1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 */ 5 #include <linux/kallsyms.h> 6 #include <linux/kprobes.h> 7 #include <linux/uaccess.h> 8 #include <linux/utsname.h> 9 #include <linux/hardirq.h> 10 #include <linux/kdebug.h> 11 #include <linux/module.h> 12 #include <linux/ptrace.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/ftrace.h> 16 #include <linux/kexec.h> 17 #include <linux/bug.h> 18 #include <linux/nmi.h> 19 #include <linux/sysfs.h> 20 #include <linux/kasan.h> 21 22 #include <asm/cpu_entry_area.h> 23 #include <asm/stacktrace.h> 24 #include <asm/unwind.h> 25 26 int panic_on_unrecovered_nmi; 27 int panic_on_io_nmi; 28 static int die_counter; 29 30 static struct pt_regs exec_summary_regs; 31 32 bool in_task_stack(unsigned long *stack, struct task_struct *task, 33 struct stack_info *info) 34 { 35 unsigned long *begin = task_stack_page(task); 36 unsigned long *end = task_stack_page(task) + THREAD_SIZE; 37 38 if (stack < begin || stack >= end) 39 return false; 40 41 info->type = STACK_TYPE_TASK; 42 info->begin = begin; 43 info->end = end; 44 info->next_sp = NULL; 45 46 return true; 47 } 48 49 bool in_entry_stack(unsigned long *stack, struct stack_info *info) 50 { 51 struct entry_stack *ss = cpu_entry_stack(smp_processor_id()); 52 53 void *begin = ss; 54 void *end = ss + 1; 55 56 if ((void *)stack < begin || (void *)stack >= end) 57 return false; 58 59 info->type = STACK_TYPE_ENTRY; 60 info->begin = begin; 61 info->end = end; 62 info->next_sp = NULL; 63 64 return true; 65 } 66 67 static void printk_stack_address(unsigned long address, int reliable, 68 const char *log_lvl) 69 { 70 touch_nmi_watchdog(); 71 printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address); 72 } 73 74 /* 75 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus: 76 * 77 * In case where we don't have the exact kernel image (which, if we did, we can 78 * simply disassemble and navigate to the RIP), the purpose of the bigger 79 * prologue is to have more context and to be able to correlate the code from 80 * the different toolchains better. 81 * 82 * In addition, it helps in recreating the register allocation of the failing 83 * kernel and thus make sense of the register dump. 84 * 85 * What is more, the additional complication of a variable length insn arch like 86 * x86 warrants having longer byte sequence before rIP so that the disassembler 87 * can "sync" up properly and find instruction boundaries when decoding the 88 * opcode bytes. 89 * 90 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random 91 * guesstimate in attempt to achieve all of the above. 92 */ 93 void show_opcodes(struct pt_regs *regs, const char *loglvl) 94 { 95 #define PROLOGUE_SIZE 42 96 #define EPILOGUE_SIZE 21 97 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE) 98 u8 opcodes[OPCODE_BUFSIZE]; 99 unsigned long prologue = regs->ip - PROLOGUE_SIZE; 100 bool bad_ip; 101 102 /* 103 * Make sure userspace isn't trying to trick us into dumping kernel 104 * memory by pointing the userspace instruction pointer at it. 105 */ 106 bad_ip = user_mode(regs) && 107 __chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX); 108 109 if (bad_ip || copy_from_kernel_nofault(opcodes, (u8 *)prologue, 110 OPCODE_BUFSIZE)) { 111 printk("%sCode: Bad RIP value.\n", loglvl); 112 } else { 113 printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %" 114 __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes, 115 opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1); 116 } 117 } 118 119 void show_ip(struct pt_regs *regs, const char *loglvl) 120 { 121 #ifdef CONFIG_X86_32 122 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip); 123 #else 124 printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip); 125 #endif 126 show_opcodes(regs, loglvl); 127 } 128 129 void show_iret_regs(struct pt_regs *regs) 130 { 131 show_ip(regs, KERN_DEFAULT); 132 printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss, 133 regs->sp, regs->flags); 134 } 135 136 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs, 137 bool partial) 138 { 139 /* 140 * These on_stack() checks aren't strictly necessary: the unwind code 141 * has already validated the 'regs' pointer. The checks are done for 142 * ordering reasons: if the registers are on the next stack, we don't 143 * want to print them out yet. Otherwise they'll be shown as part of 144 * the wrong stack. Later, when show_trace_log_lvl() switches to the 145 * next stack, this function will be called again with the same regs so 146 * they can be printed in the right context. 