xref: /linux/arch/x86/kernel/e820.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  * Handle the memory map.
3  * The functions here do the job until bootmem takes over.
4  *
5  *  Getting sanitize_e820_map() in sync with i386 version by applying change:
6  *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
7  *     Alex Achenbach <xela@slit.de>, December 2002.
8  *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  *
10  */
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/ioport.h>
16 #include <linux/string.h>
17 #include <linux/kexec.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/pfn.h>
21 #include <linux/suspend.h>
22 #include <linux/firmware-map.h>
23 
24 #include <asm/pgtable.h>
25 #include <asm/page.h>
26 #include <asm/e820.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/trampoline.h>
30 
31 /*
32  * The e820 map is the map that gets modified e.g. with command line parameters
33  * and that is also registered with modifications in the kernel resource tree
34  * with the iomem_resource as parent.
35  *
36  * The e820_saved is directly saved after the BIOS-provided memory map is
37  * copied. It doesn't get modified afterwards. It's registered for the
38  * /sys/firmware/memmap interface.
39  *
40  * That memory map is not modified and is used as base for kexec. The kexec'd
41  * kernel should get the same memory map as the firmware provides. Then the
42  * user can e.g. boot the original kernel with mem=1G while still booting the
43  * next kernel with full memory.
44  */
45 struct e820map e820;
46 struct e820map e820_saved;
47 
48 /* For PCI or other memory-mapped resources */
49 unsigned long pci_mem_start = 0xaeedbabe;
50 #ifdef CONFIG_PCI
51 EXPORT_SYMBOL(pci_mem_start);
52 #endif
53 
54 /*
55  * This function checks if any part of the range <start,end> is mapped
56  * with type.
57  */
58 int
59 e820_any_mapped(u64 start, u64 end, unsigned type)
60 {
61 	int i;
62 
63 	for (i = 0; i < e820.nr_map; i++) {
64 		struct e820entry *ei = &e820.map[i];
65 
66 		if (type && ei->type != type)
67 			continue;
68 		if (ei->addr >= end || ei->addr + ei->size <= start)
69 			continue;
70 		return 1;
71 	}
72 	return 0;
73 }
74 EXPORT_SYMBOL_GPL(e820_any_mapped);
75 
76 /*
77  * This function checks if the entire range <start,end> is mapped with type.
78  *
79  * Note: this function only works correct if the e820 table is sorted and
80  * not-overlapping, which is the case
81  */
82 int __init e820_all_mapped(u64 start, u64 end, unsigned type)
83 {
84 	int i;
85 
86 	for (i = 0; i < e820.nr_map; i++) {
87 		struct e820entry *ei = &e820.map[i];
88 
89 		if (type && ei->type != type)
90 			continue;
91 		/* is the region (part) in overlap with the current region ?*/
92 		if (ei->addr >= end || ei->addr + ei->size <= start)
93 			continue;
94 
95 		/* if the region is at the beginning of <start,end> we move
96 		 * start to the end of the region since it's ok until there
97 		 */
98 		if (ei->addr <= start)
99 			start = ei->addr + ei->size;
100 		/*
101 		 * if start is now at or beyond end, we're done, full
102 		 * coverage
103 		 */
104 		if (start >= end)
105 			return 1;
106 	}
107 	return 0;
108 }
109 
110 /*
111  * Add a memory region to the kernel e820 map.
112  */
113 static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
114 					 int type)
115 {
116 	int x = e820x->nr_map;
117 
118 	if (x >= ARRAY_SIZE(e820x->map)) {
119 		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
120 		return;
121 	}
122 
123 	e820x->map[x].addr = start;
124 	e820x->map[x].size = size;
125 	e820x->map[x].type = type;
126 	e820x->nr_map++;
127 }
128 
129 void __init e820_add_region(u64 start, u64 size, int type)
130 {
131 	__e820_add_region(&e820, start, size, type);
132 }
133 
134 static void __init e820_print_type(u32 type)
135 {
136 	switch (type) {
137 	case E820_RAM:
138 	case E820_RESERVED_KERN:
139 		printk(KERN_CONT "(usable)");
140 		break;
141 	case E820_RESERVED:
142 		printk(KERN_CONT "(reserved)");
143 		break;
144 	case E820_ACPI:
145 		printk(KERN_CONT "(ACPI data)");
146 		break;
147 	case E820_NVS:
148 		printk(KERN_CONT "(ACPI NVS)");
149 		break;
150 	case E820_UNUSABLE:
151 		printk(KERN_CONT "(unusable)");
152 		break;
153 	default:
154 		printk(KERN_CONT "type %u", type);
155 		break;
156 	}
157 }
158 
159 void __init e820_print_map(char *who)
160 {
161 	int i;
162 
163 	for (i = 0; i < e820.nr_map; i++) {
164 		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
165 		       (unsigned long long) e820.map[i].addr,
166 		       (unsigned long long)
167 		       (e820.map[i].addr + e820.map[i].size));
168 		e820_print_type(e820.map[i].type);
169 		printk(KERN_CONT "\n");
170 	}
171 }
172 
173 /*
174  * Sanitize the BIOS e820 map.
175  *
176  * Some e820 responses include overlapping entries. The following
177  * replaces the original e820 map with a new one, removing overlaps,
178  * and resolving conflicting memory types in favor of highest
179  * numbered type.
180  *
181  * The input parameter biosmap points to an array of 'struct
182  * e820entry' which on entry has elements in the range [0, *pnr_map)
183  * valid, and which has space for up to max_nr_map entries.
184  * On return, the resulting sanitized e820 map entries will be in
185  * overwritten in the same location, starting at biosmap.
186  *
187  * The integer pointed to by pnr_map must be valid on entry (the
188  * current number of valid entries located at biosmap) and will
189  * be updated on return, with the new number of valid entries
190  * (something no more than max_nr_map.)
