1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Low level x86 E820 memory map handling functions. 4 * 5 * The firmware and bootloader passes us the "E820 table", which is the primary 6 * physical memory layout description available about x86 systems. 7 * 8 * The kernel takes the E820 memory layout and optionally modifies it with 9 * quirks and other tweaks, and feeds that into the generic Linux memory 10 * allocation code routines via a platform independent interface (memblock, etc.). 11 */ 12 #include <linux/memblock.h> 13 #include <linux/suspend.h> 14 #include <linux/acpi.h> 15 #include <linux/firmware-map.h> 16 #include <linux/sort.h> 17 #include <linux/kvm_types.h> 18 19 #include <asm/e820/api.h> 20 #include <asm/setup.h> 21 22 /* 23 * We organize the E820 table into three main data structures: 24 * 25 * - 'e820_table_firmware': the original firmware version passed to us by the 26 * bootloader - not modified by the kernel. It is composed of two parts: 27 * the first 128 E820 memory entries in boot_params.e820_table and the remaining 28 * (if any) entries of the SETUP_E820_EXT nodes. We use this to: 29 * 30 * - the hibernation code uses it to generate a kernel-independent CRC32 31 * checksum of the physical memory layout of a system. 32 * 33 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version 34 * passed to us by the bootloader - the major difference between 35 * e820_table_firmware[] and this one is that e820_table_kexec[] 36 * might be modified by the kexec itself to fake an mptable. 37 * We use this to: 38 * 39 * - kexec, which is a bootloader in disguise, uses the original E820 40 * layout to pass to the kexec-ed kernel. This way the original kernel 41 * can have a restricted E820 map while the kexec()-ed kexec-kernel 42 * can have access to full memory - etc. 43 * 44 * Export the memory layout via /sys/firmware/memmap. kexec-tools uses 45 * the entries to create an E820 table for the kexec kernel. 46 * 47 * kexec_file_load in-kernel code uses the table for the kexec kernel. 48 * 49 * - 'e820_table': this is the main E820 table that is massaged by the 50 * low level x86 platform code, or modified by boot parameters, before 51 * passed on to higher level MM layers. 52 * 53 * Once the E820 map has been converted to the standard Linux memory layout 54 * information its role stops - modifying it has no effect and does not get 55 * re-propagated. So its main role is a temporary bootstrap storage of firmware 56 * specific memory layout data during early bootup. 57 */ 58 __initdata static struct e820_table e820_table_init; 59 __initdata static struct e820_table e820_table_kexec_init; 60 __initdata static struct e820_table e820_table_firmware_init; 61 62 __refdata struct e820_table *e820_table = &e820_table_init; 63 __refdata struct e820_table *e820_table_kexec = &e820_table_kexec_init; 64 __refdata struct e820_table *e820_table_firmware = &e820_table_firmware_init; 65 66 /* For PCI or other memory-mapped resources */ 67 unsigned long pci_mem_start = 0xaeedbabe; 68 #ifdef CONFIG_PCI 69 EXPORT_SYMBOL(pci_mem_start); 70 #endif 71 72 /* 73 * This function checks if any part of the range <start,end> is mapped 74 * with type. 75 */ 76 static bool _e820__mapped_any(struct e820_table *table, 77 u64 start, u64 end, enum e820_type type) 78 { 79 u32 idx; 80 81 for (idx = 0; idx < table->nr_entries; idx++) { 82 struct e820_entry *entry = &table->entries[idx]; 83 84 if (type && entry->type != type) 85 continue; 86 if (entry->addr >= end || entry->addr + entry->size <= start) 87 continue; 88 return true; 89 } 90 return false; 91 } 92 93 bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type) 94 { 95 return _e820__mapped_any(e820_table_firmware, start, end, type); 96 } 97 EXPORT_SYMBOL_FOR_KVM(e820__mapped_raw_any); 98 99 bool e820__mapped_any(u64 start, u64 end, enum e820_type type) 100 { 101 return _e820__mapped_any(e820_table, start, end, type); 102 } 103 EXPORT_SYMBOL_GPL(e820__mapped_any); 104 105 /* 106 * This function checks if the entire <start,end> range is mapped with 'type'. 107 * 108 * Note: this function only works correctly once the E820 table is sorted and 109 * not-overlapping (at least for the range specified), which is the case normally. 110 */ 111 static struct e820_entry *__e820__mapped_all(u64 start, u64 end, 112 enum e820_type type) 113 { 114 u32 idx; 115 116 for (idx = 0; idx < e820_table->nr_entries; idx++) { 117 struct e820_entry *entry = &e820_table->entries[idx]; 118 119 if (type && entry->type != type) 120 continue; 121 122 /* Is the region (part) in overlap with the current region? */ 123 if (entry->addr >= end || entry->addr + entry->size <= start) 124 continue; 125 126 /* 127 * If the region is at the beginning of <start,end> we move 128 * 'start' to the end of the region since it's ok until there 129 */ 130 if (entry->addr <= start) 131 start = entry->addr + entry->size; 132 133 /* 134 * If 'start' is now at or beyond 'end', we're done, full 135 * coverage of the desired range exists: 136 */ 137 if (start >= end) 138 return entry; 139 } 140 141 return NULL; 142 } 143 144 /* 145 * This function checks if the entire range <start,end> is mapped with type. 146 */ 147 __init bool e820__mapped_all(u64 start, u64 end, enum e820_type type) 148 { 149 return __e820__mapped_all(start, end, type); 150 } 151 152 /* 153 * This function returns the type associated with the range <start,end>. 