1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 */ 5 #include <linux/kallsyms.h> 6 #include <linux/kprobes.h> 7 #include <linux/uaccess.h> 8 #include <linux/utsname.h> 9 #include <linux/hardirq.h> 10 #include <linux/kdebug.h> 11 #include <linux/module.h> 12 #include <linux/ptrace.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/ftrace.h> 16 #include <linux/kexec.h> 17 #include <linux/bug.h> 18 #include <linux/nmi.h> 19 #include <linux/sysfs.h> 20 #include <linux/kasan.h> 21 22 #include <asm/cpu_entry_area.h> 23 #include <asm/stacktrace.h> 24 #include <asm/unwind.h> 25 26 int panic_on_unrecovered_nmi; 27 int panic_on_io_nmi; 28 static int die_counter; 29 30 static struct pt_regs exec_summary_regs; 31 32 bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task, 33 struct stack_info *info) 34 { 35 unsigned long *begin = task_stack_page(task); 36 unsigned long *end = task_stack_page(task) + THREAD_SIZE; 37 38 if (stack < begin || stack >= end) 39 return false; 40 41 info->type = STACK_TYPE_TASK; 42 info->begin = begin; 43 info->end = end; 44 info->next_sp = NULL; 45 46 return true; 47 } 48 49 /* Called from get_stack_info_noinstr - so must be noinstr too */ 50 bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info) 51 { 52 struct entry_stack *ss = cpu_entry_stack(smp_processor_id()); 53 54 void *begin = ss; 55 void *end = ss + 1; 56 57 if ((void *)stack < begin || (void *)stack >= end) 58 return false; 59 60 info->type = STACK_TYPE_ENTRY; 61 info->begin = begin; 62 info->end = end; 63 info->next_sp = NULL; 64 65 return true; 66 } 67 68 static void printk_stack_address(unsigned long address, int reliable, 69 const char *log_lvl) 70 { 71 touch_nmi_watchdog(); 72 printk("%s %s%pBb\n", log_lvl, reliable ? "" : "? ", (void *)address); 73 } 74 75 static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src, 76 unsigned int nbytes) 77 { 78 if (!user_mode(regs)) 79 return copy_from_kernel_nofault(buf, (u8 *)src, nbytes); 80 81 /* The user space code from other tasks cannot be accessed. */ 82 if (regs != task_pt_regs(current)) 83 return -EPERM; 84 85 /* 86 * Even if named copy_from_user_nmi() this can be invoked from 87 * other contexts and will not try to resolve a pagefault, which is 88 * the correct thing to do here as this code can be called from any 89 * context. 90 */ 91 return copy_from_user_nmi(buf, (void __user *)src, nbytes); 92 } 93 94 /* 95 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus: 96 * 97 * In case where we don't have the exact kernel image (which, if we did, we can 98 * simply disassemble and navigate to the RIP), the purpose of the bigger 99 * prologue is to have more context and to be able to correlate the code from 100 * the different toolchains better. 101 * 102 * In addition, it helps in recreating the register allocation of the failing 103 * kernel and thus make sense of the register dump. 104 * 105 * What is more, the additional complication of a variable length insn arch like 106 * x86 warrants having longer byte sequence before rIP so that the disassembler 107 * can "sync" up properly and find instruction boundaries when decoding the 108 * opcode bytes. 109 * 110 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random 111 * guesstimate in attempt to achieve all of the above. 112 */ 113 void show_opcodes(struct pt_regs *regs, const char *loglvl) 114 { 115 #define PROLOGUE_SIZE 42 116 #define EPILOGUE_SIZE 21 117 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE) 118 u8 opcodes[OPCODE_BUFSIZE]; 119 unsigned long prologue = regs->ip - PROLOGUE_SIZE; 120 121 switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) { 122 case 0: 123 printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %" 124 __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes, 125 opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1); 126 break; 127 case -EPERM: 128 /* No access to the user space stack of other tasks. Ignore. */ 129 break; 130 default: 131 printk("%sCode: Unable to access opcode bytes at RIP 0x%lx.\n", 132 loglvl, prologue); 133 break; 134 } 135 } 136 137 void show_ip(struct pt_regs *regs, const char *loglvl) 138 { 139 #ifdef CONFIG_X86_32 140 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip); 141 #else 142 printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip); 143 #endif 144 show_opcodes(regs, loglvl); 145 } 146 147 void show_iret_regs(struct pt_regs *regs, const char *log_lvl) 148 { 149 show_ip(regs, log_lvl); 150 printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss, 151 regs->sp, regs->flags); 152 } 153 154 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs, 155 bool partial, const char *log_lvl) 156 { 157 /* 158 * These on_stack() checks aren't strictly necessary: the unwind code 159 * has already validated the 'regs' pointer. The checks are done for 160 * ordering reasons: if the registers are on the next stack, we don't 161 * want to print them out yet. Otherwise they'll be shown as part of 162 * the wrong stack. Later, when show_trace_log_lvl() switches to the 163 * next stack, this function will be called again with the same regs so 164 * they can be printed in the right context. 