1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 */ 5 #include <linux/kallsyms.h> 6 #include <linux/kprobes.h> 7 #include <linux/uaccess.h> 8 #include <linux/utsname.h> 9 #include <linux/hardirq.h> 10 #include <linux/kdebug.h> 11 #include <linux/module.h> 12 #include <linux/ptrace.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/ftrace.h> 16 #include <linux/kexec.h> 17 #include <linux/bug.h> 18 #include <linux/nmi.h> 19 #include <linux/sysfs.h> 20 #include <linux/kasan.h> 21 22 #include <asm/cpu_entry_area.h> 23 #include <asm/stacktrace.h> 24 #include <asm/unwind.h> 25 26 int panic_on_unrecovered_nmi; 27 int panic_on_io_nmi; 28 static int die_counter; 29 30 static struct pt_regs exec_summary_regs; 31 32 bool in_task_stack(unsigned long *stack, struct task_struct *task, 33 struct stack_info *info) 34 { 35 unsigned long *begin = task_stack_page(task); 36 unsigned long *end = task_stack_page(task) + THREAD_SIZE; 37 38 if (stack < begin || stack >= end) 39 return false; 40 41 info->type = STACK_TYPE_TASK; 42 info->begin = begin; 43 info->end = end; 44 info->next_sp = NULL; 45 46 return true; 47 } 48 49 bool in_entry_stack(unsigned long *stack, struct stack_info *info) 50 { 51 struct entry_stack *ss = cpu_entry_stack(smp_processor_id()); 52 53 void *begin = ss; 54 void *end = ss + 1; 55 56 if ((void *)stack < begin || (void *)stack >= end) 57 return false; 58 59 info->type = STACK_TYPE_ENTRY; 60 info->begin = begin; 61 info->end = end; 62 info->next_sp = NULL; 63 64 return true; 65 } 66 67 static void printk_stack_address(unsigned long address, int reliable, 68 const char *log_lvl) 69 { 70 touch_nmi_watchdog(); 71 printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address); 72 } 73 74 static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src, 75 unsigned int nbytes) 76 { 77 if (!user_mode(regs)) 78 return copy_from_kernel_nofault(buf, (u8 *)src, nbytes); 79 80 /* 81 * Make sure userspace isn't trying to trick us into dumping kernel 82 * memory by pointing the userspace instruction pointer at it. 83 */ 84 if (__chk_range_not_ok(src, nbytes, TASK_SIZE_MAX)) 85 return -EINVAL; 86 87 return copy_from_user_nmi(buf, (void __user *)src, nbytes); 88 } 89 90 /* 91 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus: 92 * 93 * In case where we don't have the exact kernel image (which, if we did, we can 94 * simply disassemble and navigate to the RIP), the purpose of the bigger 95 * prologue is to have more context and to be able to correlate the code from 96 * the different toolchains better. 97 * 98 * In addition, it helps in recreating the register allocation of the failing 99 * kernel and thus make sense of the register dump. 100 * 101 * What is more, the additional complication of a variable length insn arch like 102 * x86 warrants having longer byte sequence before rIP so that the disassembler 103 * can "sync" up properly and find instruction boundaries when decoding the 104 * opcode bytes. 105 * 106 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random 107 * guesstimate in attempt to achieve all of the above. 108 */ 109 void show_opcodes(struct pt_regs *regs, const char *loglvl) 110 { 111 #define PROLOGUE_SIZE 42 112 #define EPILOGUE_SIZE 21 113 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE) 114 u8 opcodes[OPCODE_BUFSIZE]; 115 unsigned long prologue = regs->ip - PROLOGUE_SIZE; 116 117 if (copy_code(regs, opcodes, prologue, sizeof(opcodes))) { 118 printk("%sCode: Unable to access opcode bytes at RIP 0x%lx.\n", 119 loglvl, prologue); 120 } else { 121 printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %" 122 __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes, 123 opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1); 124 } 125 } 126 127 void show_ip(struct pt_regs *regs, const char *loglvl) 128 { 129 #ifdef CONFIG_X86_32 130 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip); 131 #else 132 printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip); 133 #endif 134 show_opcodes(regs, loglvl); 135 } 136 137 void show_iret_regs(struct pt_regs *regs, const char *log_lvl) 138 { 139 show_ip(regs, log_lvl); 140 printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss, 141 regs->sp, regs->flags); 142 } 143 144 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs, 145 bool partial, const char *log_lvl) 146 { 147 /* 148 * These on_stack() checks aren't strictly necessary: the unwind code 149 * has already validated the 'regs' pointer. The checks are done for 150 * ordering reasons: if the registers are on the next stack, we don't 151 * want to print them out yet. Otherwise they'll be shown as part of 152 * the wrong stack. Later, when show_trace_log_lvl() switches to the 153 * next stack, this function will be called again with the same regs so 154 * they can be printed in the right context. 