1 /* 2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps. 3 * 4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 5 * 6 * Copyright (C) IBM Corporation, 2004. All rights reserved. 7 * Copyright (C) Red Hat Inc., 2014. All rights reserved. 8 * Authors: 9 * Vivek Goyal <vgoyal@redhat.com> 10 * 11 */ 12 13 #define pr_fmt(fmt) "kexec: " fmt 14 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/smp.h> 18 #include <linux/reboot.h> 19 #include <linux/kexec.h> 20 #include <linux/delay.h> 21 #include <linux/elf.h> 22 #include <linux/elfcore.h> 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 27 #include <asm/processor.h> 28 #include <asm/hardirq.h> 29 #include <asm/nmi.h> 30 #include <asm/hw_irq.h> 31 #include <asm/apic.h> 32 #include <asm/io_apic.h> 33 #include <asm/hpet.h> 34 #include <linux/kdebug.h> 35 #include <asm/cpu.h> 36 #include <asm/reboot.h> 37 #include <asm/virtext.h> 38 39 /* Alignment required for elf header segment */ 40 #define ELF_CORE_HEADER_ALIGN 4096 41 42 /* This primarily represents number of split ranges due to exclusion */ 43 #define CRASH_MAX_RANGES 16 44 45 struct crash_mem_range { 46 u64 start, end; 47 }; 48 49 struct crash_mem { 50 unsigned int nr_ranges; 51 struct crash_mem_range ranges[CRASH_MAX_RANGES]; 52 }; 53 54 /* Misc data about ram ranges needed to prepare elf headers */ 55 struct crash_elf_data { 56 struct kimage *image; 57 /* 58 * Total number of ram ranges we have after various adjustments for 59 * GART, crash reserved region etc. 60 */ 61 unsigned int max_nr_ranges; 62 unsigned long gart_start, gart_end; 63 64 /* Pointer to elf header */ 65 void *ehdr; 66 /* Pointer to next phdr */ 67 void *bufp; 68 struct crash_mem mem; 69 }; 70 71 /* Used while preparing memory map entries for second kernel */ 72 struct crash_memmap_data { 73 struct boot_params *params; 74 /* Type of memory */ 75 unsigned int type; 76 }; 77 78 /* 79 * This is used to VMCLEAR all VMCSs loaded on the 80 * processor. And when loading kvm_intel module, the 81 * callback function pointer will be assigned. 82 * 83 * protected by rcu. 84 */ 85 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL; 86 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss); 87 unsigned long crash_zero_bytes; 88 89 static inline void cpu_crash_vmclear_loaded_vmcss(void) 90 { 91 crash_vmclear_fn *do_vmclear_operation = NULL; 92 93 rcu_read_lock(); 94 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss); 95 if (do_vmclear_operation) 96 do_vmclear_operation(); 97 rcu_read_unlock(); 98 } 99 100 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) 101 102 static void kdump_nmi_callback(int cpu, struct pt_regs *regs) 103 { 104 #ifdef CONFIG_X86_32 105 struct pt_regs fixed_regs; 106 107 if (!user_mode(regs)) { 108 crash_fixup_ss_esp(&fixed_regs, regs); 109 regs = &fixed_regs; 110 } 111 #endif 112 crash_save_cpu(regs, cpu); 113 114 /* 115 * VMCLEAR VMCSs loaded on all cpus if needed. 116 */ 117 cpu_crash_vmclear_loaded_vmcss(); 118 119 /* Disable VMX or SVM if needed. 