1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 */ 5 #include <linux/kallsyms.h> 6 #include <linux/kprobes.h> 7 #include <linux/uaccess.h> 8 #include <linux/utsname.h> 9 #include <linux/hardirq.h> 10 #include <linux/kdebug.h> 11 #include <linux/module.h> 12 #include <linux/ptrace.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/ftrace.h> 16 #include <linux/kexec.h> 17 #include <linux/bug.h> 18 #include <linux/nmi.h> 19 #include <linux/sysfs.h> 20 #include <linux/kasan.h> 21 22 #include <asm/cpu_entry_area.h> 23 #include <asm/stacktrace.h> 24 #include <asm/unwind.h> 25 26 static int die_counter; 27 28 static struct pt_regs exec_summary_regs; 29 30 bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task, 31 struct stack_info *info) 32 { 33 unsigned long *begin = task_stack_page(task); 34 unsigned long *end = task_stack_page(task) + THREAD_SIZE; 35 36 if (stack < begin || stack >= end) 37 return false; 38 39 info->type = STACK_TYPE_TASK; 40 info->begin = begin; 41 info->end = end; 42 info->next_sp = NULL; 43 44 return true; 45 } 46 47 /* Called from get_stack_info_noinstr - so must be noinstr too */ 48 bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info) 49 { 50 struct entry_stack *ss = cpu_entry_stack(smp_processor_id()); 51 52 void *begin = ss; 53 void *end = ss + 1; 54 55 if ((void *)stack < begin || (void *)stack >= end) 56 return false; 57 58 info->type = STACK_TYPE_ENTRY; 59 info->begin = begin; 60 info->end = end; 61 info->next_sp = NULL; 62 63 return true; 64 } 65 66 static void printk_stack_address(unsigned long address, int reliable, 67 const char *log_lvl) 68 { 69 touch_nmi_watchdog(); 70 printk("%s %s%pBb\n", log_lvl, reliable ? "" : "? ", (void *)address); 71 } 72 73 static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src, 74 unsigned int nbytes) 75 { 76 if (!user_mode(regs)) 77 return copy_from_kernel_nofault(buf, (u8 *)src, nbytes); 78 79 /* The user space code from other tasks cannot be accessed. */ 80 if (regs != task_pt_regs(current)) 81 return -EPERM; 82 83 /* 84 * Even if named copy_from_user_nmi() this can be invoked from 85 * other contexts and will not try to resolve a pagefault, which is 86 * the correct thing to do here as this code can be called from any 87 * context. 88 */ 89 return copy_from_user_nmi(buf, (void __user *)src, nbytes); 90 } 91 92 /* 93 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus: 94 * 95 * In case where we don't have the exact kernel image (which, if we did, we can 96 * simply disassemble and navigate to the RIP), the purpose of the bigger 97 * prologue is to have more context and to be able to correlate the code from 98 * the different toolchains better. 99 * 100 * In addition, it helps in recreating the register allocation of the failing 101 * kernel and thus make sense of the register dump. 102 * 103 * What is more, the additional complication of a variable length insn arch like 104 * x86 warrants having longer byte sequence before rIP so that the disassembler 105 * can "sync" up properly and find instruction boundaries when decoding the 106 * opcode bytes. 107 * 108 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random 109 * guesstimate in attempt to achieve all of the above. 110 */ 111 void show_opcodes(struct pt_regs *regs, const char *loglvl) 112 { 113 #define PROLOGUE_SIZE 42 114 #define EPILOGUE_SIZE 21 115 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE) 116 u8 opcodes[OPCODE_BUFSIZE]; 117 unsigned long prologue = regs->ip - PROLOGUE_SIZE; 118 119 switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) { 120 case 0: 121 printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %" 122 __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes, 123 opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1); 124 break; 125 case -EPERM: 126 /* No access to the user space stack of other tasks. Ignore. */ 127 break; 128 default: 129 printk("%sCode: Unable to access opcode bytes at 0x%lx.\n", 130 loglvl, prologue); 131 break; 132 } 133 } 134 135 void show_ip(struct pt_regs *regs, const char *loglvl) 136 { 137 #ifdef CONFIG_X86_32 138 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip); 139 #else 140 printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip); 141 #endif 142 show_opcodes(regs, loglvl); 143 } 144 145 void show_iret_regs(struct pt_regs *regs, const char *log_lvl) 146 { 147 show_ip(regs, log_lvl); 148 printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss, 149 regs->sp, regs->flags); 150 } 151 152 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs, 153 bool partial, const char *log_lvl) 154 { 155 /* 156 * These on_stack() checks aren't strictly necessary: the unwind code 157 * has already validated the 'regs' pointer. The checks are done for 158 * ordering reasons: if the registers are on the next stack, we don't 159 * want to print them out yet. Otherwise they'll be shown as part of 160 * the wrong stack. Later, when show_trace_log_lvl() switches to the 161 * next stack, this function will be called again with the same regs so 162 * they can be printed in the right context. 