xref: /linux/arch/x86/kernel/dumpstack.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/utsname.h>
9 #include <linux/hardirq.h>
10 #include <linux/kdebug.h>
11 #include <linux/module.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/ftrace.h>
16 #include <linux/kexec.h>
17 #include <linux/bug.h>
18 #include <linux/nmi.h>
19 #include <linux/sysfs.h>
20 #include <linux/kasan.h>
21 
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/unwind.h>
25 
26 int panic_on_unrecovered_nmi;
27 int panic_on_io_nmi;
28 static int die_counter;
29 
30 static struct pt_regs exec_summary_regs;
31 
32 bool in_task_stack(unsigned long *stack, struct task_struct *task,
33 		   struct stack_info *info)
34 {
35 	unsigned long *begin = task_stack_page(task);
36 	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
37 
38 	if (stack < begin || stack >= end)
39 		return false;
40 
41 	info->type	= STACK_TYPE_TASK;
42 	info->begin	= begin;
43 	info->end	= end;
44 	info->next_sp	= NULL;
45 
46 	return true;
47 }
48 
49 bool in_entry_stack(unsigned long *stack, struct stack_info *info)
50 {
51 	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
52 
53 	void *begin = ss;
54 	void *end = ss + 1;
55 
56 	if ((void *)stack < begin || (void *)stack >= end)
57 		return false;
58 
59 	info->type	= STACK_TYPE_ENTRY;
60 	info->begin	= begin;
61 	info->end	= end;
62 	info->next_sp	= NULL;
63 
64 	return true;
65 }
66 
67 static void printk_stack_address(unsigned long address, int reliable,
68 				 const char *log_lvl)
69 {
70 	touch_nmi_watchdog();
71 	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
72 }
73 
74 static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src,
75 		     unsigned int nbytes)
76 {
77 	if (!user_mode(regs))
78 		return copy_from_kernel_nofault(buf, (u8 *)src, nbytes);
79 
80 	/*
81 	 * Make sure userspace isn't trying to trick us into dumping kernel
82 	 * memory by pointing the userspace instruction pointer at it.
83 	 */
84 	if (__chk_range_not_ok(src, nbytes, TASK_SIZE_MAX))
85 		return -EINVAL;
86 
87 	return copy_from_user_nmi(buf, (void __user *)src, nbytes);
88 }
89 
90 /*
91  * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
92  *
93  * In case where we don't have the exact kernel image (which, if we did, we can
94  * simply disassemble and navigate to the RIP), the purpose of the bigger
95  * prologue is to have more context and to be able to correlate the code from
96  * the different toolchains better.
97  *
98  * In addition, it helps in recreating the register allocation of the failing
99  * kernel and thus make sense of the register dump.
100  *
101  * What is more, the additional complication of a variable length insn arch like
102  * x86 warrants having longer byte sequence before rIP so that the disassembler
103  * can "sync" up properly and find instruction boundaries when decoding the
104  * opcode bytes.
105  *
106  * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
107  * guesstimate in attempt to achieve all of the above.
108  */
109 void show_opcodes(struct pt_regs *regs, const char *loglvl)
110 {
111 #define PROLOGUE_SIZE 42
112 #define EPILOGUE_SIZE 21
113 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
114 	u8 opcodes[OPCODE_BUFSIZE];
115 	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
116 
117 	if (copy_code(regs, opcodes, prologue, sizeof(opcodes))) {
118 		printk("%sCode: Unable to access opcode bytes at RIP 0x%lx.\n",
119 		       loglvl, prologue);
120 	} else {
121 		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
122 		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
123 		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
124 	}
125 }
126 
127 void show_ip(struct pt_regs *regs, const char *loglvl)
128 {
129 #ifdef CONFIG_X86_32
130 	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
131 #else
132 	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
133 #endif
134 	show_opcodes(regs, loglvl);
135 }
136 
137 void show_iret_regs(struct pt_regs *regs, const char *log_lvl)
138 {
139 	show_ip(regs, log_lvl);
140 	printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss,
141 		regs->sp, regs->flags);
142 }
143 
144 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
145 				  bool partial, const char *log_lvl)
146 {
147 	/*
148 	 * These on_stack() checks aren't strictly necessary: the unwind code
149 	 * has already validated the 'regs' pointer.  The checks are done for
150 	 * ordering reasons: if the registers are on the next stack, we don't
151 	 * want to print them out yet.  Otherwise they'll be shown as part of
152 	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
153 	 * next stack, this function will be called again with the same regs so
154 	 * they can be printed in the right context.