155 */ 156 if (!partial && on_stack(info, regs, sizeof(*regs))) { 157 __show_regs(regs, SHOW_REGS_SHORT, log_lvl); 158 159 } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET, 160 IRET_FRAME_SIZE)) { 161 /* 162 * When an interrupt or exception occurs in entry code, the 163 * full pt_regs might not have been saved yet. In that case 164 * just print the iret frame. 165 */ 166 show_iret_regs(regs, log_lvl); 167 } 168 } 169 170 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, 171 unsigned long *stack, const char *log_lvl) 172 { 173 struct unwind_state state; 174 struct stack_info stack_info = {0}; 175 unsigned long visit_mask = 0; 176 int graph_idx = 0; 177 bool partial = false; 178 179 printk("%sCall Trace:\n", log_lvl); 180 181 unwind_start(&state, task, regs, stack); 182 stack = stack ? : get_stack_pointer(task, regs); 183 regs = unwind_get_entry_regs(&state, &partial); 184 185 /* 186 * Iterate through the stacks, starting with the current stack pointer. 187 * Each stack has a pointer to the next one. 188 * 189 * x86-64 can have several stacks: 190 * - task stack 191 * - interrupt stack 192 * - HW exception stacks (double fault, nmi, debug, mce) 193 * - entry stack 194 * 195 * x86-32 can have up to four stacks: 196 * - task stack 197 * - softirq stack 198 * - hardirq stack 199 * - entry stack 200 */ 201 for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) { 202 const char *stack_name; 203 204 if (get_stack_info(stack, task, &stack_info, &visit_mask)) { 205 /* 206 * We weren't on a valid stack. It's possible that 207 * we overflowed a valid stack into a guard page. 208 * See if the next page up is valid so that we can 209 * generate some kind of backtrace if this happens. 210 */ 211 stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack); 212 if (get_stack_info(stack, task, &stack_info, &visit_mask)) 213 break; 214 } 215 216 stack_name = stack_type_name(stack_info.type); 217 if (stack_name) 218 printk("%s <%s>\n", log_lvl, stack_name); 219 220 if (regs) 221 show_regs_if_on_stack(&stack_info, regs, partial, log_lvl); 222 223 /* 224 * Scan the stack, printing any text addresses we find. At the 225 * same time, follow proper stack frames with the unwinder. 226 * 227 * Addresses found during the scan which are not reported by 228 * the unwinder are considered to be additional clues which are 229 * sometimes useful for debugging and are prefixed with '?'. 230 * This also serves as a failsafe option in case the unwinder 231 * goes off in the weeds. 232 */ 233 for (; stack < stack_info.end; stack++) { 234 unsigned long real_addr; 235 int reliable = 0; 236 unsigned long addr = READ_ONCE_NOCHECK(*stack); 237 unsigned long *ret_addr_p = 238 unwind_get_return_address_ptr(&state); 239 240 if (!__kernel_text_address(addr)) 241 continue; 242 243 /* 244 * Don't print regs->ip again if it was already printed 245 * by show_regs_if_on_stack(). 246 */ 247 if (regs && stack == ®s->ip) 248 goto next; 249 250 if (stack == ret_addr_p) 251 reliable = 1; 252 253 /* 254 * When function graph tracing is enabled for a 255 * function, its return address on the stack is 256 * replaced with the address of an ftrace handler 257 * (return_to_handler). In that case, before printing 258 * the "real" address, we want to print the handler 259 * address as an "unreliable" hint that function graph 260 * tracing was involved. 261 */ 262 real_addr = ftrace_graph_ret_addr(task, &graph_idx, 263 addr, stack); 264 if (real_addr != addr) 265 printk_stack_address(addr, 0, log_lvl); 266 printk_stack_address(real_addr, reliable, log_lvl); 267 268 if (!reliable) 269 continue; 270 271 next: 272 /* 273 * Get the next frame from the unwinder. No need to 274 * check for an error: if anything goes wrong, the rest 275 * of the addresses will just be printed as unreliable. 276 */ 277 unwind_next_frame(&state); 278 279 /* if the frame has entry regs, print them */ 280 regs = unwind_get_entry_regs(&state, &partial); 281 if (regs) 282 show_regs_if_on_stack(&stack_info, regs, partial, log_lvl); 283 } 284 285 if (stack_name) 286 printk("%s </%s>\n", log_lvl, stack_name); 287 } 288 } 289 290 void show_stack(struct task_struct *task, unsigned long *sp, 291 const char *loglvl) 292 { 293 task = task ? : current; 294 295 /* 296 * Stack frames below this one aren't interesting. Don't show them 297 * if we're printing for %current. 