1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 */ 5 #include <linux/kallsyms.h> 6 #include <linux/kprobes.h> 7 #include <linux/uaccess.h> 8 #include <linux/utsname.h> 9 #include <linux/hardirq.h> 10 #include <linux/kdebug.h> 11 #include <linux/module.h> 12 #include <linux/ptrace.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/ftrace.h> 16 #include <linux/kexec.h> 17 #include <linux/bug.h> 18 #include <linux/nmi.h> 19 #include <linux/sysfs.h> 20 #include <linux/kasan.h> 21 22 #include <asm/cpu_entry_area.h> 23 #include <asm/stacktrace.h> 24 #include <asm/unwind.h> 25 26 int panic_on_unrecovered_nmi; 27 int panic_on_io_nmi; 28 static int die_counter; 29 30 static struct pt_regs exec_summary_regs; 31 32 bool in_task_stack(unsigned long *stack, struct task_struct *task, 33 struct stack_info *info) 34 { 35 unsigned long *begin = task_stack_page(task); 36 unsigned long *end = task_stack_page(task) + THREAD_SIZE; 37 38 if (stack < begin || stack >= end) 39 return false; 40 41 info->type = STACK_TYPE_TASK; 42 info->begin = begin; 43 info->end = end; 44 info->next_sp = NULL; 45 46 return true; 47 } 48 49 bool in_entry_stack(unsigned long *stack, struct stack_info *info) 50 { 51 struct entry_stack *ss = cpu_entry_stack(smp_processor_id()); 52 53 void *begin = ss; 54 void *end = ss + 1; 55 56 if ((void *)stack < begin || (void *)stack >= end) 57 return false; 58 59 info->type = STACK_TYPE_ENTRY; 60 info->begin = begin; 61 info->end = end; 62 info->next_sp = NULL; 63 64 return true; 65 } 66 67 static void printk_stack_address(unsigned long address, int reliable, 68 const char *log_lvl) 69 { 70 touch_nmi_watchdog(); 71 printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address); 72 } 73 74 static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src, 75 unsigned int nbytes) 76 { 77 if (!user_mode(regs)) 78 return copy_from_kernel_nofault(buf, (u8 *)src, nbytes); 79 80 /* 81 * Make sure userspace isn't trying to trick us into dumping kernel 82 * memory by pointing the userspace instruction pointer at it. 83 */ 84 if (__chk_range_not_ok(src, nbytes, TASK_SIZE_MAX)) 85 return -EINVAL; 86 87 return copy_from_user_nmi(buf, (void __user *)src, nbytes); 88 } 89 90 /* 91 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus: 92 * 93 * In case where we don't have the exact kernel image (which, if we did, we can 94 * simply disassemble and navigate to the RIP), the purpose of the bigger 95 * prologue is to have more context and to be able to correlate the code from 96 * the different toolchains better. 97 * 98 * In addition, it helps in recreating the register allocation of the failing 99 * kernel and thus make sense of the register dump. 100 * 101 * What is more, the additional complication of a variable length insn arch like 102 * x86 warrants having longer byte sequence before rIP so that the disassembler 103 * can "sync" up properly and find instruction boundaries when decoding the 104 * opcode bytes. 105 * 106 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random 107 * guesstimate in attempt to achieve all of the above. 108 */ 109 void show_opcodes(struct pt_regs *regs, const char *loglvl) 110 { 111 #define PROLOGUE_SIZE 42 112 #define EPILOGUE_SIZE 21 113 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE) 114 u8 opcodes[OPCODE_BUFSIZE]; 115 unsigned long prologue = regs->ip - PROLOGUE_SIZE; 116 117 if (copy_code(regs, opcodes, prologue, sizeof(opcodes))) { 118 printk("%sCode: Bad RIP value.\n", loglvl); 119 } else { 120 printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %" 121 __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes, 122 opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1); 123 } 124 } 125 126 void show_ip(struct pt_regs *regs, const char *loglvl) 127 { 128 #ifdef CONFIG_X86_32 129 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip); 130 #else 131 printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip); 132 #endif 133 show_opcodes(regs, loglvl); 134 } 135 136 void show_iret_regs(struct pt_regs *regs) 137 { 138 show_ip(regs, KERN_DEFAULT); 139 printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss, 140 regs->sp, regs->flags); 141 } 142 143 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs, 144 bool partial) 145 { 146 /* 147 * These on_stack() checks aren't strictly necessary: the unwind code 148 * has already validated the 'regs' pointer. The checks are done for 149 * ordering reasons: if the registers are on the next stack, we don't 150 * want to print them out yet. Otherwise they'll be shown as part of 151 * the wrong stack. Later, when show_trace_log_lvl() switches to the 152 * next stack, this function will be called again with the same regs so 153 * they can be printed in the right context. 