1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Low level x86 E820 memory map handling functions. 4 * 5 * The firmware and bootloader passes us the "E820 table", which is the primary 6 * physical memory layout description available about x86 systems. 7 * 8 * The kernel takes the E820 memory layout and optionally modifies it with 9 * quirks and other tweaks, and feeds that into the generic Linux memory 10 * allocation code routines via a platform independent interface (memblock, etc.). 11 */ 12 #include <linux/crash_dump.h> 13 #include <linux/memblock.h> 14 #include <linux/suspend.h> 15 #include <linux/acpi.h> 16 #include <linux/firmware-map.h> 17 #include <linux/sort.h> 18 #include <linux/memory_hotplug.h> 19 20 #include <asm/e820/api.h> 21 #include <asm/setup.h> 22 23 /* 24 * We organize the E820 table into three main data structures: 25 * 26 * - 'e820_table_firmware': the original firmware version passed to us by the 27 * bootloader - not modified by the kernel. It is composed of two parts: 28 * the first 128 E820 memory entries in boot_params.e820_table and the remaining 29 * (if any) entries of the SETUP_E820_EXT nodes. We use this to: 30 * 31 * - inform the user about the firmware's notion of memory layout 32 * via /sys/firmware/memmap 33 * 34 * - the hibernation code uses it to generate a kernel-independent MD5 35 * fingerprint of the physical memory layout of a system. 36 * 37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version 38 * passed to us by the bootloader - the major difference between 39 * e820_table_firmware[] and this one is that, the latter marks the setup_data 40 * list created by the EFI boot stub as reserved, so that kexec can reuse the 41 * setup_data information in the second kernel. Besides, e820_table_kexec[] 42 * might also be modified by the kexec itself to fake a mptable. 43 * We use this to: 44 * 45 * - kexec, which is a bootloader in disguise, uses the original E820 46 * layout to pass to the kexec-ed kernel. This way the original kernel 47 * can have a restricted E820 map while the kexec()-ed kexec-kernel 48 * can have access to full memory - etc. 49 * 50 * - 'e820_table': this is the main E820 table that is massaged by the 51 * low level x86 platform code, or modified by boot parameters, before 52 * passed on to higher level MM layers. 53 * 54 * Once the E820 map has been converted to the standard Linux memory layout 55 * information its role stops - modifying it has no effect and does not get 56 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware 57 * specific memory layout data during early bootup. 58 */ 59 static struct e820_table e820_table_init __initdata; 60 static struct e820_table e820_table_kexec_init __initdata; 61 static struct e820_table e820_table_firmware_init __initdata; 62 63 struct e820_table *e820_table __refdata = &e820_table_init; 64 struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; 65 struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; 66 67 /* For PCI or other memory-mapped resources */ 68 unsigned long pci_mem_start = 0xaeedbabe; 69 #ifdef CONFIG_PCI 70 EXPORT_SYMBOL(pci_mem_start); 71 #endif 72 73 /* 74 * This function checks if any part of the range <start,end> is mapped 75 * with type. 76 */ 77 static bool _e820__mapped_any(struct e820_table *table, 78 u64 start, u64 end, enum e820_type type) 79 { 80 int i; 81 82 for (i = 0; i < table->nr_entries; i++) { 83 struct e820_entry *entry = &table->entries[i]; 84 85 if (type && entry->type != type) 86 continue; 87 if (entry->addr >= end || entry->addr + entry->size <= start) 88 continue; 89 return true; 90 } 91 return false; 92 } 93 94 bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type) 95 { 96 return _e820__mapped_any(e820_table_firmware, start, end, type); 97 } 98 EXPORT_SYMBOL_GPL(e820__mapped_raw_any); 99 100 bool e820__mapped_any(u64 start, u64 end, enum e820_type type) 101 { 102 return _e820__mapped_any(e820_table, start, end, type); 103 } 104 EXPORT_SYMBOL_GPL(e820__mapped_any); 105 106 /* 107 * This function checks if the entire <start,end> range is mapped with 'type'. 108 * 109 * Note: this function only works correctly once the E820 table is sorted and 110 * not-overlapping (at least for the range specified), which is the case normally. 111 */ 112 static struct e820_entry *__e820__mapped_all(u64 start, u64 end, 113 enum e820_type type) 114 { 115 int i; 116 117 for (i = 0; i < e820_table->nr_entries; i++) { 118 struct e820_entry *entry = &e820_table->entries[i]; 119 120 if (type && entry->type != type) 121 continue; 122 123 /* Is the region (part) in overlap with the current region? */ 124 if (entry->addr >= end || entry->addr + entry->size <= start) 125 continue; 126 127 /* 128 * If the region is at the beginning of <start,end> we move 129 * 'start' to the end of the region since it's ok until there 130 */ 131 if (entry->addr <= start) 132 start = entry->addr + entry->size; 133 134 /* 135 * If 'start' is now at or beyond 'end', we're done, full 136 * coverage of the desired range exists: 137 */ 138 if (start >= end) 139 return entry; 140 } 141 142 return NULL; 143 } 144 145 /* 146 * This function checks if the entire range <start,end> is mapped with type. 147 */ 148 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) 149 { 150 return __e820__mapped_all(start, end, type); 151 } 152 153 /* 154 * This function returns the type associated with the range <start,end>. 