120 * 121 * We need to disable virtualization on all CPUs. 122 * Having VMX or SVM enabled on any CPU may break rebooting 123 * after the kdump kernel has finished its task. 124 */ 125 cpu_emergency_vmxoff(); 126 cpu_emergency_svm_disable(); 127 128 disable_local_APIC(); 129 } 130 131 static void kdump_nmi_shootdown_cpus(void) 132 { 133 nmi_shootdown_cpus(kdump_nmi_callback); 134 135 disable_local_APIC(); 136 } 137 138 #else 139 static void kdump_nmi_shootdown_cpus(void) 140 { 141 /* There are no cpus to shootdown */ 142 } 143 #endif 144 145 void native_machine_crash_shutdown(struct pt_regs *regs) 146 { 147 /* This function is only called after the system 148 * has panicked or is otherwise in a critical state. 149 * The minimum amount of code to allow a kexec'd kernel 150 * to run successfully needs to happen here. 151 * 152 * In practice this means shooting down the other cpus in 153 * an SMP system. 154 */ 155 /* The kernel is broken so disable interrupts */ 156 local_irq_disable(); 157 158 kdump_nmi_shootdown_cpus(); 159 160 /* 161 * VMCLEAR VMCSs loaded on this cpu if needed. 162 */ 163 cpu_crash_vmclear_loaded_vmcss(); 164 165 /* Booting kdump kernel with VMX or SVM enabled won't work, 166 * because (among other limitations) we can't disable paging 167 * with the virt flags. 168 */ 169 cpu_emergency_vmxoff(); 170 cpu_emergency_svm_disable(); 171 172 #ifdef CONFIG_X86_IO_APIC 173 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ 174 ioapic_zap_locks(); 175 disable_IO_APIC(); 176 #endif 177 lapic_shutdown(); 178 #ifdef CONFIG_HPET_TIMER 179 hpet_disable(); 180 #endif 181 crash_save_cpu(regs, safe_smp_processor_id()); 182 } 183 184 #ifdef CONFIG_KEXEC_FILE 185 static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg) 186 { 187 unsigned int *nr_ranges = arg; 188 189 (*nr_ranges)++; 190 return 0; 191 } 192 193 static int get_gart_ranges_callback(u64 start, u64 end, void *arg) 194 { 195 struct crash_elf_data *ced = arg; 196 197 ced->gart_start = start; 198 ced->gart_end = end; 199 200 /* Not expecting more than 1 gart aperture */ 201 return 1; 202 } 203 204 205 /* Gather all the required information to prepare elf headers for ram regions */ 206 static void fill_up_crash_elf_data(struct crash_elf_data *ced, 207 struct kimage *image) 208 { 209 unsigned int nr_ranges = 0; 210 211 ced->image = image; 212 213 walk_system_ram_res(0, -1, &nr_ranges, 214 get_nr_ram_ranges_callback); 215 216 ced->max_nr_ranges = nr_ranges; 217 218 /* 219 * We don't create ELF headers for GART aperture as an attempt 220 * to dump this memory in second kernel leads to hang/crash. 221 * If gart aperture is present, one needs to exclude that region 222 * and that could lead to need of extra phdr. 223 */ 224 walk_iomem_res("GART", IORESOURCE_MEM, 0, -1, 225 ced, get_gart_ranges_callback); 226 227 /* 228 * If we have gart region, excluding that could potentially split 229 * a memory range, resulting in extra header. Account for that. 230 */ 231 if (ced->gart_end) 232 ced->max_nr_ranges++; 233 234 /* Exclusion of crash region could split memory ranges */ 235 ced->max_nr_ranges++; 236 237 /* If crashk_low_res is not 0, another range split possible */ 238 if (crashk_low_res.end) 239 ced->max_nr_ranges++; 240 } 241 242 static int exclude_mem_range(struct crash_mem *mem, 243 unsigned long long mstart, unsigned long long mend) 244 { 245 int i, j; 246 unsigned long long start, end; 247 struct crash_mem_range temp_range = {0, 0}; 248 249 for (i = 0; i < mem->nr_ranges; i++) { 250 start = mem->ranges[i].start; 251 end = mem->ranges[i].end; 252 253 if (mstart > end || mend < start) 254 continue; 255 256 /* Truncate any area