298 */ 299 if (!sp && task == current) 300 sp = get_stack_pointer(current, NULL); 301 302 show_trace_log_lvl(task, NULL, sp, loglvl); 303 } 304 305 void show_stack_regs(struct pt_regs *regs) 306 { 307 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); 308 } 309 310 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; 311 static int die_owner = -1; 312 static unsigned int die_nest_count; 313 314 unsigned long oops_begin(void) 315 { 316 int cpu; 317 unsigned long flags; 318 319 oops_enter(); 320 321 /* racy, but better than risking deadlock. */ 322 raw_local_irq_save(flags); 323 cpu = smp_processor_id(); 324 if (!arch_spin_trylock(&die_lock)) { 325 if (cpu == die_owner) 326 /* nested oops. should stop eventually */; 327 else 328 arch_spin_lock(&die_lock); 329 } 330 die_nest_count++; 331 die_owner = cpu; 332 console_verbose(); 333 bust_spinlocks(1); 334 return flags; 335 } 336 NOKPROBE_SYMBOL(oops_begin); 337 338 void __noreturn rewind_stack_do_exit(int signr); 339 340 void oops_end(unsigned long flags, struct pt_regs *regs, int signr) 341 { 342 if (regs && kexec_should_crash(current)) 343 crash_kexec(regs); 344 345 bust_spinlocks(0); 346 die_owner = -1; 347 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 348 die_nest_count--; 349 if (!die_nest_count) 350 /* Nest count reaches zero, release the lock. */ 351 arch_spin_unlock(&die_lock); 352 raw_local_irq_restore(flags); 353 oops_exit(); 354 355 /* Executive summary in case the oops scrolled away */ 356 __show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT); 357 358 if (!signr) 359 return; 360 if (in_interrupt()) 361 panic("Fatal exception in interrupt"); 362 if (panic_on_oops) 363 panic("Fatal exception"); 364 365 /* 366 * We're not going to return, but we might be on an IST stack or 367 * have very little stack space left. Rewind the stack and kill 368 * the task. 369 * Before we rewind the stack, we have to tell KASAN that we're going to 370 * reuse the task stack and that existing poisons are invalid. 371 */ 372 kasan_unpoison_task_stack(current); 373 rewind_stack_do_exit(signr); 374 } 375 NOKPROBE_SYMBOL(oops_end); 376 377 static void __die_header(const char *str, struct pt_regs *regs, long err) 378 { 379 const char *pr = ""; 380 381 /* Save the regs of the first oops for the executive summary later. */ 382 if (!die_counter) 383 exec_summary_regs = *regs; 384 385 if (IS_ENABLED(CONFIG_PREEMPTION)) 386 pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT"; 387 388 printk(KERN_DEFAULT 389 "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter, 390 pr, 391 IS_ENABLED(CONFIG_SMP) ? " SMP" : "", 392 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", 393 IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "", 394 IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ? 395 (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : ""); 396 } 397 NOKPROBE_SYMBOL(__die_header); 398 399 static int __die_body(const char *str, struct pt_regs *regs, long err) 400 { 401 show_regs(regs); 402 print_modules(); 403 404 if (notify_die(DIE_OOPS, str, regs, err, 405 current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) 406 return 1; 407 408 return 0; 409 } 410 NOKPROBE_SYMBOL(__die_body); 411 412 int __die(const char *str, struct pt_regs *regs, long err) 413 { 414 __die_header(str, regs, err); 415 return __die_body(str, regs, err); 416 } 417 NOKPROBE_SYMBOL(__die); 418 419 /* 420 * This is gone through when something in the kernel has done something bad 421 * and is about to be terminated: 422 */ 423 void die(const char *str, struct pt_regs *regs, long err) 424 { 425 unsigned long flags = oops_begin(); 426 int sig = SIGSEGV; 427 428 if (__die(str, regs, err)) 429 sig = 0; 430 oops_end(flags, regs, sig); 431 } 432 433 void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr) 434 { 435 unsigned long flags = oops_begin(); 436 int sig = SIGSEGV; 437 438 __die_header(str, regs, err); 439 if (gp_addr) 440 kasan_non_canonical_hook(gp_addr); 441 if (__die_body(str, regs, err)) 442 sig = 0; 443 oops_end(flags, regs, sig); 444 } 445 446 void show_regs(struct pt_regs *regs) 447 { 448 enum show_regs_mode print_kernel_regs; 449 450 show_regs_print_info(KERN_DEFAULT); 451 452 print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL; 453 __show_regs(regs, print_kernel_regs, KERN_DEFAULT); 454 455 /* 456 * When in-kernel, we also print out the stack at the time of the fault.. 457 */ 458 if (!user_mode(regs)) 459 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); 460 } 461