFIG_MEMORY_HOTPLUG 1246 /* 1247 * Memory used by the kernel cannot be hot-removed because Linux 1248 * cannot migrate the kernel pages. When memory hotplug is 1249 * enabled, we should prevent memblock from allocating memory 1250 * for the kernel. 1251 * 1252 * ACPI SRAT records all hotpluggable memory ranges. But before 1253 * SRAT is parsed, we don't know about it. 1254 * 1255 * The kernel image is loaded into memory at very early time. We 1256 * cannot prevent this anyway. So on NUMA system, we set any 1257 * node the kernel resides in as un-hotpluggable. 1258 * 1259 * Since on modern servers, one node could have double-digit 1260 * gigabytes memory, we can assume the memory around the kernel 1261 * image is also un-hotpluggable. So before SRAT is parsed, just 1262 * allocate memory near the kernel image to try the best to keep 1263 * the kernel away from hotpluggable memory. 1264 */ 1265 if (movable_node_is_enabled()) 1266 memblock_set_bottom_up(true); 1267 #endif 1268 1269 /* 1270 * At this point only the first megabyte is mapped for sure, the 1271 * rest of the memory cannot be used for memblock resizing 1272 */ 1273 memblock_set_current_limit(ISA_END_ADDRESS); 1274 1275 /* 1276 * The bootstrap memblock region count maximum is 128 entries 1277 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries 1278 * than that - so allow memblock resizing. 1279 * 1280 * This is safe, because this call happens pretty late during x86 setup, 1281 * so we know about reserved memory regions already. (This is important 1282 * so that memblock resizing does no stomp over reserved areas.) 1283 */ 1284 memblock_allow_resize(); 1285 1286 for (i = 0; i < e820_table->nr_entries; i++) { 1287 struct e820_entry *entry = &e820_table->entries[i]; 1288 1289 end = entry->addr + entry->size; 1290 if (end != (resource_size_t)end) 1291 continue; 1292 1293 if (entry->type == E820_TYPE_SOFT_RESERVED) 1294 memblock_reserve(entry->addr, entry->size); 1295 1296 if (entry->type != E820_TYPE_RAM) 1297 continue; 1298 1299 memblock_add(entry->addr, entry->size); 1300 } 1301 1302 /* 1303 * 32-bit systems are limited to 4BG of memory even with HIGHMEM and 1304 * to even less without it. 1305 * Discard memory after max_pfn - the actual limit detected at runtime. 1306 */ 1307 if (IS_ENABLED(CONFIG_X86_32)) 1308 memblock_remove(PFN_PHYS(max_pfn), -1); 1309 1310 /* Throw away partial pages: */ 1311 memblock_trim_memory(PAGE_SIZE); 1312 1313 memblock_dump_all(); 1314 } 1315