1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Low level x86 E820 memory map handling functions. 4 * 5 * The firmware and bootloader passes us the "E820 table", which is the primary 6 * physical memory layout description available about x86 systems. 7 * 8 * The kernel takes the E820 memory layout and optionally modifies it with 9 * quirks and other tweaks, and feeds that into the generic Linux memory 10 * allocation code routines via a platform independent interface (memblock, etc.). 11 */ 12 #include <linux/crash_dump.h> 13 #include <linux/memblock.h> 14 #include <linux/suspend.h> 15 #include <linux/acpi.h> 16 #include <linux/firmware-map.h> 17 #include <linux/sort.h> 18 #include <linux/memory_hotplug.h> 19 20 #include <asm/e820/api.h> 21 #include <asm/setup.h> 22 23 /* 24 * We organize the E820 table into three main data structures: 25 * 26 * - 'e820_table_firmware': the original firmware version passed to us by the 27 * bootloader - not modified by the kernel. It is composed of two parts: 28 * the first 128 E820 memory entries in boot_params.e820_table and the remaining 29 * (if any) entries of the SETUP_E820_EXT nodes. We use this to: 30 * 31 * - inform the user about the firmware's notion of memory layout 32 * via /sys/firmware/memmap 33 * 34 * - the hibernation code uses it to generate a kernel-independent MD5 35 * fingerprint of the physical memory layout of a system. 36 * 37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version 38 * passed to us by the bootloader - the major difference between 39 * e820_table_firmware[] and this one is that, the latter marks the setup_data 40 * list created by the EFI boot stub as reserved, so that kexec can reuse the 41 * setup_data information in the second kernel. Besides, e820_table_kexec[] 42 * might also be modified by the kexec itself to fake a mptable. 43 * We use this to: 44 * 45 * - kexec, which is a bootloader in disguise, uses the original E820 46 * layout to pass to the kexec-ed kernel. This way the original kernel 47 * can have a restricted E820 map while the kexec()-ed kexec-kernel 48 * can have access to full memory - etc. 49 * 50 * - 'e820_table': this is the main E820 table that is massaged by the 51 * low level x86 platform code, or modified by boot parameters, before 52 * passed on to higher level MM layers. 53 * 54 * Once the E820 map has been converted to the standard Linux memory layout 55 * information its role stops - modifying it has no effect and does not get 56 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware 57 * specific memory layout data during early bootup. 58 */ 59 static struct e820_table e820_table_init __initdata; 60 static struct e820_table e820_table_kexec_init __initdata; 61 static struct e820_table e820_table_firmware_init __initdata; 62 63 struct e820_table *e820_table __refdata = &e820_table_init; 64 struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; 65 struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; 66 67 /* For PCI or other memory-mapped resources */ 68 unsigned long pci_mem_start = 0xaeedbabe; 69 #ifdef CONFIG_PCI 70 EXPORT_SYMBOL(pci_mem_start); 71 #endif 72 73 /* 74 * This function checks if any part of the range <start,end> is mapped 75 * with type. 76 */ 77 static bool _e820__mapped_any(struct e820_table *table, 78 u64 start, u64 end, enum e820_type type) 79 { 80 int i; 81 82 for (i = 0; i < table->nr_entries; i++) { 83 struct e820_entry *entry = &table->entries[i]; 84 85 if (type && entry->type != type) 86 continue; 87 if (entry->addr >= end || entry->addr + entry->size <= start) 88 continue; 89 return true; 90 } 91 return false; 92 } 93 94 bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type) 95 { 96 return _e820__mapped_any(e820_table_firmware, start, end, type); 97 } 98 EXPORT_SYMBOL_GPL(e820__mapped_raw_any); 99 100 bool e820__mapped_any(u64 start, u64 end, enum e820_type type) 101 { 102 return _e820__mapped_any(e820_table, start, end, type); 103 } 104 EXPORT_SYMBOL_GPL(e820__mapped_any); 105 106 /* 107 * This function checks if the entire <start,end> range is mapped with 'type'. 108 * 109 * Note: this function only works correctly once the E820 table is sorted and 110 * not-overlapping (at least for the range specified), which is the case normally. 111 */ 112 static struct e820_entry *__e820__mapped_all(u64 start, u64 end, 113 enum e820_type type) 114 { 115 int i; 116 117 for (i = 0; i < e820_table->nr_entries; i++) { 118 struct e820_entry *entry = &e820_table->entries[i]; 119 120 if (type && entry->type != type) 121 continue; 122 123 /* Is the region (part) in overlap with the current region? */ 124 if (entry->addr >= end || entry->addr + entry->size <= start) 125 continue; 126 127 /* 128 * If the region is at the beginning of <start,end> we move 129 * 'start' to the end of the region since it's ok until there 130 */ 131 if (entry->addr <= start) 132 start = entry->addr + entry->size; 133 134 /* 135 * If 'start' is now at or beyond 'end', we're done, full 136 * coverage of the desired range exists: 137 */ 138 if (start >= end) 139 return entry; 140 } 141 142 return NULL; 143 } 144 145 /* 146 * This function checks if the entire range <start,end> is mapped with type. 147 */ 148 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) 149 { 150 return __e820__mapped_all(start, end, type); 151 } 152 153 /* 154 * This function returns the type associated with the range <start,end>. 