154 */ 155 int e820__get_entry_type(u64 start, u64 end) 156 { 157 struct e820_entry *entry = __e820__mapped_all(start, end, 0); 158 159 return entry ? entry->type : -EINVAL; 160 } 161 162 /* 163 * Add a memory region to the kernel E820 map. 164 */ 165 __init static void __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) 166 { 167 u32 idx = table->nr_entries; 168 struct e820_entry *entry_new; 169 170 if (idx >= ARRAY_SIZE(table->entries)) { 171 pr_err("E820 table full; ignoring [mem %#010llx-%#010llx]\n", 172 start, start + size-1); 173 return; 174 } 175 176 entry_new = table->entries + idx; 177 178 entry_new->addr = start; 179 entry_new->size = size; 180 entry_new->type = type; 181 182 table->nr_entries++; 183 } 184 185 __init void e820__range_add(u64 start, u64 size, enum e820_type type) 186 { 187 __e820__range_add(e820_table, start, size, type); 188 } 189 190 __init static void e820_print_type(enum e820_type type) 191 { 192 switch (type) { 193 case E820_TYPE_RAM: pr_cont(" System RAM"); break; 194 case E820_TYPE_RESERVED: pr_cont(" device reserved"); break; 195 case E820_TYPE_SOFT_RESERVED: pr_cont(" soft reserved"); break; 196 case E820_TYPE_ACPI: pr_cont(" ACPI data"); break; 197 case E820_TYPE_NVS: pr_cont(" ACPI NVS"); break; 198 case E820_TYPE_UNUSABLE: pr_cont(" unusable"); break; 199 case E820_TYPE_PMEM: /* Fall through: */ 200 case E820_TYPE_PRAM: pr_cont(" persistent RAM (type %u)", type); break; 201 default: pr_cont(" type %u", type); break; 202 } 203 } 204 205 __init static void e820__print_table(const char *who) 206 { 207 u64 range_end_prev = 0; 208 u32 idx; 209 210 for (idx = 0; idx < e820_table->nr_entries; idx++) { 211 struct e820_entry *entry = e820_table->entries + idx; 212 u64 range_start, range_end; 213 214 range_start = entry->addr; 215 range_end = entry->addr + entry->size; 216 217 /* Out of order E820 maps should not happen: */ 218 if (range_start < range_end_prev) 219 pr_info(FW_BUG "out of order E820 entry!\n"); 220 221 if (range_start > range_end_prev) { 222 pr_info("%s: [gap %#018Lx-%#018Lx]\n", 223 who, 224 range_end_prev, 225 range_start-1); 226 } 227 228 pr_info("%s: [mem %#018Lx-%#018Lx] ", who, range_start, range_end-1); 229 e820_print_type(entry->type); 230 pr_cont("\n"); 231 232 range_end_prev = range_end; 233 } 234 } 235 236 /* 237 * Sanitize an E820 map. 238 * 239 * Some E820 layouts include overlapping entries. The following 240 * replaces the original E820 map with a new one, removing overlaps, 241 * and resolving conflicting memory types in favor of highest 242 * numbered type. 243 * 244 * The input parameter 'entries' points to an array of 'struct 245 * e820_entry' which on entry has elements in the range [0, *nr_entries) 246 * valid, and which has space for up to max_nr_entries entries. 247 * On return, the resulting sanitized E820 map entries will be in 248 * overwritten in the same location, starting at 'entries'. 249 * 250 * The integer pointed to by nr_entries must be valid on entry (the 251 * current number of valid entries located at 'entries'). If the 252 * sanitizing succeeds the *nr_entries will be updated with the new 253 * number of valid entries (something no more than max_nr_entries). 254 * 255 * The return value from e820__update_table() is zero if it 256 * successfully 'sanitized' the map entries passed in, and is -1 257 * if it did nothing, which can happen if either of (1) it was 258 * only passed one map entry, or (2) any of the input map entries 259 * were invalid (start + size < start, meaning that the size was 260 * so big the described memory range wrapped around through zero.) 261 * 262 * Visually we're performing the following 263 * (1,2,3,4 = memory types)... 264 * 265 * Sample memory map (w/overlaps): 266 * ____22__________________ 267 * ______________________4_ 268 * ____1111________________ 269 * _44_____________________ 270 * 11111111________________ 271 * ____________________33__ 272 * ___________44___________ 273 * __________33333_________ 274 * ______________22________ 275 * ___________________2222_ 276 * _________111111111______ 277 * _____________________11_ 278 * _________________4______ 279 * 280 * Sanitized equivalent (no overlap): 281 * 1_______________________ 282 * _44_____________________ 283 * ___1____________________ 284 * ____22__________________ 285 * ______11________________ 286 * _________1______________ 287 * __________3_____________ 288 * ___________44___________ 289 * _____________33_________ 290 * _______________2________ 291 * ________________1_______ 292 * _________________4______ 293 * ___________________2____ 294 * ____________________33__ 295 * ______________________4_ 296 */ 297 struct change_member { 298 /* Pointer to the original entry: */ 299 struct e820_entry *entry; 300 /* Address for this change point: */ 301 u64 addr; 302 }; 303 304 __initdata static struct change_member change_point_list[2*E820_MAX_ENTRIES]; 305 __initdata static struct change_member *change_point[2*E820_MAX_ENTRIES]; 306 __initdata static struct e820_entry *overlap_list[E820_MAX_ENTRIES]; 307 __initdata static struct e820_entry new_entries[E820_MAX_ENTRIES]; 308 309 __init static int cpcompare(const void *a, const void *b) 310 { 311 struct change_member * const *app = a, * const *bpp = b; 312 const struct change_member *ap = *app, *bp = *bpp; 313 314 /* 315 * Inputs are pointers to two elements of change_point[]. If their 316 * addresses are not equal, their difference dominates. If the addresses 317 * are equal, then consider one that represents the end of its region 318 * to be greater than one that does not. 319 */ 320 if (ap->addr != bp->addr) 321 return ap->addr > bp->addr ? 