154 */ 155 if (!partial && on_stack(info, regs, sizeof(*regs))) { 156 __show_regs(regs, SHOW_REGS_SHORT); 157 158 } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET, 159 IRET_FRAME_SIZE)) { 160 /* 161 * When an interrupt or exception occurs in entry code, the 162 * full pt_regs might not have been saved yet. In that case 163 * just print the iret frame. 164 */ 165 show_iret_regs(regs); 166 } 167 } 168 169 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, 170 unsigned long *stack, const char *log_lvl) 171 { 172 struct unwind_state state; 173 struct stack_info stack_info = {0}; 174 unsigned long visit_mask = 0; 175 int graph_idx = 0; 176 bool partial = false; 177 178 printk("%sCall Trace:\n", log_lvl); 179 180 unwind_start(&state, task, regs, stack); 181 stack = stack ? : get_stack_pointer(task, regs); 182 regs = unwind_get_entry_regs(&state, &partial); 183 184 /* 185 * Iterate through the stacks, starting with the current stack pointer. 186 * Each stack has a pointer to the next one. 187 * 188 * x86-64 can have several stacks: 189 * - task stack 190 * - interrupt stack 191 * - HW exception stacks (double fault, nmi, debug, mce) 192 * - entry stack 193 * 194 * x86-32 can have up to four stacks: 195 * - task stack 196 * - softirq stack 197 * - hardirq stack 198 * - entry stack 199 */ 200 for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) { 201 const char *stack_name; 202 203 if (get_stack_info(stack, task, &stack_info, &visit_mask)) { 204 /* 205 * We weren't on a valid stack. It's possible that 206 * we overflowed a valid stack into a guard page. 207 * See if the next page up is valid so that we can 208 * generate some kind of backtrace if this happens. 209 */ 210 stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack); 211 if (get_stack_info(stack, task, &stack_info, &visit_mask)) 212 break; 213 } 214 215 stack_name = stack_type_name(stack_info.type); 216 if (stack_name) 217 printk("%s <%s>\n", log_lvl, stack_name); 218 219 if (regs) 220 show_regs_if_on_stack(&stack_info, regs, partial); 221 222 /* 223 * Scan the stack, printing any text addresses we find. At the 224 * same time, follow proper stack frames with the unwinder. 225 * 226 * Addresses found during the scan which are not reported by 227 * the unwinder are considered to be additional clues which are 228 * sometimes useful for debugging and are prefixed with '?'. 229 * This also serves as a failsafe option in case the unwinder 230 * goes off in the weeds. 231 */ 232 for (; stack < stack_info.end; stack++) { 233 unsigned long real_addr; 234 int reliable = 0; 235 unsigned long addr = READ_ONCE_NOCHECK(*stack); 236 unsigned long *ret_addr_p = 237 unwind_get_return_address_ptr(&state); 238 239 if (!__kernel_text_address(addr)) 240 continue; 241 242 /* 243 * Don't print regs->ip again if it was already printed 244 * by show_regs_if_on_stack(). 245 */ 246 if (regs && stack == ®s->ip) 247 goto next; 248 249 if (stack == ret_addr_p) 250 reliable = 1; 251 252 /* 253 * When function graph tracing is enabled for a 254 * function, its return address on the stack is 255 * replaced with the address of an ftrace handler 256 * (return_to_handler). In that case, before printing 257 * the "real" address, we want to print the handler 258 * address as an "unreliable" hint that function graph 259 * tracing was involved. 260 */ 261 real_addr = ftrace_graph_ret_addr(task, &graph_idx, 262 addr, stack); 263 if (real_addr != addr) 264 printk_stack_address(addr, 0, log_lvl); 265 printk_stack_address(real_addr, reliable, log_lvl); 266 267 if (!reliable) 268 continue; 269 270 next: 271 /* 272 * Get the next frame from the unwinder. No need to 273 * check for an error: if anything goes wrong, the rest 274 * of the addresses will just be printed as unreliable. 275 */ 276 unwind_next_frame(&state); 277 278 /* if the frame has entry regs, print them */ 279 regs = unwind_get_entry_regs(&state, &partial); 280 if (regs) 281 show_regs_if_on_stack(&stack_info, regs, partial); 282 } 283 284 if (stack_name) 285 printk("%s </%s>\n", log_lvl, stack_name); 286 } 287 } 288 289 void show_stack(struct task_struct *task, unsigned long *sp, 290 const char *loglvl) 291 { 292 task = task ? : current; 293 294 /* 295 * Stack frames below this one aren't interesting. Don't show them 296 * if we're printing for %current. 