155 */ 156 int e820__get_entry_type(u64 start, u64 end) 157 { 158 struct e820_entry *entry = __e820__mapped_all(start, end, 0); 159 160 return entry ? entry->type : -EINVAL; 161 } 162 163 /* 164 * Add a memory region to the kernel E820 map. 165 */ 166 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) 167 { 168 int x = table->nr_entries; 169 170 if (x >= ARRAY_SIZE(table->entries)) { 171 pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n", 172 start, start + size - 1); 173 return; 174 } 175 176 table->entries[x].addr = start; 177 table->entries[x].size = size; 178 table->entries[x].type = type; 179 table->nr_entries++; 180 } 181 182 void __init e820__range_add(u64 start, u64 size, enum e820_type type) 183 { 184 __e820__range_add(e820_table, start, size, type); 185 } 186 187 static void __init e820_print_type(enum e820_type type) 188 { 189 switch (type) { 190 case E820_TYPE_RAM: /* Fall through: */ 191 case E820_TYPE_RESERVED_KERN: pr_cont("usable"); break; 192 case E820_TYPE_RESERVED: pr_cont("reserved"); break; 193 case E820_TYPE_ACPI: pr_cont("ACPI data"); break; 194 case E820_TYPE_NVS: pr_cont("ACPI NVS"); break; 195 case E820_TYPE_UNUSABLE: pr_cont("unusable"); break; 196 case E820_TYPE_PMEM: /* Fall through: */ 197 case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break; 198 default: pr_cont("type %u", type); break; 199 } 200 } 201 202 void __init e820__print_table(char *who) 203 { 204 int i; 205 206 for (i = 0; i < e820_table->nr_entries; i++) { 207 pr_info("%s: [mem %#018Lx-%#018Lx] ", 208 who, 209 e820_table->entries[i].addr, 210 e820_table->entries[i].addr + e820_table->entries[i].size - 1); 211 212 e820_print_type(e820_table->entries[i].type); 213 pr_cont("\n"); 214 } 215 } 216 217 /* 218 * Sanitize an E820 map. 219 * 220 * Some E820 layouts include overlapping entries. The following 221 * replaces the original E820 map with a new one, removing overlaps, 222 * and resolving conflicting memory types in favor of highest 223 * numbered type. 224 * 225 * The input parameter 'entries' points to an array of 'struct 226 * e820_entry' which on entry has elements in the range [0, *nr_entries) 227 * valid, and which has space for up to max_nr_entries entries. 228 * On return, the resulting sanitized E820 map entries will be in 229 * overwritten in the same location, starting at 'entries'. 230 * 231 * The integer pointed to by nr_entries must be valid on entry (the 232 * current number of valid entries located at 'entries'). If the 233 * sanitizing succeeds the *nr_entries will be updated with the new 234 * number of valid entries (something no more than max_nr_entries). 235 * 236 * The return value from e820__update_table() is zero if it 237 * successfully 'sanitized' the map entries passed in, and is -1 238 * if it did nothing, which can happen if either of (1) it was 239 * only passed one map entry, or (2) any of the input map entries 240 * were invalid (start + size < start, meaning that the size was 241 * so big the described memory range wrapped around through zero.) 242 * 243 * Visually we're performing the following 244 * (1,2,3,4 = memory types)... 245 * 246 * Sample memory map (w/overlaps): 247 * ____22__________________ 248 * ______________________4_ 249 * ____1111________________ 250 * _44_____________________ 251 * 11111111________________ 252 * ____________________33__ 253 * ___________44___________ 254 * __________33333_________ 255 * ______________22________ 256 * ___________________2222_ 257 * _________111111111______ 258 * _____________________11_ 259 * _________________4______ 260 * 261 * Sanitized equivalent (no overlap): 262 * 1_______________________ 263 * _44_____________________ 264 * ___1____________________ 265 * ____22__________________ 266 * ______11________________ 267 * _________1______________ 268 * __________3_____________ 269 * ___________44___________ 270 * _____________33_________ 271 * _______________2________ 272 * ________________1_______ 273 * _________________4______ 274 * ___________________2____ 275 * ____________________33__ 276 * ______________________4_ 277 */ 278 struct change_member { 279 /* Pointer to the original entry: */ 280 struct e820_entry *entry; 281 /* Address for this change point: */ 282 unsigned long long addr; 283 }; 284 285 