155 */ 156 int e820__get_entry_type(u64 start, u64 end) 157 { 158 struct e820_entry *entry = __e820__mapped_all(start, end, 0); 159 160 return entry ? entry->type : -EINVAL; 161 } 162 163 /* 164 * Add a memory region to the kernel E820 map. 165 */ 166 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) 167 { 168 int x = table->nr_entries; 169 170 if (x >= ARRAY_SIZE(table->entries)) { 171 pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n", 172 start, start + size - 1); 173 return; 174 } 175 176 table->entries[x].addr = start; 177 table->entries[x].size = size; 178 table->entries[x].type = type; 179 table->nr_entries++; 180 } 181 182 void __init e820__range_add(u64 start, u64 size, enum e820_type type) 183 { 184 __e820__range_add(e820_table, start, size, type); 185 } 186 187 static void __init e820_print_type(enum e820_type type) 188 { 189 switch (type) { 190 case E820_TYPE_RAM: /* Fall through: */ 191 case E820_TYPE_RESERVED_KERN: pr_cont("usable"); break; 192 case E820_TYPE_RESERVED: pr_cont("reserved"); break; 193 case E820_TYPE_SOFT_RESERVED: pr_cont("soft reserved"); break; 194 case E820_TYPE_ACPI: pr_cont("ACPI data"); break; 195 case E820_TYPE_NVS: pr_cont("ACPI NVS"); break; 196 case E820_TYPE_UNUSABLE: pr_cont("unusable"); break; 197 case E820_TYPE_PMEM: /* Fall through: */ 198 case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break; 199 default: pr_cont("type %u", type); break; 200 } 201 } 202 203 void __init e820__print_table(char *who) 204 { 205 int i; 206 207 for (i = 0; i < e820_table->nr_entries; i++) { 208 pr_info("%s: [mem %#018Lx-%#018Lx] ", 209 who, 210 e820_table->entries[i].addr, 211 e820_table->entries[i].addr + e820_table->entries[i].size - 1); 212 213 e820_print_type(e820_table->entries[i].type); 214 pr_cont("\n"); 215 } 216 } 217 218 /* 219 * Sanitize an E820 map. 220 * 221 * Some E820 layouts include overlapping entries. The following 222 * replaces the original E820 map with a new one, removing overlaps, 223 * and resolving conflicting memory types in favor of highest 224 * numbered type. 225 * 226 * The input parameter 'entries' points to an array of 'struct 227 * e820_entry' which on entry has elements in the range [0, *nr_entries) 228 * valid, and which has space for up to max_nr_entries entries. 229 * On return, the resulting sanitized E820 map entries will be in 230 * overwritten in the same location, starting at 'entries'. 231 * 232 * The integer pointed to by nr_entries must be valid on entry (the 233 * current number of valid entries located at 'entries'). If the 234 * sanitizing succeeds the *nr_entries will be updated with the new 235 * number of valid entries (something no more than max_nr_entries). 236 * 237 * The return value from e820__update_table() is zero if it 238 * successfully 'sanitized' the map entries passed in, and is -1 239 * if it did nothing, which can happen if either of (1) it was 240 * only passed one map entry, or (2) any of the input map entries 241 * were invalid (start + size < start, meaning that the size was 242 * so big the described memory range wrapped around through zero.) 243 * 244 * Visually we're performing the following 245 * (1,2,3,4 = memory types)... 246 * 247 * Sample memory map (w/overlaps): 248 * ____22__________________ 249 * ______________________4_ 250 * ____1111________________ 251 * _44_____________________ 252 * 11111111________________ 253 * ____________________33__ 254 * ___________44___________ 255 * __________33333_________ 256 * ______________22________ 257 * ___________________2222_ 258 * _________111111111______ 259 * _____________________11_ 260 * _________________4______ 261 * 262 * Sanitized equivalent (no overlap): 263 * 1_______________________ 264 * _44_____________________ 265 * ___1____________________ 266 * ____22__________________ 267 * ______11________________ 268 * _________1______________ 269 * __________3_____________ 270 * ___________44___________ 271 * _____________33_________ 272 * _______________2________ 273 * ________________1_______ 274 * _________________4______ 275 * ___________________2____ 276 * ____________________33__ 277 * ______________________4_ 278 */ 279 struct change_member { 280 /* Pointer to the original entry: */ 281 struct e820_entry *entry; 282 /* Address for this change point: */ 283 unsigned long long addr; 284 }; 285 286 static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; 287 static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; 288 static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; 289 static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; 290 291 static int __init cpcompare(const void *a, const void *b) 292 { 293 struct change_member * const *app = a, * const *bpp = b; 294 const struct change_member *ap = *app, *bp = *bpp; 295 296 /* 297 * Inputs are pointers to two elements of change_point[]. If their 298 * addresses are not equal, their difference dominates. If the addresses 299 * are equal, then consider one that represents the end of its region 300 * to be greater than one that does not. 301 */ 302 if (ap->addr != bp->addr) 303 return ap->addr > bp->addr ? 