1 : -1; 322 323 return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); 324 } 325 326 /* 327 * Can two consecutive E820 entries of this same E820 type be merged? 328 */ 329 static bool e820_type_mergeable(enum e820_type type) 330 { 331 /* 332 * These types may indicate distinct platform ranges aligned to 333 * NUMA node, protection domain, performance domain, or other 334 * boundaries. Do not merge them. 335 */ 336 if (type == E820_TYPE_PRAM) 337 return false; 338 if (type == E820_TYPE_SOFT_RESERVED) 339 return false; 340 341 return true; 342 } 343 344 __init int e820__update_table(struct e820_table *table) 345 { 346 struct e820_entry *entries = table->entries; 347 u32 max_nr_entries = ARRAY_SIZE(table->entries); 348 enum e820_type current_type, last_type; 349 u64 last_addr; 350 u32 new_nr_entries, overlap_entries; 351 u32 idx, chg_idx, chg_nr; 352 353 /* If there's only one memory region, don't bother: */ 354 if (table->nr_entries < 2) 355 return -1; 356 357 BUG_ON(table->nr_entries > max_nr_entries); 358 359 /* Bail out if we find any unreasonable addresses in the map: */ 360 for (idx = 0; idx < table->nr_entries; idx++) { 361 if (entries[idx].addr + entries[idx].size < entries[idx].addr) 362 return -1; 363 } 364 365 /* Create pointers for initial change-point information (for sorting): */ 366 for (idx = 0; idx < 2 * table->nr_entries; idx++) 367 change_point[idx] = &change_point_list[idx]; 368 369 /* 370 * Record all known change-points (starting and ending addresses), 371 * omitting empty memory regions: 372 */ 373 chg_idx = 0; 374 for (idx = 0; idx < table->nr_entries; idx++) { 375 if (entries[idx].size != 0) { 376 change_point[chg_idx]->addr = entries[idx].addr; 377 change_point[chg_idx++]->entry = &entries[idx]; 378 change_point[chg_idx]->addr = entries[idx].addr + entries[idx].size; 379 change_point[chg_idx++]->entry = &entries[idx]; 380 } 381 } 382 chg_nr = chg_idx; 383 384 /* Sort change-point list by memory addresses (low -> high): */ 385 sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); 386 387 /* Create a new memory map, removing overlaps: */ 388 overlap_entries = 0; /* Number of entries in the overlap table */ 389 new_nr_entries = 0; /* Index for creating new map entries */ 390 last_type = 0; /* Start with undefined memory type */ 391 last_addr = 0; /* Start with 0 as last starting address */ 392 393 /* Loop through change-points, determining effect on the new map: */ 394 for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { 395 /* Keep track of all overlapping entries */ 396 if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { 397 /* Add map entry to overlap list (> 1 entry implies an overlap) */ 398 overlap_list[overlap_entries++] = change_point[chg_idx]->entry; 399 } else { 400 /* Remove entry from list (order independent, so swap with last): */ 401 for (idx = 0; idx < overlap_entries; idx++) { 402 if (overlap_list[idx] == change_point[chg_idx]->entry) 403 overlap_list[idx] = overlap_list[overlap_entries-1]; 404 } 405 overlap_entries--; 406 } 407 /* 408 * If there are overlapping entries, decide which 409 * "type" to use (larger value takes precedence -- 410 * 1=usable, 2,3,4,4+=unusable) 411 */ 412 current_type = 0; 413 for (idx = 0; idx < overlap_entries; idx++) { 414 if (overlap_list[idx]->type > current_type) 415 current_type = overlap_list[idx]->type; 416 } 417 418 /* Continue building up new map based on this information: */ 419 if (current_type != last_type || !e820_type_mergeable(current_type)) { 420 if (last_type) { 421 new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; 422 /* Move forward only if the new size was non-zero: */ 423 if (new_entries[new_nr_entries].size != 0) 424 /* No more space left for new entries? */ 425 if (++new_nr_entries >= max_nr_entries) 426 break; 427 } 428 if (current_type) { 429 new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; 430 new_entries[new_nr_entries].type = current_type; 431 last_addr = change_point[chg_idx]->addr; 432 } 433 last_type = current_type; 434 } 435 } 436 437 /* Copy the new entries into the original location: */ 438 memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); 439 table->nr_entries = new_nr_entries; 440 441 return 0; 442 } 443 444 /* 445 * Copy the BIOS E820 map into the kernel's e820_table. 