147 */ 148 if (!partial && on_stack(info, regs, sizeof(*regs))) { 149 __show_regs(regs, SHOW_REGS_SHORT); 150 151 } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET, 152 IRET_FRAME_SIZE)) { 153 /* 154 * When an interrupt or exception occurs in entry code, the 155 * full pt_regs might not have been saved yet. In that case 156 * just print the iret frame. 157 */ 158 show_iret_regs(regs); 159 } 160 } 161 162 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, 163 unsigned long *stack, const char *log_lvl) 164 { 165 struct unwind_state state; 166 struct stack_info stack_info = {0}; 167 unsigned long visit_mask = 0; 168 int graph_idx = 0; 169 bool partial = false; 170 171 printk("%sCall Trace:\n", log_lvl); 172 173 unwind_start(&state, task, regs, stack); 174 stack = stack ? : get_stack_pointer(task, regs); 175 regs = unwind_get_entry_regs(&state, &partial); 176 177 /* 178 * Iterate through the stacks, starting with the current stack pointer. 179 * Each stack has a pointer to the next one. 180 * 181 * x86-64 can have several stacks: 182 * - task stack 183 * - interrupt stack 184 * - HW exception stacks (double fault, nmi, debug, mce) 185 * - entry stack 186 * 187 * x86-32 can have up to four stacks: 188 * - task stack 189 * - softirq stack 190 * - hardirq stack 191 * - entry stack 192 */ 193 for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) { 194 const char *stack_name; 195 196 if (get_stack_info(stack, task, &stack_info, &visit_mask)) { 197 /* 198 * We weren't on a valid stack. It's possible that 199 * we overflowed a valid stack into a guard page. 200 * See if the next page up is valid so that we can 201 * generate some kind of backtrace if this happens. 202 */ 203 stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack); 204 if (get_stack_info(stack, task, &stack_info, &visit_mask)) 205 break; 206 } 207 208 stack_name = stack_type_name(stack_info.type); 209 if (stack_name) 210 printk("%s <%s>\n", log_lvl, stack_name); 211 212 if (regs) 213 show_regs_if_on_stack(&stack_info, regs, partial); 214 215 /* 216 * Scan the stack, printing any text addresses we find. At the 217 * same time, follow proper stack frames with the unwinder. 218 * 219 * Addresses found during the scan which are not reported by 220 * the unwinder are considered to be additional clues which are 221 * sometimes useful for debugging and are prefixed with '?'. 222 * This also serves as a failsafe option in case the unwinder 223 * goes off in the weeds. 224 */ 225 for (; stack < stack_info.end; stack++) { 226 unsigned long real_addr; 227 int reliable = 0; 228 unsigned long addr = READ_ONCE_NOCHECK(*stack); 229 unsigned long *ret_addr_p = 230 unwind_get_return_address_ptr(&state); 231 232 if (!__kernel_text_address(addr)) 233 continue; 234 235 /* 236 * Don't print regs->ip again if it was already printed 237 * by show_regs_if_on_stack(). 238 */ 239 if (regs && stack == ®s->ip) 240 goto next; 241 242 if (stack == ret_addr_p) 243 reliable = 1; 244 245 /* 246 * When function graph tracing is enabled for a 247 * function, its return address on the stack is 248 * replaced with the address of an ftrace handler 249 * (return_to_handler). In that case, before printing 250 * the "real" address, we want to print the handler 251 * address as an "unreliable" hint that function graph 252 * tracing was involved. 253 */ 254 real_addr = ftrace_graph_ret_addr(task, &graph_idx, 255 addr, stack); 256 if (real_addr != addr) 257 printk_stack_address(addr, 0, log_lvl); 258 printk_stack_address(real_addr, reliable, log_lvl); 259 260 if (!reliable) 261 continue; 262 263 next: 264 /* 265 * Get the next frame from the unwinder. No need to 266 * check for an error: if anything goes wrong, the rest 267 * of the addresses will just be printed as unreliable. 268 */ 269 unwind_next_frame(&state); 270 271 /* if the frame has entry regs, print them */ 272 regs = unwind_get_entry_regs(&state, &partial); 273 if (regs) 274 show_regs_if_on_stack(&stack_info, regs, partial); 275 } 276 277 if (stack_name) 278 printk("%s </%s>\n", log_lvl, stack_name); 279 } 280 } 281 282 void show_stack(struct task_struct *task, unsigned long *sp, 283 const char *loglvl) 284 { 285 task = task ? : current; 286 287 /* 288 * Stack frames below this one aren't interesting. Don't show them 289 * if we're printing for %current. 