163 */ 164 if (!partial && on_stack(info, regs, sizeof(*regs))) { 165 __show_regs(regs, SHOW_REGS_SHORT, log_lvl); 166 167 } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET, 168 IRET_FRAME_SIZE)) { 169 /* 170 * When an interrupt or exception occurs in entry code, the 171 * full pt_regs might not have been saved yet. In that case 172 * just print the iret frame. 173 */ 174 show_iret_regs(regs, log_lvl); 175 } 176 } 177 178 /* 179 * This function reads pointers from the stack and dereferences them. The 180 * pointers may not have their KMSAN shadow set up properly, which may result 181 * in false positive reports. Disable instrumentation to avoid those. 182 */ 183 __no_kmsan_checks 184 static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, 185 unsigned long *stack, const char *log_lvl) 186 { 187 struct unwind_state state; 188 struct stack_info stack_info = {0}; 189 unsigned long visit_mask = 0; 190 int graph_idx = 0; 191 bool partial = false; 192 193 printk("%sCall Trace:\n", log_lvl); 194 195 unwind_start(&state, task, regs, stack); 196 stack = stack ?: get_stack_pointer(task, regs); 197 regs = unwind_get_entry_regs(&state, &partial); 198 199 /* 200 * Iterate through the stacks, starting with the current stack pointer. 201 * Each stack has a pointer to the next one. 202 * 203 * x86-64 can have several stacks: 204 * - task stack 205 * - interrupt stack 206 * - HW exception stacks (double fault, nmi, debug, mce) 207 * - entry stack 208 * 209 * x86-32 can have up to four stacks: 210 * - task stack 211 * - softirq stack 212 * - hardirq stack 213 * - entry stack 214 */ 215 for (; stack; stack = stack_info.next_sp) { 216 const char *stack_name; 217 218 stack = PTR_ALIGN(stack, sizeof(long)); 219 220 if (get_stack_info(stack, task, &stack_info, &visit_mask)) { 221 /* 222 * We weren't on a valid stack. It's possible that 223 * we overflowed a valid stack into a guard page. 224 * See if the next page up is valid so that we can 225 * generate some kind of backtrace if this happens. 226 */ 227 stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack); 228 if (get_stack_info(stack, task, &stack_info, &visit_mask)) 229 break; 230 } 231 232 stack_name = stack_type_name(stack_info.type); 233 if (stack_name) 234 printk("%s <%s>\n", log_lvl, stack_name); 235 236 if (regs) 237 show_regs_if_on_stack(&stack_info, regs, partial, log_lvl); 238 239 /* 240 * Scan the stack, printing any text addresses we find. At the 241 * same time, follow proper stack frames with the unwinder. 242 * 243 * Addresses found during the scan which are not reported by 244 * the unwinder are considered to be additional clues which are 245 * sometimes useful for debugging and are prefixed with '?'. 246 * This also serves as a failsafe option in case the unwinder 247 * goes off in the weeds. 248 */ 249 for (; stack < stack_info.end; stack++) { 250 unsigned long real_addr; 251 int reliable = 0; 252 unsigned long addr = READ_ONCE_NOCHECK(*stack); 253 unsigned long *ret_addr_p = 254 unwind_get_return_address_ptr(&state); 255 256 if (!__kernel_text_address(addr)) 257 continue; 258 259 /* 260 * Don't print regs->ip again if it was already printed 261 * by show_regs_if_on_stack(). 262 */ 263 if (regs && stack == ®s->ip) 264 goto next; 265 266 if (stack == ret_addr_p) 267 reliable = 1; 268 269 /* 270 * When function graph tracing is enabled for a 271 * function, its return address on the stack is 272 * replaced with the address of an ftrace handler 273 * (return_to_handler). In that case, before printing 274 * the "real" address, we want to print the handler 275 * address as an "unreliable" hint that function graph 276 * tracing was involved. 277 */ 278 real_addr = ftrace_graph_ret_addr(task, &graph_idx, 279 addr, stack); 280 if (real_addr != addr) 281 printk_stack_address(addr, 0, log_lvl); 282 printk_stack_address(real_addr, reliable, log_lvl); 283 284 if (!reliable) 285 continue; 286 287 next: 288 /* 289 * Get the next frame from the unwinder. No need to 290 * check for an error: if anything goes wrong, the rest 291 * of the addresses will just be printed as unreliable. 