446 * 447 * Sanity-check it while we're at it.. 448 */ 449 __init static int append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 450 { 451 struct boot_e820_entry *entry = entries; 452 453 while (nr_entries) { 454 u64 start = entry->addr; 455 u64 size = entry->size; 456 u64 end = start + size-1; 457 u32 type = entry->type; 458 459 /* Ignore the remaining entries on 64-bit overflow: */ 460 if (start > end && likely(size)) 461 return -1; 462 463 e820__range_add(start, size, type); 464 465 entry++; 466 nr_entries--; 467 } 468 return 0; 469 } 470 471 __init static u64 472 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 473 { 474 u64 end; 475 u32 idx; 476 u64 real_updated_size = 0; 477 478 BUG_ON(old_type == new_type); 479 480 if (size > (ULLONG_MAX - start)) 481 size = ULLONG_MAX - start; 482 483 end = start + size; 484 printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx]", start, end - 1); 485 e820_print_type(old_type); 486 pr_cont(" ==>"); 487 e820_print_type(new_type); 488 pr_cont("\n"); 489 490 for (idx = 0; idx < table->nr_entries; idx++) { 491 struct e820_entry *entry = &table->entries[idx]; 492 u64 final_start, final_end; 493 u64 entry_end; 494 495 if (entry->type != old_type) 496 continue; 497 498 entry_end = entry->addr + entry->size; 499 500 /* Completely covered by new range? */ 501 if (entry->addr >= start && entry_end <= end) { 502 entry->type = new_type; 503 real_updated_size += entry->size; 504 continue; 505 } 506 507 /* New range is completely covered? */ 508 if (entry->addr < start && entry_end > end) { 509 __e820__range_add(table, start, size, new_type); 510 __e820__range_add(table, end, entry_end - end, entry->type); 511 entry->size = start - entry->addr; 512 real_updated_size += size; 513 continue; 514 } 515 516 /* Partially covered: */ 517 final_start = max(start, entry->addr); 518 final_end = min(end, entry_end); 519 if (final_start >= final_end) 520 continue; 521 522 __e820__range_add(table, final_start, final_end - final_start, new_type); 523 524 real_updated_size += final_end - final_start; 525 526 /* 527 * Left range could be head or tail, so need to update 528 * its size first: 529 */ 530 entry->size -= final_end - final_start; 531 if (entry->addr < final_start) 532 continue; 533 534 entry->addr = final_end; 535 } 536 return real_updated_size; 537 } 538 539 __init u64 e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 540 { 541 return __e820__range_update(e820_table, start, size, old_type, new_type); 542 } 543 544 __init u64 e820__range_update_table(struct e820_table *t, u64 start, u64 size, 545 enum e820_type old_type, enum e820_type new_type) 546 { 547 return __e820__range_update(t, start, size, old_type, new_type); 548 } 549 550 /* Remove a range of memory from the E820 table: */ 551 __init void e820__range_remove(u64 start, u64 size, enum e820_type filter_type) 552 { 553 u32 idx; 554 u64 end; 555 556 if (size > (ULLONG_MAX - start)) 557 size = ULLONG_MAX - start; 558 559 end = start + size; 560 printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx]", start, end - 1); 561 if (filter_type) 562 e820_print_type(filter_type); 563 pr_cont("\n"); 564 565 for (idx = 0; idx < e820_table->nr_entries; idx++) { 566 struct e820_entry *entry = &e820_table->entries[idx]; 567 u64 final_start, final_end; 568 u64 entry_end; 569 570 if (filter_type && entry->type != filter_type) 571 continue; 572 573 entry_end = entry->addr + entry->size; 574 575 /* Completely covered? */ 576 if (entry->addr >= start && entry_end <= end) { 577 memset(entry, 0, sizeof(*entry)); 578 continue; 579 } 580 581 /* Is the new range completely covered? */ 582 if (entry->addr < start && entry_end > end) { 583 e820__range_add(end, entry_end - end, entry->type); 584 entry->size = start - entry->addr; 585 continue; 586 } 587 588 /* Partially covered: */ 589 final_start = max(start, entry->addr); 590 final_end = min(end, entry_end); 591 if (final_start >= final_end) 592 continue; 593 594 /* 595 * Left range could be head or tail, so need to update 596 * the size first: 597 */ 598 entry->size -= final_end - final_start; 599 if (entry->addr < final_start) 600 continue; 601 602 entry->addr = final_end; 603 } 604 } 605 606 __init void e820__update_table_print(void) 607 { 608 if (e820__update_table(e820_table)) 609 return; 610 611 pr_info("modified physical RAM map:\n"); 612 e820__print_table("modified"); 613 } 614 615 __init static void e820__update_table_kexec(void) 616 { 617 e820__update_table(e820_table_kexec); 618 } 619 620 #define MAX_GAP_END SZ_4G 621 622 /* 623 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). 624 */ 625 __init static int e820_search_gap(unsigned long *max_gap_start, unsigned long *max_gap_size) 626 { 627 struct e820_entry *entry; 628 u64 range_end_prev = 0; 629 int found = 0; 630 u32 idx; 631 632 for (idx = 0; idx < e820_table->nr_entries; idx++) { 633 u64 range_start, range_end; 634 635 entry = e820_table->entries + idx; 636 range_start = entry->addr; 637 range_end = entry->addr + entry->size; 638 639 /* Process any gap before this entry: */ 640 if (range_start > range_end_prev) { 641 u64 gap_start = range_end_prev; 642 u64 gap_end = range_start; 643 u64 gap_size; 644 645 if (gap_start < MAX_GAP_END) { 646 /* Make sure the entirety of the gap is below MAX_GAP_END: */ 647 gap_end = min(gap_end, MAX_GAP_END); 648 gap_size = gap_end-gap_start; 649 650 if (gap_size >= *max_gap_size) { 651 *max_gap_start = gap_start; 652 *max_gap_size = gap_size; 653 found = 1; 654 } 655 } 656 } 657 658 range_end_prev = range_end; 659 } 660 661 /* Is there a usable gap beyond the last entry: */ 662 if (entry->addr + entry->size < MAX_GAP_END) { 663 u64 gap_start = entry->addr + entry->size; 664 u64 gap_size = MAX_GAP_END-gap_start; 665 666 if (gap_size >= *max_gap_size) { 667 *max_gap_start = gap_start; 668 *max_gap_size = gap_size; 669 found = 1; 670 } 671 } 672 673 return found; 674 } 675 