297 */ 298 if (!sp && task == current) 299 sp = get_stack_pointer(current, NULL); 300 301 show_trace_log_lvl(task, NULL, sp, loglvl); 302 } 303 304 void show_stack_regs(struct pt_regs *regs) 305 { 306 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); 307 } 308 309 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; 310 static int die_owner = -1; 311 static unsigned int die_nest_count; 312 313 unsigned long oops_begin(void) 314 { 315 int cpu; 316 unsigned long flags; 317 318 oops_enter(); 319 320 /* racy, but better than risking deadlock. */ 321 raw_local_irq_save(flags); 322 cpu = smp_processor_id(); 323 if (!arch_spin_trylock(&die_lock)) { 324 if (cpu == die_owner) 325 /* nested oops. should stop eventually */; 326 else 327 arch_spin_lock(&die_lock); 328 } 329 die_nest_count++; 330 die_owner = cpu; 331 console_verbose(); 332 bust_spinlocks(1); 333 return flags; 334 } 335 NOKPROBE_SYMBOL(oops_begin); 336 337 void __noreturn rewind_stack_do_exit(int signr); 338 339 void oops_end(unsigned long flags, struct pt_regs *regs, int signr) 340 { 341 if (regs && kexec_should_crash(current)) 342 crash_kexec(regs); 343 344 bust_spinlocks(0); 345 die_owner = -1; 346 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 347 die_nest_count--; 348 if (!die_nest_count) 349 /* Nest count reaches zero, release the lock. */ 350 arch_spin_unlock(&die_lock); 351 raw_local_irq_restore(flags); 352 oops_exit(); 353 354 /* Executive summary in case the oops scrolled away */ 355 __show_regs(&exec_summary_regs, SHOW_REGS_ALL); 356 357 if (!signr) 358 return; 359 if (in_interrupt()) 360 panic("Fatal exception in interrupt"); 361 if (panic_on_oops) 362 panic("Fatal exception"); 363 364 /* 365 * We're not going to return, but we might be on an IST stack or 366 * have very little stack space left. Rewind the stack and kill 367 * the task. 368 * Before we rewind the stack, we have to tell KASAN that we're going to 369 * reuse the task stack and that existing poisons are invalid. 370 */ 371 kasan_unpoison_task_stack(current); 372 rewind_stack_do_exit(signr); 373 } 374 NOKPROBE_SYMBOL(oops_end); 375 376 static void __die_header(const char *str, struct pt_regs *regs, long err) 377 { 378 const char *pr = ""; 379 380 /* Save the regs of the first oops for the executive summary later. */ 381 if (!die_counter) 382 exec_summary_regs = *regs; 383 384 if (IS_ENABLED(CONFIG_PREEMPTION)) 385 pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT"; 386 387 printk(KERN_DEFAULT 388 "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter, 389 pr, 390 IS_ENABLED(CONFIG_SMP) ? " SMP" : "", 391 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", 392 IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "", 393 IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ? 394 (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : ""); 395 } 396 NOKPROBE_SYMBOL(__die_header); 397 398 static int __die_body(const char *str, struct pt_regs *regs, long err) 399 { 400 show_regs(regs); 401 print_modules(); 402 403 if (notify_die(DIE_OOPS, str, regs, err, 404 current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) 405 return 1; 406 407 return 0; 408 } 409 NOKPROBE_SYMBOL(__die_body); 410 411 int __die(const char *str, struct pt_regs *regs, long err) 412 { 413 __die_header(str, regs, err); 414 return __die_body(str, regs, err); 415 } 416 NOKPROBE_SYMBOL(__die); 417 418 /* 419 * This is gone through when something in the kernel has done something bad 420 * and is about to be terminated: 421 */ 422 void die(const char *str, struct pt_regs *regs, long err) 423 { 424 unsigned long flags = oops_begin(); 425 int sig = SIGSEGV; 426 427 if (__die(str, regs, err)) 428 sig = 0; 429 oops_end(flags, regs, sig); 430 } 431 432 void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr) 433 { 434 unsigned long flags = oops_begin(); 435 int sig = SIGSEGV; 436 437 __die_header(str, regs, err); 438 if (gp_addr) 439 kasan_non_canonical_hook(gp_addr); 440 if (__die_body(str, regs, err)) 441 sig = 0; 442 oops_end(flags, regs, sig); 443 } 444 445 void show_regs(struct pt_regs *regs) 446 { 447 show_regs_print_info(KERN_DEFAULT); 448 449 __show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL); 450 451 /* 452 * When in-kernel, we also print out the stack at the time of the fault.. 453 */ 454 if (!user_mode(regs)) 455 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); 456 } 457