1 : -1; 304 305 return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); 306 } 307 308 int __init e820__update_table(struct e820_table *table) 309 { 310 struct e820_entry *entries = table->entries; 311 u32 max_nr_entries = ARRAY_SIZE(table->entries); 312 enum e820_type current_type, last_type; 313 unsigned long long last_addr; 314 u32 new_nr_entries, overlap_entries; 315 u32 i, chg_idx, chg_nr; 316 317 /* If there's only one memory region, don't bother: */ 318 if (table->nr_entries < 2) 319 return -1; 320 321 BUG_ON(table->nr_entries > max_nr_entries); 322 323 /* Bail out if we find any unreasonable addresses in the map: */ 324 for (i = 0; i < table->nr_entries; i++) { 325 if (entries[i].addr + entries[i].size < entries[i].addr) 326 return -1; 327 } 328 329 /* Create pointers for initial change-point information (for sorting): */ 330 for (i = 0; i < 2 * table->nr_entries; i++) 331 change_point[i] = &change_point_list[i]; 332 333 /* 334 * Record all known change-points (starting and ending addresses), 335 * omitting empty memory regions: 336 */ 337 chg_idx = 0; 338 for (i = 0; i < table->nr_entries; i++) { 339 if (entries[i].size != 0) { 340 change_point[chg_idx]->addr = entries[i].addr; 341 change_point[chg_idx++]->entry = &entries[i]; 342 change_point[chg_idx]->addr = entries[i].addr + entries[i].size; 343 change_point[chg_idx++]->entry = &entries[i]; 344 } 345 } 346 chg_nr = chg_idx; 347 348 /* Sort change-point list by memory addresses (low -> high): */ 349 sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); 350 351 /* Create a new memory map, removing overlaps: */ 352 overlap_entries = 0; /* Number of entries in the overlap table */ 353 new_nr_entries = 0; /* Index for creating new map entries */ 354 last_type = 0; /* Start with undefined memory type */ 355 last_addr = 0; /* Start with 0 as last starting address */ 356 357 /* Loop through change-points, determining effect on the new map: */ 358 for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { 359 /* Keep track of all overlapping entries */ 360 if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { 361 /* Add map entry to overlap list (> 1 entry implies an overlap) */ 362 overlap_list[overlap_entries++] = change_point[chg_idx]->entry; 363 } else { 364 /* Remove entry from list (order independent, so swap with last): */ 365 for (i = 0; i < overlap_entries; i++) { 366 if (overlap_list[i] == change_point[chg_idx]->entry) 367 overlap_list[i] = overlap_list[overlap_entries-1]; 368 } 369 overlap_entries--; 370 } 371 /* 372 * If there are overlapping entries, decide which 373 * "type" to use (larger value takes precedence -- 374 * 1=usable, 2,3,4,4+=unusable) 375 */ 376 current_type = 0; 377 for (i = 0; i < overlap_entries; i++) { 378 if (overlap_list[i]->type > current_type) 379 current_type = overlap_list[i]->type; 380 } 381 382 /* Continue building up new map based on this information: */ 383 if (current_type != last_type || current_type == E820_TYPE_PRAM) { 384 if (last_type != 0) { 385 new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; 386 /* Move forward only if the new size was non-zero: */ 387 if (new_entries[new_nr_entries].size != 0) 388 /* No more space left for new entries? */ 389 if (++new_nr_entries >= max_nr_entries) 390 break; 391 } 392 if (current_type != 0) { 393 new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; 394 new_entries[new_nr_entries].type = current_type; 395 last_addr = change_point[chg_idx]->addr; 396 } 397 last_type = current_type; 398 } 399 } 400 401 /* Copy the new entries into the original location: */ 402 memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); 403 table->nr_entries = new_nr_entries; 404 405 return 0; 406 } 407 408 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 409 { 410 struct boot_e820_entry *entry = entries; 411 412 while (nr_entries) { 413 u64 start = entry->addr; 414 u64 size = entry->size; 415 u64 end = start + size - 1; 416 u32 type = entry->type; 417 418 /* Ignore the entry on 64-bit overflow: */ 419 if (start > end && likely(size)) 420 return -1; 421 422 e820__range_add(start, size, type); 423 424 entry++; 425 nr_entries--; 426 } 427 return 0; 428 } 429 430 /* 431 * Copy the BIOS E820 map into a safe place. 