676 /* 677 * Search for the biggest gap in the low 32 bits of the E820 678 * memory space. We pass this space to the PCI subsystem, so 679 * that it can assign MMIO resources for hotplug or 680 * unconfigured devices in. 681 * 682 * Hopefully the BIOS let enough space left. 683 */ 684 __init void e820__setup_pci_gap(void) 685 { 686 unsigned long max_gap_start, max_gap_size; 687 int found; 688 689 /* The minimum eligible gap size is 4MB: */ 690 max_gap_size = SZ_4M; 691 found = e820_search_gap(&max_gap_start, &max_gap_size); 692 693 if (!found) { 694 #ifdef CONFIG_X86_64 695 max_gap_start = (max_pfn << PAGE_SHIFT) + SZ_1M; 696 pr_err("Cannot find an available gap in the 32-bit address range\n"); 697 pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); 698 #else 699 max_gap_start = SZ_256M; 700 #endif 701 } 702 703 /* 704 * e820__reserve_resources_late() protects stolen RAM already: 705 */ 706 pci_mem_start = max_gap_start; 707 708 pr_info("[gap %#010lx-%#010lx] available for PCI devices\n", 709 max_gap_start, max_gap_start + max_gap_size-1); 710 } 711 712 /* 713 * Called late during init, in free_initmem(). 714 * 715 * Initial e820_table and e820_table_kexec are largish __initdata arrays. 716 * 717 * Copy them to a (usually much smaller) dynamically allocated area that is 718 * sized precisely after the number of e820 entries. 719 * 720 * This is done after we've performed all the fixes and tweaks to the tables. 721 * All functions which modify them are __init functions, which won't exist 722 * after free_initmem(). 723 */ 724 __init void e820__reallocate_tables(void) 725 { 726 struct e820_table *n; 727 int size; 728 729 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; 730 n = kmemdup(e820_table, size, GFP_KERNEL); 731 BUG_ON(!n); 732 e820_table = n; 733 734 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; 735 n = kmemdup(e820_table_kexec, size, GFP_KERNEL); 736 BUG_ON(!n); 737 e820_table_kexec = n; 738 739 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; 740 n = kmemdup(e820_table_firmware, size, GFP_KERNEL); 741 BUG_ON(!n); 742 e820_table_firmware = n; 743 } 744 745 /* 746 * Because of the small fixed size of struct boot_params, only the first 747 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, 748 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of 749 * struct setup_data, which is parsed here. 750 */ 751 __init void e820__memory_setup_extended(u64 phys_addr, u32 data_len) 752 { 753 int entries; 754 struct boot_e820_entry *extmap; 755 struct setup_data *sdata; 756 757 sdata = early_memremap(phys_addr, data_len); 758 entries = sdata->len / sizeof(*extmap); 759 extmap = (struct boot_e820_entry *)(sdata->data); 760 761 append_e820_table(extmap, entries); 762 e820__update_table(e820_table); 763 764 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 765 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 766 767 early_memunmap(sdata, data_len); 768 pr_info("extended physical RAM map:\n"); 769 e820__print_table("extended"); 770 } 771 772 /* 773 * Find the ranges of physical addresses that do not correspond to 774 * E820 RAM areas and register the corresponding pages as 'nosave' for 775 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). 776 * 777 * This function requires the E820 map to be sorted and without any 778 * overlapping entries. 779 */ 780 __init void e820__register_nosave_regions(unsigned long limit_pfn) 781 { 782 u32 idx; 783 u64 last_addr = 0; 784 785 for (idx = 0; idx < e820_table->nr_entries; idx++) { 786 struct e820_entry *entry = &e820_table->entries[idx]; 787 788 if (entry->type != E820_TYPE_RAM) 789 continue; 790 791 if (last_addr < entry->addr) 792 register_nosave_region(PFN_DOWN(last_addr), PFN_UP(entry->addr)); 793 794 last_addr = entry->addr + entry->size; 795 } 796 797 register_nosave_region(PFN_DOWN(last_addr), limit_pfn); 798 } 799 800 #ifdef CONFIG_ACPI 801 /* 802 * Register ACPI NVS memory regions, so that we can save/restore them during 803 * hibernation and the subsequent resume: 804 */ 805 __init static int e820__register_nvs_regions(void) 806 { 807 u32 idx; 808 809 for (idx = 0; idx < e820_table->nr_entries; idx++) { 810 struct e820_entry *entry = &e820_table->entries[idx]; 811 812 if (entry->type == E820_TYPE_NVS) 813 acpi_nvs_register(entry->addr, entry->size); 814 } 815 816 return 0; 817 } 818 core_initcall(e820__register_nvs_regions); 819 #endif 820 821 /* 822 * Allocate the requested number of bytes with the requested alignment 823 * and return (the physical address) to the caller. Also register this 824 * range in the 'kexec' E820 table as a reserved range. 825 * 826 * This allows kexec to fake a new mptable, as if it came from the real 827 * system. 