191  *
192  * The return value from sanitize_e820_map() is zero if it
193  * successfully 'sanitized' the map entries passed in, and is -1
194  * if it did nothing, which can happen if either of (1) it was
195  * only passed one map entry, or (2) any of the input map entries
196  * were invalid (start + size < start, meaning that the size was
197  * so big the described memory range wrapped around through zero.)
198  *
199  *	Visually we're performing the following
200  *	(1,2,3,4 = memory types)...
201  *
202  *	Sample memory map (w/overlaps):
203  *	   ____22__________________
204  *	   ______________________4_
205  *	   ____1111________________
206  *	   _44_____________________
207  *	   11111111________________
208  *	   ____________________33__
209  *	   ___________44___________
210  *	   __________33333_________
211  *	   ______________22________
212  *	   ___________________2222_
213  *	   _________111111111______
214  *	   _____________________11_
215  *	   _________________4______
216  *
217  *	Sanitized equivalent (no overlap):
218  *	   1_______________________
219  *	   _44_____________________
220  *	   ___1____________________
221  *	   ____22__________________
222  *	   ______11________________
223  *	   _________1______________
224  *	   __________3_____________
225  *	   ___________44___________
226  *	   _____________33_________
227  *	   _______________2________
228  *	   ________________1_______
229  *	   _________________4______
230  *	   ___________________2____
231  *	   ____________________33__
232  *	   ______________________4_
233  */
234 
235 int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
236 			     u32 *pnr_map)
237 {
238 	struct change_member {
239 		struct e820entry *pbios; /* pointer to original bios entry */
240 		unsigned long long addr; /* address for this change point */
241 	};
242 	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
243 	static struct change_member *change_point[2*E820_X_MAX] __initdata;
244 	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
245 	static struct e820entry new_bios[E820_X_MAX] __initdata;
246 	struct change_member *change_tmp;
247 	unsigned long current_type, last_type;
248 	unsigned long long last_addr;
249 	int chgidx, still_changing;
250 	int overlap_entries;
251 	int new_bios_entry;
252 	int old_nr, new_nr, chg_nr;
253 	int i;
254 
255 	/* if there's only one memory region, don't bother */
256 	if (*pnr_map < 2)
257 		return -1;
258 
259 	old_nr = *pnr_map;
260 	BUG_ON(old_nr > max_nr_map);
261 
262 	/* bail out if we find any unreasonable addresses in bios map */
263 	for (i = 0; i < old_nr; i++)
264 		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
265 			return -1;
266 
267 	/* create pointers for initial change-point information (for sorting) */
268 	for (i = 0; i < 2 * old_nr; i++)
269 		change_point[i] = &change_point_list[i];
270 
271 	/* record all known change-points (starting and ending addresses),
272 	   omitting those that are for empty memory regions */
273 	chgidx = 0;
274 	for (i = 0; i < old_nr; i++)	{
275 		if (biosmap[i].size != 0) {
276 			change_point[chgidx]->addr = biosmap[i].addr;
277 			change_point[chgidx++]->pbios = &biosmap[i];
278 			change_point[chgidx]->addr = biosmap[i].addr +
279 				biosmap[i].size;
280 			change_point[chgidx++]->pbios = &biosmap[i];
281 		}
282 	}
283 	chg_nr = chgidx;
284 
285 	/* sort change-point list by memory addresses (low -> high) */
286 	still_changing = 1;
287 	while (still_changing)	{
288 		still_changing = 0;
289 		for (i = 1; i < chg_nr; i++)  {
290 			unsigned long long curaddr, lastaddr;
291 			unsigned long long curpbaddr, lastpbaddr;
292 
293 			curaddr = change_point[i]->addr;
294 			lastaddr = change_point[i - 1]->addr;
295 			curpbaddr = change_point[i]->pbios->addr;
296 			lastpbaddr = change_point[i - 1]->pbios->addr;
297 
298 			/*
299 			 * swap entries, when:
300 			 *
301 			 * curaddr > lastaddr or
302 			 * curaddr == lastaddr and curaddr == curpbaddr and
303 			 * lastaddr != lastpbaddr
304 			 */
305 			if (curaddr < lastaddr ||
306 			    (curaddr == lastaddr && curaddr == curpbaddr &&
307 			     lastaddr != lastpbaddr)) {
308 				change_tmp = change_point[i];
309 				change_point[i] = change_point[i-1];
310 				change_point[i-1] = change_tmp;
311 				still_changing = 1;
312 			}
313 		}
314 	}
315 
316 	/* create a new bios memory map, removing overlaps */
317 	overlap_entries = 0;	 /* number of entries in the overlap table */
318 	new_bios_entry = 0;	 /* index for creating new bios map entries */
319 	last_type = 0;		 /* start with undefined memory type */
320 	last_addr = 0;		 /* start with 0 as last starting address */
321 
322 	/* loop through change-points, determining affect on the new bios map */
323 	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
324 		/* keep track of all overlapping bios entries */
325 		if (change_point[chgidx]->addr ==
326 		    change_point[chgidx]->pbios->addr) {
327 			/*
328 			 * add map entry to overlap list (> 1 entry
329 			 * implies an overlap)
330 			 */
331 			overlap_list[overlap_entries++] =
332 				change_point[chgidx]->pbios;
333 		} else {
334 			/*
335 			 * remove entry from list (order independent,
336 			 * so swap with last)
337 			 */
338 			for (i = 0; i < overlap_entries; i++) {
339 				if (overlap_list[i] ==
340 				    change_point[chgidx]->pbios)
341 					overlap_list[i] =
342 						overlap_list[overlap_entries-1];
343 			}
344 			overlap_entries--;
345 		}
346 		/*
347 		 * if there are overlapping entries, decide which
348 		 * "type" to use (larger value takes precedence --
349 		 * 1=usable, 2,3,4,4+=unusable)
350 		 */
351 		current_type = 0;
352 		for (i = 0; i < overlap_entries; i++)
353 			if (overlap_list[i]->type > current_type)
354 				current_type = overlap_list[i]->type;
355 		/*
356 		 * continue building up new bios map based on this
357 		 * information
358 		 */
359 		if (current_type != last_type)	{
360 			if (last_type != 0)	 {
361 				new_bios[new_bios_entry].size =
362 					change_point[chgidx]->addr - last_addr;
363 				/*
364 				 * move forward only if the new size
365 				 * was non-zero
366 				 */
367 				if (new_bios[new_bios_entry].size != 0)
368 					/*
369 					 * no more space left for new
370 					 * bios entries ?