432 * 433 * Sanity-check it while we're at it.. 434 * 435 * If we're lucky and live on a modern system, the setup code 436 * will have given us a memory map that we can use to properly 437 * set up memory. If we aren't, we'll fake a memory map. 438 */ 439 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 440 { 441 /* Only one memory region (or negative)? Ignore it */ 442 if (nr_entries < 2) 443 return -1; 444 445 return __append_e820_table(entries, nr_entries); 446 } 447 448 static u64 __init 449 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 450 { 451 u64 end; 452 unsigned int i; 453 u64 real_updated_size = 0; 454 455 BUG_ON(old_type == new_type); 456 457 if (size > (ULLONG_MAX - start)) 458 size = ULLONG_MAX - start; 459 460 end = start + size; 461 printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); 462 e820_print_type(old_type); 463 pr_cont(" ==> "); 464 e820_print_type(new_type); 465 pr_cont("\n"); 466 467 for (i = 0; i < table->nr_entries; i++) { 468 struct e820_entry *entry = &table->entries[i]; 469 u64 final_start, final_end; 470 u64 entry_end; 471 472 if (entry->type != old_type) 473 continue; 474 475 entry_end = entry->addr + entry->size; 476 477 /* Completely covered by new range? */ 478 if (entry->addr >= start && entry_end <= end) { 479 entry->type = new_type; 480 real_updated_size += entry->size; 481 continue; 482 } 483 484 /* New range is completely covered? */ 485 if (entry->addr < start && entry_end > end) { 486 __e820__range_add(table, start, size, new_type); 487 __e820__range_add(table, end, entry_end - end, entry->type); 488 entry->size = start - entry->addr; 489 real_updated_size += size; 490 continue; 491 } 492 493 /* Partially covered: */ 494 final_start = max(start, entry->addr); 495 final_end = min(end, entry_end); 496 if (final_start >= final_end) 497 continue; 498 499 __e820__range_add(table, final_start, final_end - final_start, new_type); 500 501 real_updated_size += final_end - final_start; 502 503 /* 504 * Left range could be head or tail, so need to update 505 * its size first: 506 */ 507 entry->size -= final_end - final_start; 508 if (entry->addr < final_start) 509 continue; 510 511 entry->addr = final_end; 512 } 513 return real_updated_size; 514 } 515 516 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 517 { 518 return __e820__range_update(e820_table, start, size, old_type, new_type); 519 } 520 521 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 522 { 523 return __e820__range_update(e820_table_kexec, start, size, old_type, new_type); 524 } 525 526 /* Remove a range of memory from the E820 table: */ 527 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) 528 { 529 int i; 530 u64 end; 531 u64 real_removed_size = 0; 532 533 if (size > (ULLONG_MAX - start)) 534 size = ULLONG_MAX - start; 535 536 end = start + size; 537 printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); 538 if (check_type) 539 e820_print_type(old_type); 540 pr_cont("\n"); 541 542 for (i = 0; i < e820_table->nr_entries; i++) { 543 struct e820_entry *entry = &e820_table->entries[i]; 544 u64 final_start, final_end; 545 u64 entry_end; 546 547 if (check_type && entry->type != old_type) 548 continue; 549 550 entry_end = entry->addr + entry->size; 551 552 /* Completely covered? */ 553 if (entry->addr >= start && entry_end <= end) { 554 real_removed_size += entry->size; 555 memset(entry, 0, sizeof(*entry)); 556 continue; 557 } 558 559 /* Is the new range completely covered? */ 560 if (entry->addr < start && entry_end > end) { 561 e820__range_add(end, entry_end - end, entry->type); 562 entry->size = start - entry->addr; 563 real_removed_size += size; 564 continue; 565 } 566 567 /* Partially covered: */ 568 final_start = max(start, entry->addr); 569 final_end = min(end, entry_end); 570 if (final_start >= final_end) 571 continue; 572 573 real_removed_size += final_end - final_start; 574 575 /* 576 * Left range could be head or tail, so need to update 577 * the size first: 578 */ 579 entry->size -= final_end - final_start; 580 if (entry->addr < final_start) 581 continue; 582 583 entry->addr = final_end; 584 } 585 return real_removed_size; 586 } 587 588 void __init e820__update_table_print(void) 589 { 590 if (e820__update_table(e820_table)) 591 return; 592 593 pr_info("modified physical RAM map:\n"); 594 e820__print_table("modified"); 595 } 596 597 static void __init e820__update_table_kexec(void) 598 { 599 e820__update_table(e820_table_kexec); 600 } 601 602 #define MAX_GAP_END 0x100000000ull 603 604 /* 605 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). 