828 */ 829 __init u64 e820__memblock_alloc_reserved(u64 size, u64 align) 830 { 831 u64 addr; 832 833 addr = memblock_phys_alloc(size, align); 834 if (addr) { 835 e820__range_update_table(e820_table_kexec, addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 836 pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); 837 e820__update_table_kexec(); 838 } 839 840 return addr; 841 } 842 843 #ifdef CONFIG_X86_32 844 # ifdef CONFIG_X86_PAE 845 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 846 # else 847 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 848 # endif 849 #else /* CONFIG_X86_32 */ 850 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 851 #endif 852 853 /* 854 * Find the highest page frame number we have available 855 */ 856 __init static unsigned long e820__end_ram_pfn(unsigned long limit_pfn) 857 { 858 u32 idx; 859 unsigned long last_pfn = 0; 860 unsigned long max_arch_pfn = MAX_ARCH_PFN; 861 862 for (idx = 0; idx < e820_table->nr_entries; idx++) { 863 struct e820_entry *entry = &e820_table->entries[idx]; 864 unsigned long start_pfn; 865 unsigned long end_pfn; 866 867 if (entry->type != E820_TYPE_RAM && 868 entry->type != E820_TYPE_ACPI) 869 continue; 870 871 start_pfn = entry->addr >> PAGE_SHIFT; 872 end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; 873 874 if (start_pfn >= limit_pfn) 875 continue; 876 if (end_pfn > limit_pfn) { 877 last_pfn = limit_pfn; 878 break; 879 } 880 if (end_pfn > last_pfn) 881 last_pfn = end_pfn; 882 } 883 884 if (last_pfn > max_arch_pfn) 885 last_pfn = max_arch_pfn; 886 887 pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", 888 last_pfn, max_arch_pfn); 889 return last_pfn; 890 } 891 892 __init unsigned long e820__end_of_ram_pfn(void) 893 { 894 return e820__end_ram_pfn(MAX_ARCH_PFN); 895 } 896 897 __init unsigned long e820__end_of_low_ram_pfn(void) 898 { 899 return e820__end_ram_pfn(1UL << (32 - PAGE_SHIFT)); 900 } 901 902 __initdata static int userdef; 903 904 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ 905 __init static int parse_memopt(char *p) 906 { 907 u64 mem_size; 908 909 if (!p) 910 return -EINVAL; 911 912 if (!strcmp(p, "nopentium")) { 913 #ifdef CONFIG_X86_32 914 setup_clear_cpu_cap(X86_FEATURE_PSE); 915 return 0; 916 #else 917 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); 918 return -EINVAL; 919 #endif 920 } 921 922 userdef = 1; 923 mem_size = memparse(p, &p); 924 925 /* Don't remove all memory when getting "mem={invalid}" parameter: */ 926 if (mem_size == 0) 927 return -EINVAL; 928 929 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM); 930 931 #ifdef CONFIG_MEMORY_HOTPLUG 932 max_mem_size = mem_size; 933 #endif 934 935 return 0; 936 } 937 early_param("mem", parse_memopt); 938 939 __init static int parse_memmap_one(char *p) 940 { 941 char *oldp; 942 u64 start_at, mem_size; 943 944 if (!p) 945 return -EINVAL; 946 947 if (!strncmp(p, "exactmap", 8)) { 948 e820_table->nr_entries = 0; 949 userdef = 1; 950 return 0; 951 } 952 953 oldp = p; 954 mem_size = memparse(p, &p); 955 if (p == oldp) 956 return -EINVAL; 957 958 userdef = 1; 959 if (*p == '@') { 960 start_at = memparse(p+1, &p); 961 e820__range_add(start_at, mem_size, E820_TYPE_RAM); 962 } else if (*p == '#') { 963 start_at = memparse(p+1, &p); 964 e820__range_add(start_at, mem_size, E820_TYPE_ACPI); 965 } else if (*p == '$') { 966 start_at = memparse(p+1, &p); 967 e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); 968 } else if (*p == '!') { 969 start_at = memparse(p+1, &p); 970 e820__range_add(start_at, mem_size, E820_TYPE_PRAM); 971 } else if (*p == '%') { 972 enum e820_type from = 0, to = 0; 973 974 start_at = memparse(p + 1, &p); 975 if (*p == '-') 976 from = simple_strtoull(p + 1, &p, 0); 977 if (*p == '+') 978 to = simple_strtoull(p + 1, &p, 0); 979 if (*p != '\0') 980 return -EINVAL; 981 if (from && to) 982 e820__range_update(start_at, mem_size, from, to); 983 else if (to) 984 e820__range_add(start_at, mem_size, to); 985 else 986 e820__range_remove(start_at, mem_size, from); 987 } else { 988 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM); 989 } 990 991 return *p == '\0' ? 0 : -EINVAL; 992 } 993 994 __init static int parse_memmap_opt(char *str) 995 { 996 while (str) { 997 char *k = strchr(str, ','); 998 999 if (k) 1000 *k++ = 0; 1001 1002 parse_memmap_one(str); 1003 str = k; 1004 } 1005 1006 return 0; 1007 } 1008 early_param("memmap", parse_memmap_opt); 1009 1010 /* 1011 * Called after parse_early_param(), after early parameters (such as mem=) 1012 * have been processed, in which case we already have an E820 table filled in 1013 * via the parameter callback function(s), but it's not sorted and printed yet: 1014 */ 1015 __init void e820__finish_early_params(void) 1016 { 1017 if (userdef) { 1018 if (e820__update_table(e820_table) < 0) 1019 panic("Invalid user supplied memory map"); 1020 1021 pr_info("user-defined physical RAM map:\n"); 1022 e820__print_table("user"); 1023 } 1024 } 1025 1026 __init static const char * e820_type_to_string(struct e820_entry *entry) 1027 { 1028 switch (entry->type) { 1029 case E820_TYPE_RAM: return "System RAM"; 1030 case E820_TYPE_ACPI: return "ACPI Tables"; 1031 case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; 1032 case E820_TYPE_UNUSABLE: return "Unusable memory"; 1033 case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; 1034 case E820_TYPE_PMEM: return "Persistent Memory"; 1035 case E820_TYPE_RESERVED: return "Reserved"; 1036 case E820_TYPE_SOFT_RESERVED: return "Soft Reserved"; 1037 default: return "Unknown E820 type"; 1038 } 1039 } 1040 1041 __init static unsigned long e820_type_to_iomem_type(struct e820_entry *entry) 1042 { 1043 switch (entry->type) { 1044 case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; 1045 case E820_TYPE_ACPI: /* Fall-through: */ 1046 case E820_TYPE_NVS: /* Fall-through: */ 1047 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1048 case E820_TYPE_PRAM: /* Fall-through: */ 1049 case E820_TYPE_PMEM: /* Fall-through: */ 1050 case E820_TYPE_RESERVED: /* Fall-through: */ 1051 case E820_TYPE_SOFT_RESERVED: /* Fall-through: */ 1052 default: return IORESOURCE_MEM; 1053 } 1054 } 1055 1056 __init static unsigned long e820_type_to_iores_desc(struct e820_entry *entry) 1057 { 1058 switch (entry->type) { 1059 case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; 1060 case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; 1061 case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; 1062 case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; 1063 case E820_TYPE_RESERVED: return IORES_DESC_RESERVED; 1064 case E820_TYPE_SOFT_RESERVED: return IORES_DESC_SOFT_RESERVED; 1065 case E820_TYPE_RAM: /* Fall-through: */ 1066 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1067 default: return IORES_DESC_NONE; 1068 } 1069 } 1070 1071 /* 1072 * We assign one resource entry for each E820 map entry: 1073 */ 1074 __initdata static struct resource *e820_res; 1075 1076 /* 1077 * Is this a device address region that should not be marked busy? 1078 * (Versus system address regions that we register & lock early.) 1079 */ 1080 __init static bool e820_device_region(enum e820_type type, struct resource *res) 1081 { 1082 /* This is the legacy BIOS/DOS ROM-shadow + MMIO region: */ 1083 if (res->start < SZ_1M) 1084 return false; 1085 1086 /* 1087 * Treat persistent memory and other special memory ranges like 1088 * device memory, i.e. keep it available for exclusive use of a 1089 * driver: 1090 */ 1091 switch (type) { 1092 case E820_TYPE_RESERVED: 1093 case E820_TYPE_SOFT_RESERVED: 1094 case E820_TYPE_PRAM: 1095 case E820_TYPE_PMEM: 1096 return true; 1097 case E820_TYPE_RAM: 1098 case E820_TYPE_ACPI: 1099 case E820_TYPE_NVS: 1100 case E820_TYPE_UNUSABLE: 1101 default: 1102 return false; 1103 } 1104 } 1105 1106 /* 1107 * Mark E820 system regions as busy for the resource manager: 1108 */ 1109 __init void e820__reserve_resources(void) 1110 { 1111 u32 idx; 1112 struct resource *res; 1113 u64 end; 1114 1115 res = memblock_alloc_or_panic(sizeof(*res) * e820_table->nr_entries, 1116 SMP_CACHE_BYTES); 1117 e820_res = res; 1118 1119 for (idx = 0; idx < e820_table->nr_entries; idx++) { 1120 struct e820_entry *entry = e820_table->entries + idx; 1121 1122 end = entry->addr + entry->size - 1; 1123 if (end != (resource_size_t)end) { 1124 res++; 1125 continue; 1126 } 1127 res->start = entry->addr; 1128 res->end = end; 1129 res->name = e820_type_to_string(entry); 1130 res->flags = e820_type_to_iomem_type(entry); 1131 res->desc = e820_type_to_iores_desc(entry); 1132 1133 /* 1134 * Skip and don't register device regions that could be conflicted 1135 * with PCI device BAR resources. They get inserted later in 1136 * pcibios_resource_survey() -> e820__reserve_resources_late(): 1137 */ 1138 if (!e820_device_region(entry->type, res)) { 1139 res->flags |= IORESOURCE_BUSY; 1140 insert_resource(&iomem_resource, res); 1141 } 1142 res++; 1143 } 1144 1145 /* Expose the kexec e820 table to sysfs: */ 1146 for (idx = 0; idx < e820_table_kexec->nr_entries; idx++) { 1147 struct e820_entry *entry = e820_table_kexec->entries + idx; 1148 1149 firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); 1150 } 1151 } 1152 1153 /* 1154 * How much should we pad the end of RAM, depending on where it is? 1155 */ 1156 __init static unsigned long ram_alignment(resource_size_t pos) 1157 { 1158 unsigned long mb = pos >> 20; 1159 1160 /* To 64kB in the first megabyte */ 1161 if (!mb) 1162 return 64*1024; 1163 1164 /* To 1MB in the first 16MB */ 1165 if (mb < 16) 1166 return 1024*1024; 1167 1168 /* To 64MB for anything above that */ 1169 return 64*1024*1024; 1170 } 1171 1172 #define MAX_RESOURCE_SIZE ((resource_size_t)-1) 1173 1174 __init void e820__reserve_resources_late(void) 1175 { 1176 /* 1177 * Register device address regions listed in the E820 map, 1178 * these can be claimed by device drivers later on: 1179 */ 1180 for (u32 idx = 0; idx < e820_table->nr_entries; idx++) { 1181 struct resource *res = e820_res + idx; 1182 1183 /* skip added or uninitialized resources */ 1184 if (res->parent || !res->end) 1185 continue; 1186 1187 /* set aside soft-reserved resources for driver consideration */ 1188 if (res->desc == IORES_DESC_SOFT_RESERVED) { 1189 insert_resource_expand_to_fit(&soft_reserve_resource, res); 1190 } else { 1191 /* publish the rest immediately */ 1192 insert_resource_expand_to_fit(&iomem_resource, res); 1193 } 1194 } 1195 1196 /* 1197 * Create additional 'gaps' at the end of RAM regions, 1198 * rounding them up to 64k/1MB/64MB boundaries, should 1199 * they be weirdly sized, and register extra, locked 1200 * resource regions for them, to make sure drivers 1201 * won't claim those addresses. 