371 					 */
372 					if (++new_bios_entry >= max_nr_map)
373 						break;
374 			}
375 			if (current_type != 0)	{
376 				new_bios[new_bios_entry].addr =
377 					change_point[chgidx]->addr;
378 				new_bios[new_bios_entry].type = current_type;
379 				last_addr = change_point[chgidx]->addr;
380 			}
381 			last_type = current_type;
382 		}
383 	}
384 	/* retain count for new bios entries */
385 	new_nr = new_bios_entry;
386 
387 	/* copy new bios mapping into original location */
388 	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
389 	*pnr_map = new_nr;
390 
391 	return 0;
392 }
393 
394 static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
395 {
396 	while (nr_map) {
397 		u64 start = biosmap->addr;
398 		u64 size = biosmap->size;
399 		u64 end = start + size;
400 		u32 type = biosmap->type;
401 
402 		/* Overflow in 64 bits? Ignore the memory map. */
403 		if (start > end)
404 			return -1;
405 
406 		e820_add_region(start, size, type);
407 
408 		biosmap++;
409 		nr_map--;
410 	}
411 	return 0;
412 }
413 
414 /*
415  * Copy the BIOS e820 map into a safe place.
416  *
417  * Sanity-check it while we're at it..
418  *
419  * If we're lucky and live on a modern system, the setup code
420  * will have given us a memory map that we can use to properly
421  * set up memory.  If we aren't, we'll fake a memory map.
422  */
423 static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
424 {
425 	/* Only one memory region (or negative)? Ignore it */
426 	if (nr_map < 2)
427 		return -1;
428 
429 	return __append_e820_map(biosmap, nr_map);
430 }
431 
432 static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
433 					u64 size, unsigned old_type,
434 					unsigned new_type)
435 {
436 	u64 end;
437 	unsigned int i;
438 	u64 real_updated_size = 0;
439 
440 	BUG_ON(old_type == new_type);
441 
442 	if (size > (ULLONG_MAX - start))
443 		size = ULLONG_MAX - start;
444 
445 	end = start + size;
446 	printk(KERN_DEBUG "e820 update range: %016Lx - %016Lx ",
447 		       (unsigned long long) start,
448 		       (unsigned long long) end);
449 	e820_print_type(old_type);
450 	printk(KERN_CONT " ==> ");
451 	e820_print_type(new_type);
452 	printk(KERN_CONT "\n");
453 
454 	for (i = 0; i < e820x->nr_map; i++) {
455 		struct e820entry *ei = &e820x->map[i];
456 		u64 final_start, final_end;
457 		u64 ei_end;
458 
459 		if (ei->type != old_type)
460 			continue;
461 
462 		ei_end = ei->addr + ei->size;
463 		/* totally covered by new range? */
464 		if (ei->addr >= start && ei_end <= end) {
465 			ei->type = new_type;
466 			real_updated_size += ei->size;
467 			continue;
468 		}
469 
470 		/* new range is totally covered? */
471 		if (ei->addr < start && ei_end > end) {
472 			__e820_add_region(e820x, start, size, new_type);
473 			__e820_add_region(e820x, end, ei_end - end, ei->type);
474 			ei->size = start - ei->addr;
475 			real_updated_size += size;
476 			continue;
477 		}
478 
479 		/* partially covered */
480 		final_start = max(start, ei->addr);
481 		final_end = min(end, ei_end);
482 		if (final_start >= final_end)
483 			continue;
484 
485 		__e820_add_region(e820x, final_start, final_end - final_start,
486 				  new_type);
487 
488 		real_updated_size += final_end - final_start;
489 
490 		/*
491 		 * left range could be head or tail, so need to update
492 		 * size at first.
493 		 */
494 		ei->size -= final_end - final_start;
495 		if (ei->addr < final_start)
496 			continue;
497 		ei->addr = final_end;
498 	}
499 	return real_updated_size;
500 }
501 
502 u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
503 			     unsigned new_type)
504 {
505 	return __e820_update_range(&e820, start, size, old_type, new_type);
506 }
507 
508 static u64 __init e820_update_range_saved(u64 start, u64 size,
509 					  unsigned old_type, unsigned new_type)
510 {
511 	return __e820_update_range(&e820_saved, start, size, old_type,
512 				     new_type);
513 }
514 
515 /* make e820 not cover the range */
516 u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
517 			     int checktype)
518 {
519 	int i;
520 	u64 end;
521 	u64 real_removed_size = 0;
522 
523 	if (size > (ULLONG_MAX - start))
524 		size = ULLONG_MAX - start;
525 
526 	end = start + size;
527 	printk(KERN_DEBUG "e820 remove range: %016Lx - %016Lx ",
528 		       (unsigned long long) start,
529 		       (unsigned long long) end);
530 	e820_print_type(old_type);
531 	printk(KERN_CONT "\n");
532 
533 	for (i = 0; i < e820.nr_map; i++) {
534 		struct e820entry *ei = &e820.map[i];
535 		u64 final_start, final_end;
536 
537 		if (checktype && ei->type != old_type)
538 			continue;
539 		/* totally covered? */
540 		if (ei->addr >= start &&
541 		    (ei->addr + ei->size) <= (start + size)) {
542 			real_removed_size += ei->size;
543 			memset(ei, 0, sizeof(struct e820entry));
544 			continue;
545 		}
546 		/* partially covered */
547 		final_start = max(start, ei->addr);
548 		final_end = min(start + size, ei->addr + ei->size);
549 		if (final_start >= final_end)
550 			continue;
551 		real_removed_size += final_end - final_start;
552 
553 		ei->size -= final_end - final_start;
554 		if (ei->addr < final_start)
555 			continue;
556 		ei->addr = final_end;
557 	}
558 	return real_removed_size;
559 }
560 
561 void __init update_e820(void)
562 {
563 	u32 nr_map;
564 
565 	nr_map = e820.nr_map;
566 	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
567 		return;
568 	e820.nr_map = nr_map;
569 	printk(KERN_INFO "modified physical RAM map:\n");
570 	e820_print_map("modified");
571 }
572 static void __init update_e820_saved(void)
573 {
574 	u32 nr_map;
575 
576 	nr_map = e820_saved.nr_map;
577 	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
578 		return;
579 	e820_saved.nr_map = nr_map;
580 }
581 #define MAX_GAP_END 0x100000000ull
582 /*
583  * Search for a gap in the e820 memory space from start_addr to end_addr.