static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; 286 static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; 287 static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; 288 static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; 289 290 static int __init cpcompare(const void *a, const void *b) 291 { 292 struct change_member * const *app = a, * const *bpp = b; 293 const struct change_member *ap = *app, *bp = *bpp; 294 295 /* 296 * Inputs are pointers to two elements of change_point[]. If their 297 * addresses are not equal, their difference dominates. If the addresses 298 * are equal, then consider one that represents the end of its region 299 * to be greater than one that does not. 300 */ 301 if (ap->addr != bp->addr) 302 return ap->addr > bp->addr ? 1 : -1; 303 304 return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); 305 } 306 307 int __init e820__update_table(struct e820_table *table) 308 { 309 struct e820_entry *entries = table->entries; 310 u32 max_nr_entries = ARRAY_SIZE(table->entries); 311 enum e820_type current_type, last_type; 312 unsigned long long last_addr; 313 u32 new_nr_entries, overlap_entries; 314 u32 i, chg_idx, chg_nr; 315 316 /* If there's only one memory region, don't bother: */ 317 if (table->nr_entries < 2) 318 return -1; 319 320 BUG_ON(table->nr_entries > max_nr_entries); 321 322 /* Bail out if we find any unreasonable addresses in the map: */ 323 for (i = 0; i < table->nr_entries; i++) { 324 if (entries[i].addr + entries[i].size < entries[i].addr) 325 return -1; 326 } 327 328 /* Create pointers for initial change-point information (for sorting): */ 329 for (i = 0; i < 2 * table->nr_entries; i++) 330 change_point[i] = &change_point_list[i]; 331 332 /* 333 * Record all known change-points (starting and ending addresses), 334 * omitting empty memory regions: 335 */ 336 chg_idx = 0; 337 for (i = 0; i < table->nr_entries; i++) { 338 if (entries[i].size != 0) { 339 change_point[chg_idx]->addr = entries[i].addr; 340 change_point[chg_idx++]->entry = &entries[i]; 341 change_point[chg_idx]->addr = entries[i].addr + entries[i].size; 342 change_point[chg_idx++]->entry = &entries[i]; 343 } 344 } 345 chg_nr = chg_idx; 346 347 /* Sort change-point list by memory addresses (low -> high): */ 348 sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); 349 350 /* Create a new memory map, removing overlaps: */ 351 overlap_entries = 0; /* Number of entries in the overlap table */ 352 new_nr_entries = 0; /* Index for creating new map entries */ 353 last_type = 0; /* Start with undefined memory type */ 354 last_addr = 0; /* Start with 0 as last starting address */ 355 356 /* Loop through change-points, determining effect on the new map: */ 357 for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { 358 /* Keep track of all overlapping entries */ 359 if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { 360 /* Add map entry to overlap list (> 1 entry implies an overlap) */ 361 overlap_list[overlap_entries++] = change_point[chg_idx]->entry; 362 } else { 363 /* Remove entry from list (order independent, so swap with last): */ 364 for (i = 0; i < overlap_entries; i++) { 365 if (overlap_list[i] == change_point[chg_idx]->entry) 366 overlap_list[i] = overlap_list[overlap_entries-1]; 367 } 368 overlap_entries--; 369 } 370 /* 371 * If there are overlapping entries, decide which 372 * "type" to use (larger value takes precedence -- 373 * 1=usable, 2,3,4,4+=unusable) 374 */ 375 current_type = 0; 376 for (i = 0; i < overlap_entries; i++) { 377 if (overlap_list[i]->type > current_type) 378 current_type = overlap_list[i]->type; 379 } 380 381 /* Continue building up new map based on this information: */ 382 if (current_type != last_type || current_type == E820_TYPE_PRAM) { 383 if (last_type != 0) { 384 new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; 385 /* Move forward only if the new size was non-zero: */ 386 if (new_entries[new_nr_entries].size != 0) 387 /* No more space left for new entries? */ 388 if (++new_nr_entries >= max_nr_entries) 389 break; 390 } 391 if (current_type != 0) { 392 new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; 393 new_entries[new_nr_entries].type = current_type; 394 last_addr = change_point[chg_idx]->addr; 395 } 396 last_type = current_type; 397 } 398 } 399 400 /* Copy the new entries into the original location: */ 401 memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); 402 table->nr_entries = new_nr_entries; 403 404 return 0; 405 } 406 407 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 408 { 409 struct boot_e820_entry *entry = entries; 410 411 while (nr_entries) { 412 u64 start = entry->addr; 413 u64 size = entry->size; 414 u64 end = start + size - 1; 415 u32 type = entry->type; 416 417 /* Ignore the entry on 64-bit overflow: */ 418 if (start > end && likely(size)) 419 return -1; 420 421 e820__range_add(start, size, type); 422 423 entry++; 424 nr_entries--; 425 } 426 return 0; 427 } 428 429 /* 430 * Copy the BIOS E820 map into a safe place. 