165 */ 166 if (!partial && on_stack(info, regs, sizeof(*regs))) { 167 __show_regs(regs, SHOW_REGS_SHORT, log_lvl); 168 169 } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET, 170 IRET_FRAME_SIZE)) { 171 /* 172 * When an interrupt or exception occurs in entry code, the 173 * full pt_regs might not have been saved yet. In that case 174 * just print the iret frame. 175 */ 176 show_iret_regs(regs, log_lvl); 177 } 178 } 179 180 static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, 181 unsigned long *stack, const char *log_lvl) 182 { 183 struct unwind_state state; 184 struct stack_info stack_info = {0}; 185 unsigned long visit_mask = 0; 186 int graph_idx = 0; 187 bool partial = false; 188 189 printk("%sCall Trace:\n", log_lvl); 190 191 unwind_start(&state, task, regs, stack); 192 stack = stack ? : get_stack_pointer(task, regs); 193 regs = unwind_get_entry_regs(&state, &partial); 194 195 /* 196 * Iterate through the stacks, starting with the current stack pointer. 197 * Each stack has a pointer to the next one. 198 * 199 * x86-64 can have several stacks: 200 * - task stack 201 * - interrupt stack 202 * - HW exception stacks (double fault, nmi, debug, mce) 203 * - entry stack 204 * 205 * x86-32 can have up to four stacks: 206 * - task stack 207 * - softirq stack 208 * - hardirq stack 209 * - entry stack 210 */ 211 for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) { 212 const char *stack_name; 213 214 if (get_stack_info(stack, task, &stack_info, &visit_mask)) { 215 /* 216 * We weren't on a valid stack. It's possible that 217 * we overflowed a valid stack into a guard page. 218 * See if the next page up is valid so that we can 219 * generate some kind of backtrace if this happens. 220 */ 221 stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack); 222 if (get_stack_info(stack, task, &stack_info, &visit_mask)) 223 break; 224 } 225 226 stack_name = stack_type_name(stack_info.type); 227 if (stack_name) 228 printk("%s <%s>\n", log_lvl, stack_name); 229 230 if (regs) 231 show_regs_if_on_stack(&stack_info, regs, partial, log_lvl); 232 233 /* 234 * Scan the stack, printing any text addresses we find. At the 235 * same time, follow proper stack frames with the unwinder. 236 * 237 * Addresses found during the scan which are not reported by 238 * the unwinder are considered to be additional clues which are 239 * sometimes useful for debugging and are prefixed with '?'. 240 * This also serves as a failsafe option in case the unwinder 241 * goes off in the weeds. 242 */ 243 for (; stack < stack_info.end; stack++) { 244 unsigned long real_addr; 245 int reliable = 0; 246 unsigned long addr = READ_ONCE_NOCHECK(*stack); 247 unsigned long *ret_addr_p = 248 unwind_get_return_address_ptr(&state); 249 250 if (!__kernel_text_address(addr)) 251 continue; 252 253 /* 254 * Don't print regs->ip again if it was already printed 255 * by show_regs_if_on_stack(). 256 */ 257 if (regs && stack == ®s->ip) 258 goto next; 259 260 if (stack == ret_addr_p) 261 reliable = 1; 262 263 /* 264 * When function graph tracing is enabled for a 265 * function, its return address on the stack is 266 * replaced with the address of an ftrace handler 267 * (return_to_handler). In that case, before printing 268 * the "real" address, we want to print the handler 269 * address as an "unreliable" hint that function graph 270 * tracing was involved. 271 */ 272 real_addr = ftrace_graph_ret_addr(task, &graph_idx, 273 addr, stack); 274 if (real_addr != addr) 275 printk_stack_address(addr, 0, log_lvl); 276 printk_stack_address(real_addr, reliable, log_lvl); 277 278 if (!reliable) 279 continue; 280 281 next: 282 /* 283 * Get the next frame from the unwinder. No need to 284 * check for an error: if anything goes wrong, the rest 285 * of the addresses will just be printed as unreliable. 286 */ 287 unwind_next_frame(&state); 288 289 /* if the frame has entry regs, print them */ 290 regs = unwind_get_entry_regs(&state, &partial); 291 if (regs) 292 show_regs_if_on_stack(&stack_info, regs, partial, log_lvl); 293 } 294 295 if (stack_name) 296 printk("%s </%s>\n", log_lvl, stack_name); 297 } 298 } 299 300 void show_stack(struct task_struct *task, unsigned long *sp, 301 const char *loglvl) 302 { 303 task = task ? : current; 304 305 /* 306 * Stack frames below this one aren't interesting. Don't show them 307 * if we're printing for %current. 