292 */ 293 unwind_next_frame(&state); 294 295 /* if the frame has entry regs, print them */ 296 regs = unwind_get_entry_regs(&state, &partial); 297 if (regs) 298 show_regs_if_on_stack(&stack_info, regs, partial, log_lvl); 299 } 300 301 if (stack_name) 302 printk("%s </%s>\n", log_lvl, stack_name); 303 } 304 } 305 306 void show_stack(struct task_struct *task, unsigned long *sp, 307 const char *loglvl) 308 { 309 task = task ? : current; 310 311 /* 312 * Stack frames below this one aren't interesting. Don't show them 313 * if we're printing for %current. 314 */ 315 if (!sp && task == current) 316 sp = get_stack_pointer(current, NULL); 317 318 show_trace_log_lvl(task, NULL, sp, loglvl); 319 } 320 321 void show_stack_regs(struct pt_regs *regs) 322 { 323 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); 324 } 325 326 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; 327 static int die_owner = -1; 328 static unsigned int die_nest_count; 329 330 unsigned long oops_begin(void) 331 { 332 int cpu; 333 unsigned long flags; 334 335 oops_enter(); 336 337 /* racy, but better than risking deadlock. */ 338 raw_local_irq_save(flags); 339 cpu = smp_processor_id(); 340 if (!arch_spin_trylock(&die_lock)) { 341 if (cpu == die_owner) 342 /* nested oops. should stop eventually */; 343 else 344 arch_spin_lock(&die_lock); 345 } 346 die_nest_count++; 347 die_owner = cpu; 348 console_verbose(); 349 bust_spinlocks(1); 350 return flags; 351 } 352 NOKPROBE_SYMBOL(oops_begin); 353 354 void __noreturn rewind_stack_and_make_dead(int signr); 355 356 void oops_end(unsigned long flags, struct pt_regs *regs, int signr) 357 { 358 if (regs && kexec_should_crash(current)) 359 crash_kexec(regs); 360 361 bust_spinlocks(0); 362 die_owner = -1; 363 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 364 die_nest_count--; 365 if (!die_nest_count) 366 /* Nest count reaches zero, release the lock. */ 367 arch_spin_unlock(&die_lock); 368 raw_local_irq_restore(flags); 369 oops_exit(); 370 371 /* Executive summary in case the oops scrolled away */ 372 __show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT); 373 374 if (!signr) 375 return; 376 if (in_interrupt()) 377 panic("Fatal exception in interrupt"); 378 if (panic_on_oops) 379 panic("Fatal exception"); 380 381 /* 382 * We're not going to return, but we might be on an IST stack or 383 * have very little stack space left. Rewind the stack and kill 384 * the task. 385 * Before we rewind the stack, we have to tell KASAN that we're going to 386 * reuse the task stack and that existing poisons are invalid. 387 */ 388 kasan_unpoison_task_stack(current); 389 rewind_stack_and_make_dead(signr); 390 } 391 NOKPROBE_SYMBOL(oops_end); 392 393 static void __die_header(const char *str, struct pt_regs *regs, long err) 394 { 395 /* Save the regs of the first oops for the executive summary later. */ 396 if (!die_counter) 397 exec_summary_regs = *regs; 398 399 printk(KERN_DEFAULT 400 "Oops: %s: %04lx [#%d]%s%s%s%s\n", str, err & 0xffff, 401 ++die_counter, 402 IS_ENABLED(CONFIG_SMP) ? " SMP" : "", 403 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", 404 IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "", 405 IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION) ? 406 (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : ""); 407 } 408 NOKPROBE_SYMBOL(__die_header); 409 410 static int __die_body(const char *str, struct pt_regs *regs, long err) 411 { 412 show_regs(regs); 413 print_modules(); 414 415 if (notify_die(DIE_OOPS, str, regs, err, 416 current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) 417 return 1; 418 419 return 0; 420 } 421 NOKPROBE_SYMBOL(__die_body); 422 423 int __die(const char *str, struct pt_regs *regs, long err) 424 { 425 __die_header(str, regs, err); 426 return __die_body(str, regs, err); 427 } 428 NOKPROBE_SYMBOL(__die); 429 430 /* 431 * This is gone through when something in the kernel has done something bad 432 * and is about to be terminated: 433 */ 434 void die(const char *str, struct pt_regs *regs, long err) 435 { 436 unsigned long flags = oops_begin(); 437 int sig = SIGSEGV; 438 439 if (__die(str, regs, err)) 440 sig = 0; 441 oops_end(flags, regs, sig); 442 } 443 444 void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr) 445 { 446 unsigned long flags = oops_begin(); 447 int sig = SIGSEGV; 448 449 __die_header(str, regs, err); 450 if (gp_addr) 451 kasan_non_canonical_hook(gp_addr); 452 if (__die_body(str, regs, err)) 453 sig = 0; 454 oops_end(flags, regs, sig); 455 } 456 457 void show_regs(struct pt_regs *regs) 458 { 459 enum show_regs_mode print_kernel_regs; 460 461 show_regs_print_info(KERN_DEFAULT); 462 463 print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL; 464 __show_regs(regs, print_kernel_regs, KERN_DEFAULT); 465 466 /* 467 * When in-kernel, we also print out the stack at the time of the fault.. 468 */ 469 if (!user_mode(regs)) 470 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); 471 } 472