431 * 432 * Sanity-check it while we're at it.. 433 * 434 * If we're lucky and live on a modern system, the setup code 435 * will have given us a memory map that we can use to properly 436 * set up memory. If we aren't, we'll fake a memory map. 437 */ 438 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 439 { 440 /* Only one memory region (or negative)? Ignore it */ 441 if (nr_entries < 2) 442 return -1; 443 444 return __append_e820_table(entries, nr_entries); 445 } 446 447 static u64 __init 448 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 449 { 450 u64 end; 451 unsigned int i; 452 u64 real_updated_size = 0; 453 454 BUG_ON(old_type == new_type); 455 456 if (size > (ULLONG_MAX - start)) 457 size = ULLONG_MAX - start; 458 459 end = start + size; 460 printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); 461 e820_print_type(old_type); 462 pr_cont(" ==> "); 463 e820_print_type(new_type); 464 pr_cont("\n"); 465 466 for (i = 0; i < table->nr_entries; i++) { 467 struct e820_entry *entry = &table->entries[i]; 468 u64 final_start, final_end; 469 u64 entry_end; 470 471 if (entry->type != old_type) 472 continue; 473 474 entry_end = entry->addr + entry->size; 475 476 /* Completely covered by new range? */ 477 if (entry->addr >= start && entry_end <= end) { 478 entry->type = new_type; 479 real_updated_size += entry->size; 480 continue; 481 } 482 483 /* New range is completely covered? */ 484 if (entry->addr < start && entry_end > end) { 485 __e820__range_add(table, start, size, new_type); 486 __e820__range_add(table, end, entry_end - end, entry->type); 487 entry->size = start - entry->addr; 488 real_updated_size += size; 489 continue; 490 } 491 492 /* Partially covered: */ 493 final_start = max(start, entry->addr); 494 final_end = min(end, entry_end); 495 if (final_start >= final_end) 496 continue; 497 498 __e820__range_add(table, final_start, final_end - final_start, new_type); 499 500 real_updated_size += final_end - final_start; 501 502 /* 503 * Left range could be head or tail, so need to update 504 * its size first: 505 */ 506 entry->size -= final_end - final_start; 507 if (entry->addr < final_start) 508 continue; 509 510 entry->addr = final_end; 511 } 512 return real_updated_size; 513 } 514 515 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 516 { 517 return __e820__range_update(e820_table, start, size, old_type, new_type); 518 } 519 520 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 521 { 522 return __e820__range_update(e820_table_kexec, start, size, old_type, new_type); 523 } 524 525 /* Remove a range of memory from the E820 table: */ 526 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) 527 { 528 int i; 529 u64 end; 530 u64 real_removed_size = 0; 531 532 if (size > (ULLONG_MAX - start)) 533 size = ULLONG_MAX - start; 534 535 end = start + size; 536 printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); 537 if (check_type) 538 e820_print_type(old_type); 539 pr_cont("\n"); 540 541 for (i = 0; i < e820_table->nr_entries; i++) { 542 struct e820_entry *entry = &e820_table->entries[i]; 543 u64 final_start, final_end; 544 u64 entry_end; 545 546 if (check_type && entry->type != old_type) 547 continue; 548 549 entry_end = entry->addr + entry->size; 550 551 /* Completely covered? */ 552 if (entry->addr >= start && entry_end <= end) { 553 real_removed_size += entry->size; 554 memset(entry, 0, sizeof(*entry)); 555 continue; 556 } 557 558 /* Is the new range completely covered? */ 559 if (entry->addr < start && entry_end > end) { 560 e820__range_add(end, entry_end - end, entry->type); 561 entry->size = start - entry->addr; 562 real_removed_size += size; 563 continue; 564 } 565 566 /* Partially covered: */ 567 final_start = max(start, entry->addr); 568 final_end = min(end, entry_end); 569 if (final_start >= final_end) 570 continue; 571 572 real_removed_size += final_end - final_start; 573 574 /* 575 * Left range could be head or tail, so need to update 576 * the size first: 577 */ 578 entry->size -= final_end - final_start; 579 if (entry->addr < final_start) 580 continue; 581 582 entry->addr = final_end; 583 } 584 return real_removed_size; 585 } 586 587 void __init e820__update_table_print(void) 588 { 589 if (e820__update_table(e820_table)) 590 return; 591 592 pr_info("modified physical RAM map:\n"); 593 e820__print_table("modified"); 594 } 595 596 static void __init e820__update_table_kexec(void) 597 { 598 e820__update_table(e820_table_kexec); 599 } 600 601 #define MAX_GAP_END 0x100000000ull 602 603 /* 604 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). 