584  */
585 __init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
586 		unsigned long start_addr, unsigned long long end_addr)
587 {
588 	unsigned long long last;
589 	int i = e820.nr_map;
590 	int found = 0;
591 
592 	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
593 
594 	while (--i >= 0) {
595 		unsigned long long start = e820.map[i].addr;
596 		unsigned long long end = start + e820.map[i].size;
597 
598 		if (end < start_addr)
599 			continue;
600 
601 		/*
602 		 * Since "last" is at most 4GB, we know we'll
603 		 * fit in 32 bits if this condition is true
604 		 */
605 		if (last > end) {
606 			unsigned long gap = last - end;
607 
608 			if (gap >= *gapsize) {
609 				*gapsize = gap;
610 				*gapstart = end;
611 				found = 1;
612 			}
613 		}
614 		if (start < last)
615 			last = start;
616 	}
617 	return found;
618 }
619 
620 /*
621  * Search for the biggest gap in the low 32 bits of the e820
622  * memory space.  We pass this space to PCI to assign MMIO resources
623  * for hotplug or unconfigured devices in.
624  * Hopefully the BIOS let enough space left.
625  */
626 __init void e820_setup_gap(void)
627 {
628 	unsigned long gapstart, gapsize;
629 	int found;
630 
631 	gapstart = 0x10000000;
632 	gapsize = 0x400000;
633 	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
634 
635 #ifdef CONFIG_X86_64
636 	if (!found) {
637 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
638 		printk(KERN_ERR
639 	"PCI: Warning: Cannot find a gap in the 32bit address range\n"
640 	"PCI: Unassigned devices with 32bit resource registers may break!\n");
641 	}
642 #endif
643 
644 	/*
645 	 * e820_reserve_resources_late protect stolen RAM already
646 	 */
647 	pci_mem_start = gapstart;
648 
649 	printk(KERN_INFO
650 	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
651 	       pci_mem_start, gapstart, gapsize);
652 }
653 
654 /**
655  * Because of the size limitation of struct boot_params, only first
656  * 128 E820 memory entries are passed to kernel via
657  * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
658  * linked list of struct setup_data, which is parsed here.
659  */
660 void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
661 {
662 	u32 map_len;
663 	int entries;
664 	struct e820entry *extmap;
665 
666 	entries = sdata->len / sizeof(struct e820entry);
667 	map_len = sdata->len + sizeof(struct setup_data);
668 	if (map_len > PAGE_SIZE)
669 		sdata = early_ioremap(pa_data, map_len);
670 	extmap = (struct e820entry *)(sdata->data);
671 	__append_e820_map(extmap, entries);
672 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
673 	if (map_len > PAGE_SIZE)
674 		early_iounmap(sdata, map_len);
675 	printk(KERN_INFO "extended physical RAM map:\n");
676 	e820_print_map("extended");
677 }
678 
679 #if defined(CONFIG_X86_64) || \
680 	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
681 /**
682  * Find the ranges of physical addresses that do not correspond to
683  * e820 RAM areas and mark the corresponding pages as nosave for
684  * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
685  *
686  * This function requires the e820 map to be sorted and without any
687  * overlapping entries and assumes the first e820 area to be RAM.
688  */
689 void __init e820_mark_nosave_regions(unsigned long limit_pfn)
690 {
691 	int i;
692 	unsigned long pfn;
693 
694 	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
695 	for (i = 1; i < e820.nr_map; i++) {
696 		struct e820entry *ei = &e820.map[i];
697 
698 		if (pfn < PFN_UP(ei->addr))
699 			register_nosave_region(pfn, PFN_UP(ei->addr));
700 
701 		pfn = PFN_DOWN(ei->addr + ei->size);
702 		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
703 			register_nosave_region(PFN_UP(ei->addr), pfn);
704 
705 		if (pfn >= limit_pfn)
706 			break;
707 	}
708 }
709 #endif
710 
711 #ifdef CONFIG_HIBERNATION
712 /**
713  * Mark ACPI NVS memory region, so that we can save/restore it during
714  * hibernation and the subsequent resume.
715  */
716 static int __init e820_mark_nvs_memory(void)
717 {
718 	int i;
719 
720 	for (i = 0; i < e820.nr_map; i++) {
721 		struct e820entry *ei = &e820.map[i];
722 
723 		if (ei->type == E820_NVS)
724 			hibernate_nvs_register(ei->addr, ei->size);
725 	}
726 
727 	return 0;
728 }
729 core_initcall(e820_mark_nvs_memory);
730 #endif
731 
732 /*
733  * Early reserved memory areas.