155 	 */
156 	if (!partial && on_stack(info, regs, sizeof(*regs))) {
157 		__show_regs(regs, SHOW_REGS_SHORT, log_lvl);
158 
159 	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
160 				       IRET_FRAME_SIZE)) {
161 		/*
162 		 * When an interrupt or exception occurs in entry code, the
163 		 * full pt_regs might not have been saved yet.  In that case
164 		 * just print the iret frame.
165 		 */
166 		show_iret_regs(regs, log_lvl);
167 	}
168 }
169 
170 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
171 			unsigned long *stack, const char *log_lvl)
172 {
173 	struct unwind_state state;
174 	struct stack_info stack_info = {0};
175 	unsigned long visit_mask = 0;
176 	int graph_idx = 0;
177 	bool partial = false;
178 
179 	printk("%sCall Trace:\n", log_lvl);
180 
181 	unwind_start(&state, task, regs, stack);
182 	stack = stack ? : get_stack_pointer(task, regs);
183 	regs = unwind_get_entry_regs(&state, &partial);
184 
185 	/*
186 	 * Iterate through the stacks, starting with the current stack pointer.
187 	 * Each stack has a pointer to the next one.
188 	 *
189 	 * x86-64 can have several stacks:
190 	 * - task stack
191 	 * - interrupt stack
192 	 * - HW exception stacks (double fault, nmi, debug, mce)
193 	 * - entry stack
194 	 *
195 	 * x86-32 can have up to four stacks:
196 	 * - task stack
197 	 * - softirq stack
198 	 * - hardirq stack
199 	 * - entry stack
200 	 */
201 	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
202 		const char *stack_name;
203 
204 		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
205 			/*
206 			 * We weren't on a valid stack.  It's possible that
207 			 * we overflowed a valid stack into a guard page.
208 			 * See if the next page up is valid so that we can
209 			 * generate some kind of backtrace if this happens.
210 			 */
211 			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
212 			if (get_stack_info(stack, task, &stack_info, &visit_mask))
213 				break;
214 		}
215 
216 		stack_name = stack_type_name(stack_info.type);
217 		if (stack_name)
218 			printk("%s <%s>\n", log_lvl, stack_name);
219 
220 		if (regs)
221 			show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
222 
223 		/*
224 		 * Scan the stack, printing any text addresses we find.  At the
225 		 * same time, follow proper stack frames with the unwinder.
226 		 *
227 		 * Addresses found during the scan which are not reported by
228 		 * the unwinder are considered to be additional clues which are
229 		 * sometimes useful for debugging and are prefixed with '?'.
230 		 * This also serves as a failsafe option in case the unwinder
231 		 * goes off in the weeds.
232 		 */
233 		for (; stack < stack_info.end; stack++) {
234 			unsigned long real_addr;
235 			int reliable = 0;
236 			unsigned long addr = READ_ONCE_NOCHECK(*stack);
237 			unsigned long *ret_addr_p =
238 				unwind_get_return_address_ptr(&state);
239 
240 			if (!__kernel_text_address(addr))
241 				continue;
242 
243 			/*
244 			 * Don't print regs->ip again if it was already printed
245 			 * by show_regs_if_on_stack().
246 			 */
247 			if (regs && stack == &regs->ip)
248 				goto next;
249 
250 			if (stack == ret_addr_p)
251 				reliable = 1;
252 
253 			/*
254 			 * When function graph tracing is enabled for a
255 			 * function, its return address on the stack is
256 			 * replaced with the address of an ftrace handler
257 			 * (return_to_handler).  In that case, before printing
258 			 * the "real" address, we want to print the handler
259 			 * address as an "unreliable" hint that function graph
260 			 * tracing was involved.
261 			 */
262 			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
263 							  addr, stack);
264 			if (real_addr != addr)
265 				printk_stack_address(addr, 0, log_lvl);
266 			printk_stack_address(real_addr, reliable, log_lvl);
267 
268 			if (!reliable)
269 				continue;
270 
271 next:
272 			/*
273 			 * Get the next frame from the unwinder.  No need to
274 			 * check for an error: if anything goes wrong, the rest
275 			 * of the addresses will just be printed as unreliable.
276 			 */
277 			unwind_next_frame(&state);
278 
279 			/* if the frame has entry regs, print them */
280 			regs = unwind_get_entry_regs(&state, &partial);
281 			if (regs)
282 				show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
283 		}
284 
285 		if (stack_name)
286 			printk("%s </%s>\n", log_lvl, stack_name);
287 	}
288 }
289 
290 void show_stack(struct task_struct *task, unsigned long *sp,
291 		       const char *loglvl)
292 {
293 	task = task ? : current;
294 
295 	/*
296 	 * Stack frames below this one aren't interesting.  Don't show them
297 	 * if we're printing for %current.