290 */ 291 if (!sp && task == current) 292 sp = get_stack_pointer(current, NULL); 293 294 show_trace_log_lvl(task, NULL, sp, loglvl); 295 } 296 297 void show_stack_regs(struct pt_regs *regs) 298 { 299 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); 300 } 301 302 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; 303 static int die_owner = -1; 304 static unsigned int die_nest_count; 305 306 unsigned long oops_begin(void) 307 { 308 int cpu; 309 unsigned long flags; 310 311 oops_enter(); 312 313 /* racy, but better than risking deadlock. */ 314 raw_local_irq_save(flags); 315 cpu = smp_processor_id(); 316 if (!arch_spin_trylock(&die_lock)) { 317 if (cpu == die_owner) 318 /* nested oops. should stop eventually */; 319 else 320 arch_spin_lock(&die_lock); 321 } 322 die_nest_count++; 323 die_owner = cpu; 324 console_verbose(); 325 bust_spinlocks(1); 326 return flags; 327 } 328 NOKPROBE_SYMBOL(oops_begin); 329 330 void __noreturn rewind_stack_do_exit(int signr); 331 332 void oops_end(unsigned long flags, struct pt_regs *regs, int signr) 333 { 334 if (regs && kexec_should_crash(current)) 335 crash_kexec(regs); 336 337 bust_spinlocks(0); 338 die_owner = -1; 339 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 340 die_nest_count--; 341 if (!die_nest_count) 342 /* Nest count reaches zero, release the lock. */ 343 arch_spin_unlock(&die_lock); 344 raw_local_irq_restore(flags); 345 oops_exit(); 346 347 /* Executive summary in case the oops scrolled away */ 348 __show_regs(&exec_summary_regs, SHOW_REGS_ALL); 349 350 if (!signr) 351 return; 352 if (in_interrupt()) 353 panic("Fatal exception in interrupt"); 354 if (panic_on_oops) 355 panic("Fatal exception"); 356 357 /* 358 * We're not going to return, but we might be on an IST stack or 359 * have very little stack space left. Rewind the stack and kill 360 * the task. 361 * Before we rewind the stack, we have to tell KASAN that we're going to 362 * reuse the task stack and that existing poisons are invalid. 363 */ 364 kasan_unpoison_task_stack(current); 365 rewind_stack_do_exit(signr); 366 } 367 NOKPROBE_SYMBOL(oops_end); 368 369 static void __die_header(const char *str, struct pt_regs *regs, long err) 370 { 371 const char *pr = ""; 372 373 /* Save the regs of the first oops for the executive summary later. */ 374 if (!die_counter) 375 exec_summary_regs = *regs; 376 377 if (IS_ENABLED(CONFIG_PREEMPTION)) 378 pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT"; 379 380 printk(KERN_DEFAULT 381 "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter, 382 pr, 383 IS_ENABLED(CONFIG_SMP) ? " SMP" : "", 384 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", 385 IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "", 386 IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ? 387 (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : ""); 388 } 389 NOKPROBE_SYMBOL(__die_header); 390 391 static int __die_body(const char *str, struct pt_regs *regs, long err) 392 { 393 show_regs(regs); 394 print_modules(); 395 396 if (notify_die(DIE_OOPS, str, regs, err, 397 current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) 398 return 1; 399 400 return 0; 401 } 402 NOKPROBE_SYMBOL(__die_body); 403 404 int __die(const char *str, struct pt_regs *regs, long err) 405 { 406 __die_header(str, regs, err); 407 return __die_body(str, regs, err); 408 } 409 NOKPROBE_SYMBOL(__die); 410 411 /* 412 * This is gone through when something in the kernel has done something bad 413 * and is about to be terminated: 414 */ 415 void die(const char *str, struct pt_regs *regs, long err) 416 { 417 unsigned long flags = oops_begin(); 418 int sig = SIGSEGV; 419 420 if (__die(str, regs, err)) 421 sig = 0; 422 oops_end(flags, regs, sig); 423 } 424 425 void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr) 426 { 427 unsigned long flags = oops_begin(); 428 int sig = SIGSEGV; 429 430 __die_header(str, regs, err); 431 if (gp_addr) 432 kasan_non_canonical_hook(gp_addr); 433 if (__die_body(str, regs, err)) 434 sig = 0; 435 oops_end(flags, regs, sig); 436 } 437 438 void show_regs(struct pt_regs *regs) 439 { 440 show_regs_print_info(KERN_DEFAULT); 441 442 __show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL); 443 444 /* 445 * When in-kernel, we also print out the stack at the time of the fault.. 446 */ 447 if (!user_mode(regs)) 448 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); 449 } 450