734  */
735 #define MAX_EARLY_RES 32
736 
737 struct early_res {
738 	u64 start, end;
739 	char name[16];
740 	char overlap_ok;
741 };
742 static struct early_res early_res[MAX_EARLY_RES] __initdata = {
743 	{ 0, PAGE_SIZE, "BIOS data page", 1 },	/* BIOS data page */
744 #if defined(CONFIG_X86_32) && defined(CONFIG_X86_TRAMPOLINE)
745 	/*
746 	 * But first pinch a few for the stack/trampoline stuff
747 	 * FIXME: Don't need the extra page at 4K, but need to fix
748 	 * trampoline before removing it. (see the GDT stuff)
749 	 */
750 	{ PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE", 1 },
751 #endif
752 
753 	{}
754 };
755 
756 static int __init find_overlapped_early(u64 start, u64 end)
757 {
758 	int i;
759 	struct early_res *r;
760 
761 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
762 		r = &early_res[i];
763 		if (end > r->start && start < r->end)
764 			break;
765 	}
766 
767 	return i;
768 }
769 
770 /*
771  * Drop the i-th range from the early reservation map,
772  * by copying any higher ranges down one over it, and
773  * clearing what had been the last slot.
774  */
775 static void __init drop_range(int i)
776 {
777 	int j;
778 
779 	for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
780 		;
781 
782 	memmove(&early_res[i], &early_res[i + 1],
783 	       (j - 1 - i) * sizeof(struct early_res));
784 
785 	early_res[j - 1].end = 0;
786 }
787 
788 /*
789  * Split any existing ranges that:
790  *  1) are marked 'overlap_ok', and
791  *  2) overlap with the stated range [start, end)
792  * into whatever portion (if any) of the existing range is entirely
793  * below or entirely above the stated range.  Drop the portion
794  * of the existing range that overlaps with the stated range,
795  * which will allow the caller of this routine to then add that
796  * stated range without conflicting with any existing range.
797  */
798 static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
799 {
800 	int i;
801 	struct early_res *r;
802 	u64 lower_start, lower_end;
803 	u64 upper_start, upper_end;
804 	char name[16];
805 
806 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
807 		r = &early_res[i];
808 
809 		/* Continue past non-overlapping ranges */
810 		if (end <= r->start || start >= r->end)
811 			continue;
812 
813 		/*
814 		 * Leave non-ok overlaps as is; let caller
815 		 * panic "Overlapping early reservations"
816 		 * when it hits this overlap.
817 		 */
818 		if (!r->overlap_ok)
819 			return;
820 
821 		/*
822 		 * We have an ok overlap.  We will drop it from the early
823 		 * reservation map, and add back in any non-overlapping
824 		 * portions (lower or upper) as separate, overlap_ok,
825 		 * non-overlapping ranges.
826 		 */
827 
828 		/* 1. Note any non-overlapping (lower or upper) ranges. */
829 		strncpy(name, r->name, sizeof(name) - 1);
830 
831 		lower_start = lower_end = 0;
832 		upper_start = upper_end = 0;
833 		if (r->start < start) {
834 		 	lower_start = r->start;
835 			lower_end = start;
836 		}
837 		if (r->end > end) {
838 			upper_start = end;
839 			upper_end = r->end;
840 		}
841 
842 		/* 2. Drop the original ok overlapping range */
843 		drop_range(i);
844 
845 		i--;		/* resume for-loop on copied down entry */
846 
847 		/* 3. Add back in any non-overlapping ranges. */
848 		if (lower_end)
849 			reserve_early_overlap_ok(lower_start, lower_end, name);
850 		if (upper_end)
851 			reserve_early_overlap_ok(upper_start, upper_end, name);
852 	}
853 }
854 
855 static void __init __reserve_early(u64 start, u64 end, char *name,
856 						int overlap_ok)
857 {
858 	int i;
859 	struct early_res *r;
860 
861 	i = find_overlapped_early(start, end);
862 	if (i >= MAX_EARLY_RES)
863 		panic("Too many early reservations");
864 	r = &early_res[i];
865 	if (r->end)
866 		panic("Overlapping early reservations "
867 		      "%llx-%llx %s to %llx-%llx %s\n",
868 		      start, end - 1, name?name:"", r->start,
869 		      r->end - 1, r->name);
870 	r->start = start;
871 	r->end = end;
872 	r->overlap_ok = overlap_ok;
873 	if (name)
874 		strncpy(r->name, name, sizeof(r->name) - 1);
875 }
876 
877 /*
878  * A few early reservtations come here.
879  *
880  * The 'overlap_ok' in the name of this routine does -not- mean it
881  * is ok for these reservations to overlap an earlier reservation.
882  * Rather it means that it is ok for subsequent reservations to
883  * overlap this one.
884  *
885  * Use this entry point to reserve early ranges when you are doing
886  * so out of "Paranoia", reserving perhaps more memory than you need,
887  * just in case, and don't mind a subsequent overlapping reservation
888  * that is known to be needed.
889  *
890  * The drop_overlaps_that_are_ok() call here isn't really needed.
891  * It would be needed if we had two colliding 'overlap_ok'
892  * reservations, so that the second such would not panic on the
893  * overlap with the first.  We don't have any such as of this
894  * writing, but might as well tolerate such if it happens in
895  * the future.
896  */
897 void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
898 {
899 	drop_overlaps_that_are_ok(start, end);
900 	__reserve_early(start, end, name, 1);
901 }
902 
903 /*
904  * Most early reservations come here.
905  *
906  * We first have drop_overlaps_that_are_ok() drop any pre-existing
907  * 'overlap_ok' ranges, so that we can then reserve this memory
908  * range without risk of panic'ing on an overlapping overlap_ok
909  * early reservation.