606 */ 607 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) 608 { 609 unsigned long long last = MAX_GAP_END; 610 int i = e820_table->nr_entries; 611 int found = 0; 612 613 while (--i >= 0) { 614 unsigned long long start = e820_table->entries[i].addr; 615 unsigned long long end = start + e820_table->entries[i].size; 616 617 /* 618 * Since "last" is at most 4GB, we know we'll 619 * fit in 32 bits if this condition is true: 620 */ 621 if (last > end) { 622 unsigned long gap = last - end; 623 624 if (gap >= *gapsize) { 625 *gapsize = gap; 626 *gapstart = end; 627 found = 1; 628 } 629 } 630 if (start < last) 631 last = start; 632 } 633 return found; 634 } 635 636 /* 637 * Search for the biggest gap in the low 32 bits of the E820 638 * memory space. We pass this space to the PCI subsystem, so 639 * that it can assign MMIO resources for hotplug or 640 * unconfigured devices in. 641 * 642 * Hopefully the BIOS let enough space left. 643 */ 644 __init void e820__setup_pci_gap(void) 645 { 646 unsigned long gapstart, gapsize; 647 int found; 648 649 gapsize = 0x400000; 650 found = e820_search_gap(&gapstart, &gapsize); 651 652 if (!found) { 653 #ifdef CONFIG_X86_64 654 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 655 pr_err("Cannot find an available gap in the 32-bit address range\n"); 656 pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); 657 #else 658 gapstart = 0x10000000; 659 #endif 660 } 661 662 /* 663 * e820__reserve_resources_late() protects stolen RAM already: 664 */ 665 pci_mem_start = gapstart; 666 667 pr_info("[mem %#010lx-%#010lx] available for PCI devices\n", 668 gapstart, gapstart + gapsize - 1); 669 } 670 671 /* 672 * Called late during init, in free_initmem(). 673 * 674 * Initial e820_table and e820_table_kexec are largish __initdata arrays. 675 * 676 * Copy them to a (usually much smaller) dynamically allocated area that is 677 * sized precisely after the number of e820 entries. 678 * 679 * This is done after we've performed all the fixes and tweaks to the tables. 680 * All functions which modify them are __init functions, which won't exist 681 * after free_initmem(). 682 */ 683 __init void e820__reallocate_tables(void) 684 { 685 struct e820_table *n; 686 int size; 687 688 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; 689 n = kmemdup(e820_table, size, GFP_KERNEL); 690 BUG_ON(!n); 691 e820_table = n; 692 693 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; 694 n = kmemdup(e820_table_kexec, size, GFP_KERNEL); 695 BUG_ON(!n); 696 e820_table_kexec = n; 697 698 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; 699 n = kmemdup(e820_table_firmware, size, GFP_KERNEL); 700 BUG_ON(!n); 701 e820_table_firmware = n; 702 } 703 704 /* 705 * Because of the small fixed size of struct boot_params, only the first 706 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, 707 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of 708 * struct setup_data, which is parsed here. 709 */ 710 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) 711 { 712 int entries; 713 struct boot_e820_entry *extmap; 714 struct setup_data *sdata; 715 716 sdata = early_memremap(phys_addr, data_len); 717 entries = sdata->len / sizeof(*extmap); 718 extmap = (struct boot_e820_entry *)(sdata->data); 719 720 __append_e820_table(extmap, entries); 721 e820__update_table(e820_table); 722 723 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 724 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 725 726 early_memunmap(sdata, data_len); 727 pr_info("extended physical RAM map:\n"); 728 e820__print_table("extended"); 729 } 730 731 /* 732 * Find the ranges of physical addresses that do not correspond to 733 * E820 RAM areas and register the corresponding pages as 'nosave' for 734 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). 735 * 736 * This function requires the E820 map to be sorted and without any 737 * overlapping entries. 738 */ 739 void __init e820__register_nosave_regions(unsigned long limit_pfn) 740 { 741 int i; 742 unsigned long pfn = 0; 743 744 for (i = 0; i < e820_table->nr_entries; i++) { 745 struct e820_entry *entry = &e820_table->entries[i]; 746 747 if (pfn < PFN_UP(entry->addr)) 748 register_nosave_region(pfn, PFN_UP(entry->addr)); 749 750 pfn = PFN_DOWN(entry->addr + entry->size); 751 752 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 753 register_nosave_region(PFN_UP(entry->addr), pfn); 754 755 if (pfn >= limit_pfn) 756 break; 757 } 758 } 759 760 #ifdef CONFIG_ACPI 761 /* 762 * Register ACPI NVS memory regions, so that we can save/restore them during 763 * hibernation and the subsequent resume: 764 */ 765 static int __init e820__register_nvs_regions(void) 766 { 767 int i; 768 769 for (i = 0; i < e820_table->nr_entries; i++) { 770 struct e820_entry *entry = &e820_table->entries[i]; 771 772 if (entry->type == E820_TYPE_NVS) 773 acpi_nvs_register(entry->addr, entry->size); 774 } 775 776 return 0; 777 } 778 core_initcall(e820__register_nvs_regions); 779 #endif 780 781 /* 782 * Allocate the requested number of bytes with the requsted alignment 783 * and return (the physical address) to the caller. Also register this 784 * range in the 'kexec' E820 table as a reserved range. 785 * 786 * This allows kexec to fake a new mptable, as if it came from the real 787 * system. 