605 */ 606 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) 607 { 608 unsigned long long last = MAX_GAP_END; 609 int i = e820_table->nr_entries; 610 int found = 0; 611 612 while (--i >= 0) { 613 unsigned long long start = e820_table->entries[i].addr; 614 unsigned long long end = start + e820_table->entries[i].size; 615 616 /* 617 * Since "last" is at most 4GB, we know we'll 618 * fit in 32 bits if this condition is true: 619 */ 620 if (last > end) { 621 unsigned long gap = last - end; 622 623 if (gap >= *gapsize) { 624 *gapsize = gap; 625 *gapstart = end; 626 found = 1; 627 } 628 } 629 if (start < last) 630 last = start; 631 } 632 return found; 633 } 634 635 /* 636 * Search for the biggest gap in the low 32 bits of the E820 637 * memory space. We pass this space to the PCI subsystem, so 638 * that it can assign MMIO resources for hotplug or 639 * unconfigured devices in. 640 * 641 * Hopefully the BIOS let enough space left. 642 */ 643 __init void e820__setup_pci_gap(void) 644 { 645 unsigned long gapstart, gapsize; 646 int found; 647 648 gapsize = 0x400000; 649 found = e820_search_gap(&gapstart, &gapsize); 650 651 if (!found) { 652 #ifdef CONFIG_X86_64 653 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 654 pr_err("Cannot find an available gap in the 32-bit address range\n"); 655 pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); 656 #else 657 gapstart = 0x10000000; 658 #endif 659 } 660 661 /* 662 * e820__reserve_resources_late() protects stolen RAM already: 663 */ 664 pci_mem_start = gapstart; 665 666 pr_info("[mem %#010lx-%#010lx] available for PCI devices\n", 667 gapstart, gapstart + gapsize - 1); 668 } 669 670 /* 671 * Called late during init, in free_initmem(). 672 * 673 * Initial e820_table and e820_table_kexec are largish __initdata arrays. 674 * 675 * Copy them to a (usually much smaller) dynamically allocated area that is 676 * sized precisely after the number of e820 entries. 677 * 678 * This is done after we've performed all the fixes and tweaks to the tables. 679 * All functions which modify them are __init functions, which won't exist 680 * after free_initmem(). 681 */ 682 __init void e820__reallocate_tables(void) 683 { 684 struct e820_table *n; 685 int size; 686 687 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; 688 n = kmemdup(e820_table, size, GFP_KERNEL); 689 BUG_ON(!n); 690 e820_table = n; 691 692 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; 693 n = kmemdup(e820_table_kexec, size, GFP_KERNEL); 694 BUG_ON(!n); 695 e820_table_kexec = n; 696 697 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; 698 n = kmemdup(e820_table_firmware, size, GFP_KERNEL); 699 BUG_ON(!n); 700 e820_table_firmware = n; 701 } 702 703 /* 704 * Because of the small fixed size of struct boot_params, only the first 705 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, 706 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of 707 * struct setup_data, which is parsed here. 708 */ 709 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) 710 { 711 int entries; 712 struct boot_e820_entry *extmap; 713 struct setup_data *sdata; 714 715 sdata = early_memremap(phys_addr, data_len); 716 entries = sdata->len / sizeof(*extmap); 717 extmap = (struct boot_e820_entry *)(sdata->data); 718 719 __append_e820_table(extmap, entries); 720 e820__update_table(e820_table); 721 722 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 723 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 724 725 early_memunmap(sdata, data_len); 726 pr_info("extended physical RAM map:\n"); 727 e820__print_table("extended"); 728 } 729 730 /* 731 * Find the ranges of physical addresses that do not correspond to 732 * E820 RAM areas and register the corresponding pages as 'nosave' for 733 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). 734 * 735 * This function requires the E820 map to be sorted and without any 736 * overlapping entries. 737 */ 738 void __init e820__register_nosave_regions(unsigned long limit_pfn) 739 { 740 int i; 741 unsigned long pfn = 0; 742 743 for (i = 0; i < e820_table->nr_entries; i++) { 744 struct e820_entry *entry = &e820_table->entries[i]; 745 746 if (pfn < PFN_UP(entry->addr)) 747 register_nosave_region(pfn, PFN_UP(entry->addr)); 748 749 pfn = PFN_DOWN(entry->addr + entry->size); 750 751 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 752 register_nosave_region(PFN_UP(entry->addr), pfn); 753 754 if (pfn >= limit_pfn) 755 break; 756 } 757 } 758 759 #ifdef CONFIG_ACPI 760 /* 761 * Register ACPI NVS memory regions, so that we can save/restore them during 762 * hibernation and the subsequent resume: 763 */ 764 static int __init e820__register_nvs_regions(void) 765 { 766 int i; 767 768 for (i = 0; i < e820_table->nr_entries; i++) { 769 struct e820_entry *entry = &e820_table->entries[i]; 770 771 if (entry->type == E820_TYPE_NVS) 772 acpi_nvs_register(entry->addr, entry->size); 773 } 774 775 return 0; 776 } 777 core_initcall(e820__register_nvs_regions); 778 #endif 779 780 /* 781 * Allocate the requested number of bytes with the requsted alignment 782 * and return (the physical address) to the caller. Also register this 783 * range in the 'kexec' E820 table as a reserved range. 