910  */
911 void __init reserve_early(u64 start, u64 end, char *name)
912 {
913 	if (start >= end)
914 		return;
915 
916 	drop_overlaps_that_are_ok(start, end);
917 	__reserve_early(start, end, name, 0);
918 }
919 
920 void __init free_early(u64 start, u64 end)
921 {
922 	struct early_res *r;
923 	int i;
924 
925 	i = find_overlapped_early(start, end);
926 	r = &early_res[i];
927 	if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
928 		panic("free_early on not reserved area: %llx-%llx!",
929 			 start, end - 1);
930 
931 	drop_range(i);
932 }
933 
934 void __init early_res_to_bootmem(u64 start, u64 end)
935 {
936 	int i, count;
937 	u64 final_start, final_end;
938 
939 	count  = 0;
940 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
941 		count++;
942 
943 	printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
944 			 count, start, end);
945 	for (i = 0; i < count; i++) {
946 		struct early_res *r = &early_res[i];
947 		printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
948 			r->start, r->end, r->name);
949 		final_start = max(start, r->start);
950 		final_end = min(end, r->end);
951 		if (final_start >= final_end) {
952 			printk(KERN_CONT "\n");
953 			continue;
954 		}
955 		printk(KERN_CONT " ==> [%010llx - %010llx]\n",
956 			final_start, final_end);
957 		reserve_bootmem_generic(final_start, final_end - final_start,
958 				BOOTMEM_DEFAULT);
959 	}
960 }
961 
962 /* Check for already reserved areas */
963 static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
964 {
965 	int i;
966 	u64 addr = *addrp;
967 	int changed = 0;
968 	struct early_res *r;
969 again:
970 	i = find_overlapped_early(addr, addr + size);
971 	r = &early_res[i];
972 	if (i < MAX_EARLY_RES && r->end) {
973 		*addrp = addr = round_up(r->end, align);
974 		changed = 1;
975 		goto again;
976 	}
977 	return changed;
978 }
979 
980 /* Check for already reserved areas */
981 static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
982 {
983 	int i;
984 	u64 addr = *addrp, last;
985 	u64 size = *sizep;
986 	int changed = 0;
987 again:
988 	last = addr + size;
989 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
990 		struct early_res *r = &early_res[i];
991 		if (last > r->start && addr < r->start) {
992 			size = r->start - addr;
993 			changed = 1;
994 			goto again;
995 		}
996 		if (last > r->end && addr < r->end) {
997 			addr = round_up(r->end, align);
998 			size = last - addr;
999 			changed = 1;
1000 			goto again;
1001 		}
1002 		if (last <= r->end && addr >= r->start) {
1003 			(*sizep)++;
1004 			return 0;
1005 		}
1006 	}
1007 	if (changed) {
1008 		*addrp = addr;
1009 		*sizep = size;
1010 	}
1011 	return changed;
1012 }
1013 
1014 /*
1015  * Find a free area with specified alignment in a specific range.
1016  */
1017 u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < e820.nr_map; i++) {
1022 		struct e820entry *ei = &e820.map[i];
1023 		u64 addr, last;
1024 		u64 ei_last;
1025 
1026 		if (ei->type != E820_RAM)
1027 			continue;
1028 		addr = round_up(ei->addr, align);
1029 		ei_last = ei->addr + ei->size;
1030 		if (addr < start)
1031 			addr = round_up(start, align);
1032 		if (addr >= ei_last)
1033 			continue;
1034 		while (bad_addr(&addr, size, align) && addr+size <= ei_last)
1035 			;
1036 		last = addr + size;
1037 		if (last > ei_last)
1038 			continue;
1039 		if (last > end)
1040 			continue;
1041 		return addr;
1042 	}
1043 	return -1ULL;
1044 }
1045 
1046 /*
1047  * Find next free range after *start
1048  */
1049 u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
1050 {
1051 	int i;
1052 
1053 	for (i = 0; i < e820.nr_map; i++) {
1054 		struct e820entry *ei = &e820.map[i];
1055 		u64 addr, last;
1056 		u64 ei_last;
1057 
1058 		if (ei->type != E820_RAM)
1059 			continue;
1060 		addr = round_up(ei->addr, align);
1061 		ei_last = ei->addr + ei->size;
1062 		if (addr < start)
1063 			addr = round_up(start, align);
1064 		if (addr >= ei_last)
1065 			continue;
1066 		*sizep = ei_last - addr;
1067 		while (bad_addr_size(&addr, sizep, align) &&
1068 			addr + *sizep <= ei_last)
1069 			;
1070 		last = addr + *sizep;
1071 		if (last > ei_last)
1072 			continue;
1073 		return addr;
1074 	}
1075 
1076 	return -1ULL;
1077 }
1078 
1079 /*
1080  * pre allocated 4k and reserved it in e820
1081  */
1082 u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1083 {
1084 	u64 size = 0;
1085 	u64 addr;
1086 	u64 start;
1087 
1088 	for (start = startt; ; start += size) {
1089 		start = find_e820_area_size(start, &size, align);
1090 		if (!(start + 1))
1091 			return 0;
1092 		if (size >= sizet)
1093 			break;
1094 	}
1095 
1096 #ifdef CONFIG_X86_32
1097 	if (start >= MAXMEM)
1098 		return 0;
1099 	if (start + size > MAXMEM)
1100 		size = MAXMEM - start;
1101 #endif
1102 
1103 	addr = round_down(start + size - sizet, align);
1104 	if (addr < start)
1105 		return 0;
1106 	e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1107 	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1108 	printk(KERN_INFO "update e820 for early_reserve_e820\n");