298 	 */
299 	if (!sp && task == current)
300 		sp = get_stack_pointer(current, NULL);
301 
302 	show_trace_log_lvl(task, NULL, sp, loglvl);
303 }
304 
305 void show_stack_regs(struct pt_regs *regs)
306 {
307 	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
308 }
309 
310 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
311 static int die_owner = -1;
312 static unsigned int die_nest_count;
313 
314 unsigned long oops_begin(void)
315 {
316 	int cpu;
317 	unsigned long flags;
318 
319 	oops_enter();
320 
321 	/* racy, but better than risking deadlock. */
322 	raw_local_irq_save(flags);
323 	cpu = smp_processor_id();
324 	if (!arch_spin_trylock(&die_lock)) {
325 		if (cpu == die_owner)
326 			/* nested oops. should stop eventually */;
327 		else
328 			arch_spin_lock(&die_lock);
329 	}
330 	die_nest_count++;
331 	die_owner = cpu;
332 	console_verbose();
333 	bust_spinlocks(1);
334 	return flags;
335 }
336 NOKPROBE_SYMBOL(oops_begin);
337 
338 void __noreturn rewind_stack_do_exit(int signr);
339 
340 void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
341 {
342 	if (regs && kexec_should_crash(current))
343 		crash_kexec(regs);
344 
345 	bust_spinlocks(0);
346 	die_owner = -1;
347 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
348 	die_nest_count--;
349 	if (!die_nest_count)
350 		/* Nest count reaches zero, release the lock. */
351 		arch_spin_unlock(&die_lock);
352 	raw_local_irq_restore(flags);
353 	oops_exit();
354 
355 	/* Executive summary in case the oops scrolled away */
356 	__show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT);
357 
358 	if (!signr)
359 		return;
360 	if (in_interrupt())
361 		panic("Fatal exception in interrupt");
362 	if (panic_on_oops)
363 		panic("Fatal exception");
364 
365 	/*
366 	 * We're not going to return, but we might be on an IST stack or
367 	 * have very little stack space left.  Rewind the stack and kill
368 	 * the task.
369 	 * Before we rewind the stack, we have to tell KASAN that we're going to
370 	 * reuse the task stack and that existing poisons are invalid.
371 	 */
372 	kasan_unpoison_task_stack(current);
373 	rewind_stack_do_exit(signr);
374 }
375 NOKPROBE_SYMBOL(oops_end);
376 
377 static void __die_header(const char *str, struct pt_regs *regs, long err)
378 {
379 	const char *pr = "";
380 
381 	/* Save the regs of the first oops for the executive summary later. */
382 	if (!die_counter)
383 		exec_summary_regs = *regs;
384 
385 	if (IS_ENABLED(CONFIG_PREEMPTION))
386 		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
387 
388 	printk(KERN_DEFAULT
389 	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
390 	       pr,
391 	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
392 	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
393 	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
394 	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
395 	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
396 }
397 NOKPROBE_SYMBOL(__die_header);
398 
399 static int __die_body(const char *str, struct pt_regs *regs, long err)
400 {
401 	show_regs(regs);
402 	print_modules();
403 
404 	if (notify_die(DIE_OOPS, str, regs, err,
405 			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
406 		return 1;
407 
408 	return 0;
409 }
410 NOKPROBE_SYMBOL(__die_body);
411 
412 int __die(const char *str, struct pt_regs *regs, long err)
413 {
414 	__die_header(str, regs, err);
415 	return __die_body(str, regs, err);
416 }
417 NOKPROBE_SYMBOL(__die);
418 
419 /*
420  * This is gone through when something in the kernel has done something bad
421  * and is about to be terminated:
422  */
423 void die(const char *str, struct pt_regs *regs, long err)
424 {
425 	unsigned long flags = oops_begin();
426 	int sig = SIGSEGV;
427 
428 	if (__die(str, regs, err))
429 		sig = 0;
430 	oops_end(flags, regs, sig);
431 }
432 
433 void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
434 {
435 	unsigned long flags = oops_begin();
436 	int sig = SIGSEGV;
437 
438 	__die_header(str, regs, err);
439 	if (gp_addr)
440 		kasan_non_canonical_hook(gp_addr);
441 	if (__die_body(str, regs, err))
442 		sig = 0;
443 	oops_end(flags, regs, sig);
444 }
445 
446 void show_regs(struct pt_regs *regs)
447 {
448 	enum show_regs_mode print_kernel_regs;
449 
450 	show_regs_print_info(KERN_DEFAULT);
451 
452 	print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL;
453 	__show_regs(regs, print_kernel_regs, KERN_DEFAULT);
454 
455 	/*
456 	 * When in-kernel, we also print out the stack at the time of the fault..
457 	 */
458 	if (!user_mode(regs))
459 		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
460 }
461