784 * 785 * This allows kexec to fake a new mptable, as if it came from the real 786 * system. 787 */ 788 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) 789 { 790 u64 addr; 791 792 addr = memblock_phys_alloc(size, align); 793 if (addr) { 794 e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 795 pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); 796 e820__update_table_kexec(); 797 } 798 799 return addr; 800 } 801 802 #ifdef CONFIG_X86_32 803 # ifdef CONFIG_X86_PAE 804 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 805 # else 806 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 807 # endif 808 #else /* CONFIG_X86_32 */ 809 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 810 #endif 811 812 /* 813 * Find the highest page frame number we have available 814 */ 815 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type) 816 { 817 int i; 818 unsigned long last_pfn = 0; 819 unsigned long max_arch_pfn = MAX_ARCH_PFN; 820 821 for (i = 0; i < e820_table->nr_entries; i++) { 822 struct e820_entry *entry = &e820_table->entries[i]; 823 unsigned long start_pfn; 824 unsigned long end_pfn; 825 826 if (entry->type != type) 827 continue; 828 829 start_pfn = entry->addr >> PAGE_SHIFT; 830 end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; 831 832 if (start_pfn >= limit_pfn) 833 continue; 834 if (end_pfn > limit_pfn) { 835 last_pfn = limit_pfn; 836 break; 837 } 838 if (end_pfn > last_pfn) 839 last_pfn = end_pfn; 840 } 841 842 if (last_pfn > max_arch_pfn) 843 last_pfn = max_arch_pfn; 844 845 pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", 846 last_pfn, max_arch_pfn); 847 return last_pfn; 848 } 849 850 unsigned long __init e820__end_of_ram_pfn(void) 851 { 852 return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM); 853 } 854 855 unsigned long __init e820__end_of_low_ram_pfn(void) 856 { 857 return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM); 858 } 859 860 static void __init early_panic(char *msg) 861 { 862 early_printk(msg); 863 panic(msg); 864 } 865 866 static int userdef __initdata; 867 868 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ 869 static int __init parse_memopt(char *p) 870 { 871 u64 mem_size; 872 873 if (!p) 874 return -EINVAL; 875 876 if (!strcmp(p, "nopentium")) { 877 #ifdef CONFIG_X86_32 878 setup_clear_cpu_cap(X86_FEATURE_PSE); 879 return 0; 880 #else 881 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); 882 return -EINVAL; 883 #endif 884 } 885 886 userdef = 1; 887 mem_size = memparse(p, &p); 888 889 /* Don't remove all memory when getting "mem={invalid}" parameter: */ 890 if (mem_size == 0) 891 return -EINVAL; 892 893 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 894 895 #ifdef CONFIG_MEMORY_HOTPLUG 896 max_mem_size = mem_size; 897 #endif 898 899 return 0; 900 } 901 early_param("mem", parse_memopt); 902 903 static int __init parse_memmap_one(char *p) 904 { 905 char *oldp; 906 u64 start_at, mem_size; 907 908 if (!p) 909 return -EINVAL; 910 911 if (!strncmp(p, "exactmap", 8)) { 912 #ifdef CONFIG_CRASH_DUMP 913 /* 914 * If we are doing a crash dump, we still need to know 915 * the real memory size before the original memory map is 916 * reset. 917 */ 918 saved_max_pfn = e820__end_of_ram_pfn(); 919 #endif 920 e820_table->nr_entries = 0; 921 userdef = 1; 922 return 0; 923 } 924 925 oldp = p; 926 mem_size = memparse(p, &p); 927 if (p == oldp) 928 return -EINVAL; 929 930 userdef = 1; 931 if (*p == '@') { 932 start_at = memparse(p+1, &p); 933 e820__range_add(start_at, mem_size, E820_TYPE_RAM); 934 } else if (*p == '#') { 935 start_at = memparse(p+1, &p); 936 e820__range_add(start_at, mem_size, E820_TYPE_ACPI); 937 } else if (*p == '$') { 938 start_at = memparse(p+1, &p); 939 e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); 940 } else if (*p == '!') { 941 start_at = memparse(p+1, &p); 942 e820__range_add(start_at, mem_size, E820_TYPE_PRAM); 943 } else if (*p == '%') { 944 enum e820_type from = 0, to = 0; 945 946 start_at = memparse(p + 1, &p); 947 if (*p == '-') 948 from = simple_strtoull(p + 1, &p, 0); 949 if (*p == '+') 950 to = simple_strtoull(p + 1, &p, 0); 951 if (*p != '\0') 952 return -EINVAL; 953 if (from && to) 954 e820__range_update(start_at, mem_size, from, to); 955 else if (to) 956 e820__range_add(start_at, mem_size, to); 957 else if (from) 958 e820__range_remove(start_at, mem_size, from, 1); 959 else 960 e820__range_remove(start_at, mem_size, 0, 0); 961 } else { 962 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 963 } 964 965 return *p == '\0' ? 