1109 	update_e820();
1110 	update_e820_saved();
1111 
1112 	return addr;
1113 }
1114 
1115 #ifdef CONFIG_X86_32
1116 # ifdef CONFIG_X86_PAE
1117 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
1118 # else
1119 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
1120 # endif
1121 #else /* CONFIG_X86_32 */
1122 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1123 #endif
1124 
1125 /*
1126  * Find the highest page frame number we have available
1127  */
1128 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1129 {
1130 	int i;
1131 	unsigned long last_pfn = 0;
1132 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
1133 
1134 	for (i = 0; i < e820.nr_map; i++) {
1135 		struct e820entry *ei = &e820.map[i];
1136 		unsigned long start_pfn;
1137 		unsigned long end_pfn;
1138 
1139 		if (ei->type != type)
1140 			continue;
1141 
1142 		start_pfn = ei->addr >> PAGE_SHIFT;
1143 		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1144 
1145 		if (start_pfn >= limit_pfn)
1146 			continue;
1147 		if (end_pfn > limit_pfn) {
1148 			last_pfn = limit_pfn;
1149 			break;
1150 		}
1151 		if (end_pfn > last_pfn)
1152 			last_pfn = end_pfn;
1153 	}
1154 
1155 	if (last_pfn > max_arch_pfn)
1156 		last_pfn = max_arch_pfn;
1157 
1158 	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1159 			 last_pfn, max_arch_pfn);
1160 	return last_pfn;
1161 }
1162 unsigned long __init e820_end_of_ram_pfn(void)
1163 {
1164 	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1165 }
1166 
1167 unsigned long __init e820_end_of_low_ram_pfn(void)
1168 {
1169 	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1170 }
1171 /*
1172  * Finds an active region in the address range from start_pfn to last_pfn and
1173  * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1174  */
1175 int __init e820_find_active_region(const struct e820entry *ei,
1176 				  unsigned long start_pfn,
1177 				  unsigned long last_pfn,
1178 				  unsigned long *ei_startpfn,
1179 				  unsigned long *ei_endpfn)
1180 {
1181 	u64 align = PAGE_SIZE;
1182 
1183 	*ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1184 	*ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1185 
1186 	/* Skip map entries smaller than a page */
1187 	if (*ei_startpfn >= *ei_endpfn)
1188 		return 0;
1189 
1190 	/* Skip if map is outside the node */
1191 	if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1192 				    *ei_startpfn >= last_pfn)
1193 		return 0;
1194 
1195 	/* Check for overlaps */
1196 	if (*ei_startpfn < start_pfn)
1197 		*ei_startpfn = start_pfn;
1198 	if (*ei_endpfn > last_pfn)
1199 		*ei_endpfn = last_pfn;
1200 
1201 	return 1;
1202 }
1203 
1204 /* Walk the e820 map and register active regions within a node */
1205 void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1206 					 unsigned long last_pfn)
1207 {
1208 	unsigned long ei_startpfn;
1209 	unsigned long ei_endpfn;
1210 	int i;
1211 
1212 	for (i = 0; i < e820.nr_map; i++)
1213 		if (e820_find_active_region(&e820.map[i],
1214 					    start_pfn, last_pfn,
1215 					    &ei_startpfn, &ei_endpfn))
1216 			add_active_range(nid, ei_startpfn, ei_endpfn);
1217 }
1218 
1219 /*
1220  * Find the hole size (in bytes) in the memory range.
1221  * @start: starting address of the memory range to scan
1222  * @end: ending address of the memory range to scan
1223  */
1224 u64 __init e820_hole_size(u64 start, u64 end)
1225 {
1226 	unsigned long start_pfn = start >> PAGE_SHIFT;
1227 	unsigned long last_pfn = end >> PAGE_SHIFT;
1228 	unsigned long ei_startpfn, ei_endpfn, ram = 0;
1229 	int i;
1230 
1231 	for (i = 0; i < e820.nr_map; i++) {
1232 		if (e820_find_active_region(&e820.map[i],
1233 					    start_pfn, last_pfn,
1234 					    &ei_startpfn, &ei_endpfn))
1235 			ram += ei_endpfn - ei_startpfn;
1236 	}
1237 	return end - start - ((u64)ram << PAGE_SHIFT);
1238 }
1239 
1240 static void early_panic(char *msg)
1241 {
1242 	early_printk(msg);
1243 	panic(msg);
1244 }
1245 
1246 static int userdef __initdata;
1247 
1248 /* "mem=nopentium" disables the 4MB page tables. */
1249 static int __init parse_memopt(char *p)
1250 {
1251 	u64 mem_size;
1252 
1253 	if (!p)
1254 		return -EINVAL;
1255 
1256 #ifdef CONFIG_X86_32
1257 	if (!strcmp(p, "nopentium")) {
1258 		setup_clear_cpu_cap(X86_FEATURE_PSE);
1259 		return 0;
1260 	}
1261 #endif
1262 
1263 	userdef = 1;
1264 	mem_size = memparse(p, &p);
1265 	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1266 
1267 	return 0;
1268 }
1269 early_param("mem", parse_memopt);
1270 
1271 static int __init parse_memmap_opt(char *p)
1272 {
1273 	char *oldp;
1274 	u64 start_at, mem_size;
1275 
1276 	if (!p)
1277 		return -EINVAL;
1278 
1279 	if (!strncmp(p, "exactmap", 8)) {
1280 #ifdef CONFIG_CRASH_DUMP
1281 		/*
1282 		 * If we are doing a crash dump, we still need to know
1283 		 * the real mem size before original memory map is
1284 		 * reset.