788 */ 789 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) 790 { 791 u64 addr; 792 793 addr = memblock_phys_alloc(size, align); 794 if (addr) { 795 e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 796 pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); 797 e820__update_table_kexec(); 798 } 799 800 return addr; 801 } 802 803 #ifdef CONFIG_X86_32 804 # ifdef CONFIG_X86_PAE 805 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 806 # else 807 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 808 # endif 809 #else /* CONFIG_X86_32 */ 810 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 811 #endif 812 813 /* 814 * Find the highest page frame number we have available 815 */ 816 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type) 817 { 818 int i; 819 unsigned long last_pfn = 0; 820 unsigned long max_arch_pfn = MAX_ARCH_PFN; 821 822 for (i = 0; i < e820_table->nr_entries; i++) { 823 struct e820_entry *entry = &e820_table->entries[i]; 824 unsigned long start_pfn; 825 unsigned long end_pfn; 826 827 if (entry->type != type) 828 continue; 829 830 start_pfn = entry->addr >> PAGE_SHIFT; 831 end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; 832 833 if (start_pfn >= limit_pfn) 834 continue; 835 if (end_pfn > limit_pfn) { 836 last_pfn = limit_pfn; 837 break; 838 } 839 if (end_pfn > last_pfn) 840 last_pfn = end_pfn; 841 } 842 843 if (last_pfn > max_arch_pfn) 844 last_pfn = max_arch_pfn; 845 846 pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", 847 last_pfn, max_arch_pfn); 848 return last_pfn; 849 } 850 851 unsigned long __init e820__end_of_ram_pfn(void) 852 { 853 return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM); 854 } 855 856 unsigned long __init e820__end_of_low_ram_pfn(void) 857 { 858 return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM); 859 } 860 861 static void __init early_panic(char *msg) 862 { 863 early_printk(msg); 864 panic(msg); 865 } 866 867 static int userdef __initdata; 868 869 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ 870 static int __init parse_memopt(char *p) 871 { 872 u64 mem_size; 873 874 if (!p) 875 return -EINVAL; 876 877 if (!strcmp(p, "nopentium")) { 878 #ifdef CONFIG_X86_32 879 setup_clear_cpu_cap(X86_FEATURE_PSE); 880 return 0; 881 #else 882 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); 883 return -EINVAL; 884 #endif 885 } 886 887 userdef = 1; 888 mem_size = memparse(p, &p); 889 890 /* Don't remove all memory when getting "mem={invalid}" parameter: */ 891 if (mem_size == 0) 892 return -EINVAL; 893 894 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 895 896 #ifdef CONFIG_MEMORY_HOTPLUG 897 max_mem_size = mem_size; 898 #endif 899 900 return 0; 901 } 902 early_param("mem", parse_memopt); 903 904 static int __init parse_memmap_one(char *p) 905 { 906 char *oldp; 907 u64 start_at, mem_size; 908 909 if (!p) 910 return -EINVAL; 911 912 if (!strncmp(p, "exactmap", 8)) { 913 e820_table->nr_entries = 0; 914 userdef = 1; 915 return 0; 916 } 917 918 oldp = p; 919 mem_size = memparse(p, &p); 920 if (p == oldp) 921 return -EINVAL; 922 923 userdef = 1; 924 if (*p == '@') { 925 start_at = memparse(p+1, &p); 926 e820__range_add(start_at, mem_size, E820_TYPE_RAM); 927 } else if (*p == '#') { 928 start_at = memparse(p+1, &p); 929 e820__range_add(start_at, mem_size, E820_TYPE_ACPI); 930 } else if (*p == '$') { 931 start_at = memparse(p+1, &p); 932 e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); 933 } else if (*p == '!') { 934 start_at = memparse(p+1, &p); 935 e820__range_add(start_at, mem_size, E820_TYPE_PRAM); 936 } else if (*p == '%') { 937 enum e820_type from = 0, to = 0; 938 939 start_at = memparse(p + 1, &p); 940 if (*p == '-') 941 from = simple_strtoull(p + 1, &p, 0); 942 if (*p == '+') 943 to = simple_strtoull(p + 1, &p, 0); 944 if (*p != '\0') 945 return -EINVAL; 946 if (from && to) 947 e820__range_update(start_at, mem_size, from, to); 948 else if (to) 949 e820__range_add(start_at, mem_size, to); 950 else if (from) 951 e820__range_remove(start_at, mem_size, from, 1); 952 else 953 e820__range_remove(start_at, mem_size, 0, 0); 954 } else { 955 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 956 } 957 958 return *p == '\0' ? 0 : -EINVAL; 959 } 960 961 static int __init parse_memmap_opt(char *str) 962 { 963 while (str) { 964 char *k = strchr(str, ','); 965 966 if (k) 967 *k++ = 0; 968 969 parse_memmap_one(str); 970 str = k; 971 } 972 973 return 0; 974 } 975 early_param("memmap", parse_memmap_opt); 976 977 /* 978 * Reserve all entries from the bootloader's extensible data nodes list, 979 * because if present we are going to use it later on to fetch e820 980 * entries from it: 981 */ 982 void __init e820__reserve_setup_data(void) 983 { 984 struct setup_data *data; 985 u64 pa_data; 986 987 pa_data = boot_params.hdr.setup_data; 988 if (!pa_data) 989 return; 990 991 while (pa_data) { 992 data = early_memremap(pa_data, sizeof(*data)); 993 e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 994 995 /* 996 * SETUP_EFI is supplied by kexec and does not need to be 997 * reserved. 