0 : -EINVAL; 966 } 967 968 static int __init parse_memmap_opt(char *str) 969 { 970 while (str) { 971 char *k = strchr(str, ','); 972 973 if (k) 974 *k++ = 0; 975 976 parse_memmap_one(str); 977 str = k; 978 } 979 980 return 0; 981 } 982 early_param("memmap", parse_memmap_opt); 983 984 /* 985 * Reserve all entries from the bootloader's extensible data nodes list, 986 * because if present we are going to use it later on to fetch e820 987 * entries from it: 988 */ 989 void __init e820__reserve_setup_data(void) 990 { 991 struct setup_data *data; 992 u64 pa_data; 993 994 pa_data = boot_params.hdr.setup_data; 995 if (!pa_data) 996 return; 997 998 while (pa_data) { 999 data = early_memremap(pa_data, sizeof(*data)); 1000 e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1001 e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1002 pa_data = data->next; 1003 early_memunmap(data, sizeof(*data)); 1004 } 1005 1006 e820__update_table(e820_table); 1007 e820__update_table(e820_table_kexec); 1008 1009 pr_info("extended physical RAM map:\n"); 1010 e820__print_table("reserve setup_data"); 1011 } 1012 1013 /* 1014 * Called after parse_early_param(), after early parameters (such as mem=) 1015 * have been processed, in which case we already have an E820 table filled in 1016 * via the parameter callback function(s), but it's not sorted and printed yet: 1017 */ 1018 void __init e820__finish_early_params(void) 1019 { 1020 if (userdef) { 1021 if (e820__update_table(e820_table) < 0) 1022 early_panic("Invalid user supplied memory map"); 1023 1024 pr_info("user-defined physical RAM map:\n"); 1025 e820__print_table("user"); 1026 } 1027 } 1028 1029 static const char *__init e820_type_to_string(struct e820_entry *entry) 1030 { 1031 switch (entry->type) { 1032 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1033 case E820_TYPE_RAM: return "System RAM"; 1034 case E820_TYPE_ACPI: return "ACPI Tables"; 1035 case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; 1036 case E820_TYPE_UNUSABLE: return "Unusable memory"; 1037 case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; 1038 case E820_TYPE_PMEM: return "Persistent Memory"; 1039 case E820_TYPE_RESERVED: return "Reserved"; 1040 default: return "Unknown E820 type"; 1041 } 1042 } 1043 1044 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) 1045 { 1046 switch (entry->type) { 1047 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1048 case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; 1049 case E820_TYPE_ACPI: /* Fall-through: */ 1050 case E820_TYPE_NVS: /* Fall-through: */ 1051 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1052 case E820_TYPE_PRAM: /* Fall-through: */ 1053 case E820_TYPE_PMEM: /* Fall-through: */ 1054 case E820_TYPE_RESERVED: /* Fall-through: */ 1055 default: return IORESOURCE_MEM; 1056 } 1057 } 1058 1059 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) 1060 { 1061 switch (entry->type) { 1062 case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; 1063 case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; 1064 case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; 1065 case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; 1066 case E820_TYPE_RESERVED: return IORES_DESC_RESERVED; 1067 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1068 case E820_TYPE_RAM: /* Fall-through: */ 1069 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1070 default: return IORES_DESC_NONE; 1071 } 1072 } 1073 1074 static bool __init do_mark_busy(enum e820_type type, struct resource *res) 1075 { 1076 /* this is the legacy bios/dos rom-shadow + mmio region */ 1077 if (res->start < (1ULL<<20)) 1078 return true; 1079 1080 /* 1081 * Treat persistent memory like device memory, i.e. reserve it 1082 * for exclusive use of a driver 1083 */ 1084 switch (type) { 1085 case E820_TYPE_RESERVED: 1086 case E820_TYPE_PRAM: 1087 case E820_TYPE_PMEM: 1088 return false; 1089 case E820_TYPE_RESERVED_KERN: 1090 case E820_TYPE_RAM: 1091 case E820_TYPE_ACPI: 1092 case E820_TYPE_NVS: 1093 case E820_TYPE_UNUSABLE: 1094 default: 1095 return true; 1096 } 1097 } 1098 1099 /* 1100 * Mark E820 reserved areas as busy for the resource manager: 1101 */ 1102 1103 static struct resource __initdata *e820_res; 1104 1105 void __init e820__reserve_resources(void) 1106 { 1107 int i; 1108 struct resource *res; 1109 u64 end; 1110 1111 res = memblock_alloc(sizeof(*res) * e820_table->nr_entries, 1112 SMP_CACHE_BYTES); 1113 if (!res) 1114 panic("%s: Failed to allocate %zu bytes\n", __func__, 1115 sizeof(*res) * e820_table->nr_entries); 1116 e820_res = res; 1117 1118 for (i = 0; i < e820_table->nr_entries; i++) { 1119 struct e820_entry *entry = e820_table->entries + i; 1120 1121 end = entry->addr + entry->size - 1; 1122 if (end != (resource_size_t)end) { 1123 res++; 1124 continue; 1125 } 1126 res->start = entry->addr; 1127 res->end = end; 1128 res->name = e820_type_to_string(entry); 1129 res->flags = e820_type_to_iomem_type(entry); 1130 res->desc = e820_type_to_iores_desc(entry); 1131 1132 /* 1133 * Don't register the region that could be conflicted with 1134 * PCI device BAR resources and insert them later in 1135 * pcibios_resource_survey(): 1136 */ 1137 if (do_mark_busy(entry->type, res)) { 1138 res->flags |= IORESOURCE_BUSY; 1139 insert_resource(&iomem_resource, res); 1140 } 1141 res++; 1142 } 1143 1144 /* Expose the bootloader-provided memory layout to the sysfs. */ 1145 for (i = 0; i < e820_table_firmware->nr_entries; i++) { 1146 struct e820_entry *entry = e820_table_firmware->entries + i; 1147 1148 firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); 1149 } 1150 } 1151 1152 /* 1153 * How much should we pad the end of RAM, depending on where it is? 1154 */ 1155 static unsigned long __init ram_alignment(resource_size_t pos) 1156 { 1157 unsigned long mb = pos >> 20; 1158 1159 /* To 64kB in the first megabyte */ 1160 if (!mb) 1161 return 64*1024; 1162 1163 /* To 1MB in the first 16MB */ 1164 if (mb < 16) 1165 return 1024*1024; 1166 1167 /* To 64MB for anything above that */ 1168 return 64*1024*1024; 1169 } 1170 1171 #define MAX_RESOURCE_SIZE ((resource_size_t)-1) 1172 1173 void __init e820__reserve_resources_late(void) 1174 { 1175 int i; 1176 struct resource *res; 1177 1178 res = e820_res; 1179 for (i = 0; i < e820_table->nr_entries; i++) { 1180 if (!res->parent && res->end) 1181 insert_resource_expand_to_fit(&iomem_resource, res); 1182 res++; 1183 } 1184 1185 /* 1186 * Try to bump up RAM regions to reasonable boundaries, to 1187 * avoid stolen RAM: 1188 */ 1189 for (i = 0; i < e820_table->nr_entries; i++) { 1190 struct e820_entry *entry = &e820_table->entries[i]; 1191 u64 start, end; 1192 1193 if (entry->type != E820_TYPE_RAM) 1194 continue; 1195 1196 start = entry->addr + entry->size; 1197 end = round_up(start, ram_alignment(start)) - 1; 1198 if (end > MAX_RESOURCE_SIZE) 1199 end = MAX_RESOURCE_SIZE; 1200 if (start >= end) 1201 continue; 1202 1203 printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); 1204 reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); 1205 } 1206 } 1207 1208 /* 1209 * Pass the firmware (bootloader) E820 map to the kernel and process it: 1210 */ 1211 char *__init e820__memory_setup_default(void) 1212 { 1213 char *who = "BIOS-e820"; 1214 1215 /* 1216 * Try to copy the BIOS-supplied E820-map. 1217 * 1218 * Otherwise fake a memory map; one section from 0k->640k, 1219 * the next section from 1mb->appropriate_mem_k 1220 */ 1221 if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { 1222 u64 mem_size; 1223 1224 /* Compare results from other methods and take the one that gives more RAM: */ 1225 if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { 1226 mem_size = boot_params.screen_info.ext_mem_k; 1227 who = "BIOS-88"; 1228 } else { 1229 mem_size = boot_params.alt_mem_k; 1230 who = "BIOS-e801"; 1231 } 1232 1233 e820_table->nr_entries = 0; 1234 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); 1235 e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); 1236 } 1237 1238 /* We just appended a lot of ranges, sanitize the table: */ 1239 e820__update_table(e820_table); 1240 1241 return who; 1242 } 1243 1244 /* 1245 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader 1246 * E820 map - with an optional platform quirk available for virtual platforms 1247 * to override this method of boot environment processing: 1248 */ 1249 void __init e820__memory_setup(void) 1250 { 1251 char *who; 1252 1253 /* This is a firmware interface ABI - make sure we don't break it: */ 1254 BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); 1255 1256 who = x86_init.resources.memory_setup(); 1257 1258 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 1259 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 1260 1261 pr_info("BIOS-provided physical RAM map:\n"); 1262 e820__print_table(who); 1263 } 1264 1265 void __init e820__memblock_setup(void) 1266 { 1267 int i; 1268 u64 end; 1269 1270 /* 1271 * The bootstrap memblock region count maximum is 128 entries 1272 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries 1273 * than that - so allow memblock resizing. 1274 * 1275 * This is safe, because this call happens pretty late during x86 setup, 1276 * so we know about reserved memory regions already. (This is important 1277 * so that memblock resizing does no stomp over reserved areas.) 1278 */ 1279 memblock_allow_resize(); 1280 1281 for (i = 0; i < e820_table->nr_entries; i++) { 1282 struct e820_entry *entry = &e820_table->entries[i]; 1283 1284 end = entry->addr + entry->size; 1285 if (end != (resource_size_t)end) 1286 continue; 1287 1288 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 1289 continue; 1290 1291 memblock_add(entry->addr, entry->size); 1292 } 1293 1294 /* Throw away partial pages: */ 1295 memblock_trim_memory(PAGE_SIZE); 1296 1297 memblock_dump_all(); 1298 } 1299