1285 		 */
1286 		saved_max_pfn = e820_end_of_ram_pfn();
1287 #endif
1288 		e820.nr_map = 0;
1289 		userdef = 1;
1290 		return 0;
1291 	}
1292 
1293 	oldp = p;
1294 	mem_size = memparse(p, &p);
1295 	if (p == oldp)
1296 		return -EINVAL;
1297 
1298 	userdef = 1;
1299 	if (*p == '@') {
1300 		start_at = memparse(p+1, &p);
1301 		e820_add_region(start_at, mem_size, E820_RAM);
1302 	} else if (*p == '#') {
1303 		start_at = memparse(p+1, &p);
1304 		e820_add_region(start_at, mem_size, E820_ACPI);
1305 	} else if (*p == '$') {
1306 		start_at = memparse(p+1, &p);
1307 		e820_add_region(start_at, mem_size, E820_RESERVED);
1308 	} else
1309 		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1310 
1311 	return *p == '\0' ? 0 : -EINVAL;
1312 }
1313 early_param("memmap", parse_memmap_opt);
1314 
1315 void __init finish_e820_parsing(void)
1316 {
1317 	if (userdef) {
1318 		u32 nr = e820.nr_map;
1319 
1320 		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1321 			early_panic("Invalid user supplied memory map");
1322 		e820.nr_map = nr;
1323 
1324 		printk(KERN_INFO "user-defined physical RAM map:\n");
1325 		e820_print_map("user");
1326 	}
1327 }
1328 
1329 static inline const char *e820_type_to_string(int e820_type)
1330 {
1331 	switch (e820_type) {
1332 	case E820_RESERVED_KERN:
1333 	case E820_RAM:	return "System RAM";
1334 	case E820_ACPI:	return "ACPI Tables";
1335 	case E820_NVS:	return "ACPI Non-volatile Storage";
1336 	case E820_UNUSABLE:	return "Unusable memory";
1337 	default:	return "reserved";
1338 	}
1339 }
1340 
1341 /*
1342  * Mark e820 reserved areas as busy for the resource manager.
1343  */
1344 static struct resource __initdata *e820_res;
1345 void __init e820_reserve_resources(void)
1346 {
1347 	int i;
1348 	struct resource *res;
1349 	u64 end;
1350 
1351 	res = alloc_bootmem(sizeof(struct resource) * e820.nr_map);
1352 	e820_res = res;
1353 	for (i = 0; i < e820.nr_map; i++) {
1354 		end = e820.map[i].addr + e820.map[i].size - 1;
1355 		if (end != (resource_size_t)end) {
1356 			res++;
1357 			continue;
1358 		}
1359 		res->name = e820_type_to_string(e820.map[i].type);
1360 		res->start = e820.map[i].addr;
1361 		res->end = end;
1362 
1363 		res->flags = IORESOURCE_MEM;
1364 
1365 		/*
1366 		 * don't register the region that could be conflicted with
1367 		 * pci device BAR resource and insert them later in
1368 		 * pcibios_resource_survey()
1369 		 */
1370 		if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
1371 			res->flags |= IORESOURCE_BUSY;
1372 			insert_resource(&iomem_resource, res);
1373 		}
1374 		res++;
1375 	}
1376 
1377 	for (i = 0; i < e820_saved.nr_map; i++) {
1378 		struct e820entry *entry = &e820_saved.map[i];
1379 		firmware_map_add_early(entry->addr,
1380 			entry->addr + entry->size - 1,
1381 			e820_type_to_string(entry->type));
1382 	}
1383 }
1384 
1385 /* How much should we pad RAM ending depending on where it is? */
1386 static unsigned long ram_alignment(resource_size_t pos)
1387 {
1388 	unsigned long mb = pos >> 20;
1389 
1390 	/* To 64kB in the first megabyte */
1391 	if (!mb)
1392 		return 64*1024;
1393 
1394 	/* To 1MB in the first 16MB */
1395 	if (mb < 16)
1396 		return 1024*1024;
1397 
1398 	/* To 64MB for anything above that */
1399 	return 64*1024*1024;
1400 }
1401 
1402 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1403 
1404 void __init e820_reserve_resources_late(void)
1405 {
1406 	int i;
1407 	struct resource *res;
1408 
1409 	res = e820_res;
1410 	for (i = 0; i < e820.nr_map; i++) {
1411 		if (!res->parent && res->end)
1412 			insert_resource_expand_to_fit(&iomem_resource, res);
1413 		res++;
1414 	}
1415 
1416 	/*
1417 	 * Try to bump up RAM regions to reasonable boundaries to
1418 	 * avoid stolen RAM:
1419 	 */
1420 	for (i = 0; i < e820.nr_map; i++) {
1421 		struct e820entry *entry = &e820.map[i];
1422 		u64 start, end;
1423 
1424 		if (entry->type != E820_RAM)
1425 			continue;
1426 		start = entry->addr + entry->size;
1427 		end = round_up(start, ram_alignment(start)) - 1;
1428 		if (end > MAX_RESOURCE_SIZE)
1429 			end = MAX_RESOURCE_SIZE;
1430 		if (start >= end)
1431 			continue;
1432 		reserve_region_with_split(&iomem_resource, start, end,
1433 					  "RAM buffer");
1434 	}
1435 }
1436 
1437 char *__init default_machine_specific_memory_setup(void)
1438 {
1439 	char *who = "BIOS-e820";
1440 	u32 new_nr;
1441 	/*
1442 	 * Try to copy the BIOS-supplied E820-map.
1443 	 *
1444 	 * Otherwise fake a memory map; one section from 0k->640k,
1445 	 * the next section from 1mb->appropriate_mem_k
1446 	 */
1447 	new_nr = boot_params.e820_entries;
1448 	sanitize_e820_map(boot_params.e820_map,
1449 			ARRAY_SIZE(boot_params.e820_map),
1450 			&new_nr);
1451 	boot_params.e820_entries = new_nr;
1452 	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1453 	  < 0) {
1454 		u64 mem_size;
1455 
1456 		/* compare results from other methods and take the greater */
1457 		if (boot_params.alt_mem_k
1458 		    < boot_params.screen_info.ext_mem_k) {
1459 			mem_size = boot_params.screen_info.ext_mem_k;
1460 			who = "BIOS-88";
1461 		} else {
1462 			mem_size = boot_params.alt_mem_k;
1463 			who = "BIOS-e801";
1464 		}
1465 
1466 		e820.nr_map = 0;
1467 		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1468 		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1469 	}
1470 
1471 	/* In case someone cares... */
1472 	return who;
1473 }
1474 
1475 void __init setup_memory_map(void)
1476 {
1477 	char *who;
1478 
1479 	who = x86_init.resources.memory_setup();
1480 	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1481 	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1482 	e820_print_map(who);
1483 }
1484