998 */ 999 if (data->type != SETUP_EFI) 1000 e820__range_update_kexec(pa_data, 1001 sizeof(*data) + data->len, 1002 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1003 1004 if (data->type == SETUP_INDIRECT && 1005 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) { 1006 e820__range_update(((struct setup_indirect *)data->data)->addr, 1007 ((struct setup_indirect *)data->data)->len, 1008 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1009 e820__range_update_kexec(((struct setup_indirect *)data->data)->addr, 1010 ((struct setup_indirect *)data->data)->len, 1011 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1012 } 1013 1014 pa_data = data->next; 1015 early_memunmap(data, sizeof(*data)); 1016 } 1017 1018 e820__update_table(e820_table); 1019 e820__update_table(e820_table_kexec); 1020 1021 pr_info("extended physical RAM map:\n"); 1022 e820__print_table("reserve setup_data"); 1023 } 1024 1025 /* 1026 * Called after parse_early_param(), after early parameters (such as mem=) 1027 * have been processed, in which case we already have an E820 table filled in 1028 * via the parameter callback function(s), but it's not sorted and printed yet: 1029 */ 1030 void __init e820__finish_early_params(void) 1031 { 1032 if (userdef) { 1033 if (e820__update_table(e820_table) < 0) 1034 early_panic("Invalid user supplied memory map"); 1035 1036 pr_info("user-defined physical RAM map:\n"); 1037 e820__print_table("user"); 1038 } 1039 } 1040 1041 static const char *__init e820_type_to_string(struct e820_entry *entry) 1042 { 1043 switch (entry->type) { 1044 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1045 case E820_TYPE_RAM: return "System RAM"; 1046 case E820_TYPE_ACPI: return "ACPI Tables"; 1047 case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; 1048 case E820_TYPE_UNUSABLE: return "Unusable memory"; 1049 case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; 1050 case E820_TYPE_PMEM: return "Persistent Memory"; 1051 case E820_TYPE_RESERVED: return "Reserved"; 1052 case E820_TYPE_SOFT_RESERVED: return "Soft Reserved"; 1053 default: return "Unknown E820 type"; 1054 } 1055 } 1056 1057 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) 1058 { 1059 switch (entry->type) { 1060 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1061 case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; 1062 case E820_TYPE_ACPI: /* Fall-through: */ 1063 case E820_TYPE_NVS: /* Fall-through: */ 1064 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1065 case E820_TYPE_PRAM: /* Fall-through: */ 1066 case E820_TYPE_PMEM: /* Fall-through: */ 1067 case E820_TYPE_RESERVED: /* Fall-through: */ 1068 case E820_TYPE_SOFT_RESERVED: /* Fall-through: */ 1069 default: return IORESOURCE_MEM; 1070 } 1071 } 1072 1073 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) 1074 { 1075 switch (entry->type) { 1076 case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; 1077 case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; 1078 case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; 1079 case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; 1080 case E820_TYPE_RESERVED: return IORES_DESC_RESERVED; 1081 case E820_TYPE_SOFT_RESERVED: return IORES_DESC_SOFT_RESERVED; 1082 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1083 case E820_TYPE_RAM: /* Fall-through: */ 1084 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1085 default: return IORES_DESC_NONE; 1086 } 1087 } 1088 1089 static bool __init do_mark_busy(enum e820_type type, struct resource *res) 1090 { 1091 /* this is the legacy bios/dos rom-shadow + mmio region */ 1092 if (res->start < (1ULL<<20)) 1093 return true; 1094 1095 /* 1096 * Treat persistent memory and other special memory ranges like 1097 * device memory, i.e. reserve it for exclusive use of a driver 1098 */ 1099 switch (type) { 1100 case E820_TYPE_RESERVED: 1101 case E820_TYPE_SOFT_RESERVED: 1102 case E820_TYPE_PRAM: 1103 case E820_TYPE_PMEM: 1104 return false; 1105 case E820_TYPE_RESERVED_KERN: 1106 case E820_TYPE_RAM: 1107 case E820_TYPE_ACPI: 1108 case E820_TYPE_NVS: 1109 case E820_TYPE_UNUSABLE: 1110 default: 1111 return true; 1112 } 1113 } 1114 1115 /* 1116 * Mark E820 reserved areas as busy for the resource manager: 1117 */ 1118 1119 static struct resource __initdata *e820_res; 1120 1121 void __init e820__reserve_resources(void) 1122 { 1123 int i; 1124 struct resource *res; 1125 u64 end; 1126 1127 res = memblock_alloc(sizeof(*res) * e820_table->nr_entries, 1128 SMP_CACHE_BYTES); 1129 if (!res) 1130 panic("%s: Failed to allocate %zu bytes\n", __func__, 1131 sizeof(*res) * e820_table->nr_entries); 1132 e820_res = res; 1133 1134 for (i = 0; i < e820_table->nr_entries; i++) { 1135 struct e820_entry *entry = e820_table->entries + i; 1136 1137 end = entry->addr + entry->size - 1; 1138 if (end != (resource_size_t)end) { 1139 res++; 1140 continue; 1141 } 1142 res->start = entry->addr; 1143 res->end = end; 1144 res->name = e820_type_to_string(entry); 1145 res->flags = e820_type_to_iomem_type(entry); 1146 res->desc = e820_type_to_iores_desc(entry); 1147 1148 /* 1149 * Don't register the region that could be conflicted with 1150 * PCI device BAR resources and insert them later in 1151 * pcibios_resource_survey(): 1152 */ 1153 if (do_mark_busy(entry->type, res)) { 1154 res->flags |= IORESOURCE_BUSY; 1155 insert_resource(&iomem_resource, res); 1156 } 1157 res++; 1158 } 1159 1160 /* Expose the bootloader-provided memory layout to the sysfs. */ 1161 for (i = 0; i < e820_table_firmware->nr_entries; i++) { 1162 struct e820_entry *entry = e820_table_firmware->entries + i; 1163 1164 firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); 1165 } 1166 } 1167 1168 /* 1169 * How much should we pad the end of RAM, depending on where it is? 1170 */ 1171 static unsigned long __init ram_alignment(resource_size_t pos) 1172 { 1173 unsigned long mb = pos >> 20; 1174 1175 /* To 64kB in the first megabyte */ 1176 if (!mb) 1177 return 64*1024; 1178 1179 /* To 1MB in the first 16MB */ 1180 if (mb < 16) 1181 return 1024*1024; 1182 1183 /* To 64MB for anything above that */ 1184 return 64*1024*1024; 1185 } 1186 1187 #define MAX_RESOURCE_SIZE ((resource_size_t)-1) 1188 1189 void __init e820__reserve_resources_late(void) 1190 { 1191 int i; 1192 struct resource *res; 1193 1194 res = e820_res; 1195 for (i = 0; i < e820_table->nr_entries; i++) { 1196 if (!res->parent && res->end) 1197 insert_resource_expand_to_fit(&iomem_resource, res); 1198 res++; 1199 } 1200 1201 /* 1202 * Try to bump up RAM regions to reasonable boundaries, to 1203 * avoid stolen RAM: 1204 */ 1205 for (i = 0; i < e820_table->nr_entries; i++) { 1206 struct e820_entry *entry = &e820_table->entries[i]; 1207 u64 start, end; 1208 1209 if (entry->type != E820_TYPE_RAM) 1210 continue; 1211 1212 start = entry->addr + entry->size; 1213 end = round_up(start, ram_alignment(start)) - 1; 1214 if (end > MAX_RESOURCE_SIZE) 1215 end = MAX_RESOURCE_SIZE; 1216 if (start >= end) 1217 continue; 1218 1219 printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); 1220 reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); 1221 } 1222 } 1223 1224 /* 1225 * Pass the firmware (bootloader) E820 map to the kernel and process it: 1226 */ 1227 char *__init e820__memory_setup_default(void) 1228 { 1229 char *who = "BIOS-e820"; 1230 1231 /* 1232 * Try to copy the BIOS-supplied E820-map. 1233 * 1234 * Otherwise fake a memory map; one section from 0k->640k, 1235 * the next section from 1mb->appropriate_mem_k 1236 */ 1237 if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { 1238 u64 mem_size; 1239 1240 /* Compare results from other methods and take the one that gives more RAM: */ 1241 if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { 1242 mem_size = boot_params.screen_info.ext_mem_k; 1243 who = "BIOS-88"; 1244 } else { 1245 mem_size = boot_params.alt_mem_k; 1246 who = "BIOS-e801"; 1247 } 1248 1249 e820_table->nr_entries = 0; 1250 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); 1251 e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); 1252 } 1253 1254 /* We just appended a lot of ranges, sanitize the table: */ 1255 e820__update_table(e820_table); 1256 1257 return who; 1258 } 1259 1260 /* 1261 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader 1262 * E820 map - with an optional platform quirk available for virtual platforms 1263 * to override this method of boot environment processing: 1264 */ 1265 void __init e820__memory_setup(void) 1266 { 1267 char *who; 1268 1269 /* This is a firmware interface ABI - make sure we don't break it: */ 1270 BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); 1271 1272 who = x86_init.resources.memory_setup(); 1273 1274 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 1275 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 1276 1277 pr_info("BIOS-provided physical RAM map:\n"); 1278 e820__print_table(who); 1279 } 1280 1281 void __init e820__memblock_setup(void) 1282 { 1283 int i; 1284 u64 end; 1285 1286 /* 1287 * The bootstrap memblock region count maximum is 128 entries 1288 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries 1289 * than that - so allow memblock resizing. 1290 * 1291 * This is safe, because this call happens pretty late during x86 setup, 1292 * so we know about reserved memory regions already. (This is important 1293 * so that memblock resizing does no stomp over reserved areas.) 1294 */ 1295 memblock_allow_resize(); 1296 1297 for (i = 0; i < e820_table->nr_entries; i++) { 1298 struct e820_entry *entry = &e820_table->entries[i]; 1299 1300 end = entry->addr + entry->size; 1301 if (end != (resource_size_t)end) 1302 continue; 1303 1304 if (entry->type == E820_TYPE_SOFT_RESERVED) 1305 memblock_reserve(entry->addr, entry->size); 1306 1307 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 1308 continue; 1309 1310 memblock_add(entry->addr, entry->size); 1311 } 1312 1313 /* Throw away partial pages: */ 1314 memblock_trim_memory(PAGE_SIZE); 1315 1316 memblock_dump_all(); 1317 } 1318