308 */ 309 if (!sp && task == current) 310 sp = get_stack_pointer(current, NULL); 311 312 show_trace_log_lvl(task, NULL, sp, loglvl); 313 } 314 315 void show_stack_regs(struct pt_regs *regs) 316 { 317 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); 318 } 319 320 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; 321 static int die_owner = -1; 322 static unsigned int die_nest_count; 323 324 unsigned long oops_begin(void) 325 { 326 int cpu; 327 unsigned long flags; 328 329 oops_enter(); 330 331 /* racy, but better than risking deadlock. */ 332 raw_local_irq_save(flags); 333 cpu = smp_processor_id(); 334 if (!arch_spin_trylock(&die_lock)) { 335 if (cpu == die_owner) 336 /* nested oops. should stop eventually */; 337 else 338 arch_spin_lock(&die_lock); 339 } 340 die_nest_count++; 341 die_owner = cpu; 342 console_verbose(); 343 bust_spinlocks(1); 344 return flags; 345 } 346 NOKPROBE_SYMBOL(oops_begin); 347 348 void __noreturn rewind_stack_and_make_dead(int signr); 349 350 void oops_end(unsigned long flags, struct pt_regs *regs, int signr) 351 { 352 if (regs && kexec_should_crash(current)) 353 crash_kexec(regs); 354 355 bust_spinlocks(0); 356 die_owner = -1; 357 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 358 die_nest_count--; 359 if (!die_nest_count) 360 /* Nest count reaches zero, release the lock. */ 361 arch_spin_unlock(&die_lock); 362 raw_local_irq_restore(flags); 363 oops_exit(); 364 365 /* Executive summary in case the oops scrolled away */ 366 __show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT); 367 368 if (!signr) 369 return; 370 if (in_interrupt()) 371 panic("Fatal exception in interrupt"); 372 if (panic_on_oops) 373 panic("Fatal exception"); 374 375 /* 376 * We're not going to return, but we might be on an IST stack or 377 * have very little stack space left. Rewind the stack and kill 378 * the task. 379 * Before we rewind the stack, we have to tell KASAN that we're going to 380 * reuse the task stack and that existing poisons are invalid. 381 */ 382 kasan_unpoison_task_stack(current); 383 rewind_stack_and_make_dead(signr); 384 } 385 NOKPROBE_SYMBOL(oops_end); 386 387 static void __die_header(const char *str, struct pt_regs *regs, long err) 388 { 389 const char *pr = ""; 390 391 /* Save the regs of the first oops for the executive summary later. */ 392 if (!die_counter) 393 exec_summary_regs = *regs; 394 395 if (IS_ENABLED(CONFIG_PREEMPTION)) 396 pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT"; 397 398 printk(KERN_DEFAULT 399 "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter, 400 pr, 401 IS_ENABLED(CONFIG_SMP) ? " SMP" : "", 402 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", 403 IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "", 404 IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ? 405 (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : ""); 406 } 407 NOKPROBE_SYMBOL(__die_header); 408 409 static int __die_body(const char *str, struct pt_regs *regs, long err) 410 { 411 show_regs(regs); 412 print_modules(); 413 414 if (notify_die(DIE_OOPS, str, regs, err, 415 current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) 416 return 1; 417 418 return 0; 419 } 420 NOKPROBE_SYMBOL(__die_body); 421 422 int __die(const char *str, struct pt_regs *regs, long err) 423 { 424 __die_header(str, regs, err); 425 return __die_body(str, regs, err); 426 } 427 NOKPROBE_SYMBOL(__die); 428 429 /* 430 * This is gone through when something in the kernel has done something bad 431 * and is about to be terminated: 432 */ 433 void die(const char *str, struct pt_regs *regs, long err) 434 { 435 unsigned long flags = oops_begin(); 436 int sig = SIGSEGV; 437 438 if (__die(str, regs, err)) 439 sig = 0; 440 oops_end(flags, regs, sig); 441 } 442 443 void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr) 444 { 445 unsigned long flags = oops_begin(); 446 int sig = SIGSEGV; 447 448 __die_header(str, regs, err); 449 if (gp_addr) 450 kasan_non_canonical_hook(gp_addr); 451 if (__die_body(str, regs, err)) 452 sig = 0; 453 oops_end(flags, regs, sig); 454 } 455 456 void show_regs(struct pt_regs *regs) 457 { 458 enum show_regs_mode print_kernel_regs; 459 460 show_regs_print_info(KERN_DEFAULT); 461 462 print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL; 463 __show_regs(regs, print_kernel_regs, KERN_DEFAULT); 464 465 /* 466 * When in-kernel, we also print out the stack at the time of the fault.. 467 */ 468 if (!user_mode(regs)) 469 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); 470 } 471