1202 * 1203 * These are basically blind guesses and heuristics to 1204 * avoid resource conflicts with broken firmware that 1205 * doesn't properly list 'stolen RAM' as a system region 1206 * in the E820 map. 1207 */ 1208 for (u32 idx = 0; idx < e820_table->nr_entries; idx++) { 1209 struct e820_entry *entry = &e820_table->entries[idx]; 1210 u64 start, end; 1211 1212 if (entry->type != E820_TYPE_RAM) 1213 continue; 1214 1215 start = entry->addr + entry->size; 1216 end = round_up(start, ram_alignment(start)) - 1; 1217 if (end > MAX_RESOURCE_SIZE) 1218 end = MAX_RESOURCE_SIZE; 1219 if (start >= end) 1220 continue; 1221 1222 pr_info("e820: register RAM buffer resource [mem %#010llx-%#010llx]\n", start, end); 1223 reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); 1224 } 1225 } 1226 1227 /* 1228 * Pass the firmware (bootloader) E820 map to the kernel and process it: 1229 */ 1230 __init char * e820__memory_setup_default(void) 1231 { 1232 char *who = "BIOS-e820"; 1233 1234 /* 1235 * Try to copy the BIOS-supplied E820-map. 1236 * 1237 * Otherwise fake a memory map; one section from 0k->640k, 1238 * the next section from 1mb->appropriate_mem_k 1239 */ 1240 if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { 1241 u64 mem_size; 1242 1243 /* Compare results from other methods and take the one that gives more RAM: */ 1244 if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { 1245 mem_size = boot_params.screen_info.ext_mem_k; 1246 who = "BIOS-88"; 1247 } else { 1248 mem_size = boot_params.alt_mem_k; 1249 who = "BIOS-e801"; 1250 } 1251 1252 e820_table->nr_entries = 0; 1253 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); 1254 e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); 1255 } 1256 1257 /* We just appended a lot of ranges, sanitize the table: */ 1258 e820__update_table(e820_table); 1259 1260 return who; 1261 } 1262 1263 /* 1264 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader 1265 * E820 map - with an optional platform quirk available for virtual platforms 1266 * to override this method of boot environment processing: 1267 */ 1268 __init void e820__memory_setup(void) 1269 { 1270 char *who; 1271 1272 /* This is a firmware interface ABI - make sure we don't break it: */ 1273 BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); 1274 1275 who = x86_init.resources.memory_setup(); 1276 1277 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 1278 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 1279 1280 pr_info("BIOS-provided physical RAM map:\n"); 1281 e820__print_table(who); 1282 } 1283 1284 __init void e820__memblock_setup(void) 1285 { 1286 u32 idx; 1287 u64 end; 1288 1289 #ifdef CONFIG_MEMORY_HOTPLUG 1290 /* 1291 * Memory used by the kernel cannot be hot-removed because Linux 1292 * cannot migrate the kernel pages. When memory hotplug is 1293 * enabled, we should prevent memblock from allocating memory 1294 * for the kernel. 1295 * 1296 * ACPI SRAT records all hotpluggable memory ranges. But before 1297 * SRAT is parsed, we don't know about it. 1298 * 1299 * The kernel image is loaded into memory at very early time. We 1300 * cannot prevent this anyway. So on NUMA system, we set any 1301 * node the kernel resides in as un-hotpluggable. 1302 * 1303 * Since on modern servers, one node could have double-digit 1304 * gigabytes memory, we can assume the memory around the kernel 1305 * image is also un-hotpluggable. So before SRAT is parsed, just 1306 * allocate memory near the kernel image to try the best to keep 1307 * the kernel away from hotpluggable memory. 1308 */ 1309 if (movable_node_is_enabled()) 1310 memblock_set_bottom_up(true); 1311 #endif 1312 1313 /* 1314 * At this point only the first megabyte is mapped for sure, the 1315 * rest of the memory cannot be used for memblock resizing 1316 */ 1317 memblock_set_current_limit(ISA_END_ADDRESS); 1318 1319 /* 1320 * The bootstrap memblock region count maximum is 128 entries 1321 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries 1322 * than that - so allow memblock resizing. 1323 * 1324 * This is safe, because this call happens pretty late during x86 setup, 1325 * so we know about reserved memory regions already. (This is important 1326 * so that memblock resizing does no stomp over reserved areas.) 1327 */ 1328 memblock_allow_resize(); 1329 1330 for (idx = 0; idx < e820_table->nr_entries; idx++) { 1331 struct e820_entry *entry = &e820_table->entries[idx]; 1332 1333 end = entry->addr + entry->size; 1334 if (end != (resource_size_t)end) 1335 continue; 1336 1337 if (entry->type == E820_TYPE_SOFT_RESERVED) 1338 memblock_reserve(entry->addr, entry->size); 1339 1340 if (entry->type != E820_TYPE_RAM) 1341 continue; 1342 1343 memblock_add(entry->addr, entry->size); 1344 } 1345 1346 /* 1347 * At this point memblock is only allowed to allocate from memory 1348 * below 1M (aka ISA_END_ADDRESS) up until direct map is completely set 1349 * up in init_mem_mapping(). 1350 * 1351 * KHO kernels are special and use only scratch memory for memblock 1352 * allocations, but memory below 1M is ignored by kernel after early 1353 * boot and cannot be naturally marked as scratch. 1354 * 1355 * To allow allocation of the real-mode trampoline and a few (if any) 1356 * other very early allocations from below 1M forcibly mark the memory 1357 * below 1M as scratch. 1358 * 1359 * After real mode trampoline is allocated, we clear that scratch 1360 * marking. 1361 */ 1362 memblock_mark_kho_scratch(0, SZ_1M); 1363 1364 /* 1365 * 32-bit systems are limited to 4BG of memory even with HIGHMEM and 1366 * to even less without it. 1367 * Discard memory after max_pfn - the actual limit detected at runtime. 1368 */ 1369 if (IS_ENABLED(CONFIG_X86_32)) 1370 memblock_remove(PFN_PHYS(max_pfn), -1); 1371 1372 /* Throw away partial pages: */ 1373 memblock_trim_memory(PAGE_SIZE); 1374 1375 memblock_dump_all(); 1376 } 1377