outside of range */ 257 if (mstart < start) 258 mstart = start; 259 if (mend > end) 260 mend = end; 261 262 /* Found completely overlapping range */ 263 if (mstart == start && mend == end) { 264 mem->ranges[i].start = 0; 265 mem->ranges[i].end = 0; 266 if (i < mem->nr_ranges - 1) { 267 /* Shift rest of the ranges to left */ 268 for (j = i; j < mem->nr_ranges - 1; j++) { 269 mem->ranges[j].start = 270 mem->ranges[j+1].start; 271 mem->ranges[j].end = 272 mem->ranges[j+1].end; 273 } 274 } 275 mem->nr_ranges--; 276 return 0; 277 } 278 279 if (mstart > start && mend < end) { 280 /* Split original range */ 281 mem->ranges[i].end = mstart - 1; 282 temp_range.start = mend + 1; 283 temp_range.end = end; 284 } else if (mstart != start) 285 mem->ranges[i].end = mstart - 1; 286 else 287 mem->ranges[i].start = mend + 1; 288 break; 289 } 290 291 /* If a split happend, add the split to array */ 292 if (!temp_range.end) 293 return 0; 294 295 /* Split happened */ 296 if (i == CRASH_MAX_RANGES - 1) { 297 pr_err("Too many crash ranges after split\n"); 298 return -ENOMEM; 299 } 300 301 /* Location where new range should go */ 302 j = i + 1; 303 if (j < mem->nr_ranges) { 304 /* Move over all ranges one slot towards the end */ 305 for (i = mem->nr_ranges - 1; i >= j; i--) 306 mem->ranges[i + 1] = mem->ranges[i]; 307 } 308 309 mem->ranges[j].start = temp_range.start; 310 mem->ranges[j].end = temp_range.end; 311 mem->nr_ranges++; 312 return 0; 313 } 314 315 /* 316 * Look for any unwanted ranges between mstart, mend and remove them. This 317 * might lead to split and split ranges are put in ced->mem.ranges[] array 318 */ 319 static int elf_header_exclude_ranges(struct crash_elf_data *ced, 320 unsigned long long mstart, unsigned long long mend) 321 { 322 struct crash_mem *cmem = &ced->mem; 323 int ret = 0; 324 325 memset(cmem->ranges, 0, sizeof(cmem->ranges)); 326 327 cmem->ranges[0].start = mstart; 328 cmem->ranges[0].end = mend; 329 cmem->nr_ranges = 1; 330 331 /* Exclude crashkernel region */ 332 ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end); 333 if (ret) 334 return ret; 335 336 if (crashk_low_res.end) { 337 ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end); 338 if (ret) 339 return ret; 340 } 341 342 /* Exclude GART region */ 343 if (ced->gart_end) { 344 ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end); 345 if (ret) 346 return ret; 347 } 348 349 return ret; 350 } 351 352 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg) 353 { 354 struct crash_elf_data *ced = arg; 355 Elf64_Ehdr *ehdr; 356 Elf64_Phdr *phdr; 357 unsigned long mstart, mend; 358 struct kimage *image = ced->image; 359 struct crash_mem *cmem; 360 int ret, i; 361 362 ehdr = ced->ehdr; 363 364 /* Exclude unwanted mem ranges */ 365 ret = elf_header_exclude_ranges(ced, start, end); 366 if (ret) 367 return ret; 368 369 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */ 370 cmem = &ced->mem; 371 372 for (i = 0; i < cmem->nr_ranges; i++) { 373 mstart = cmem->ranges[i].start; 374 mend = cmem->ranges[i].end; 375 376 phdr = ced->bufp; 377 ced->bufp += sizeof(Elf64_Phdr); 378 379 phdr->p_type = PT_LOAD; 380 phdr->p_flags = PF_R|PF_W|PF_X; 381 phdr->p_offset = mstart; 382 383 /* 384 * If a range matches backup region, adjust offset to backup 385 * segment. 386 */ 387 if (mstart == image->arch.backup_src_start && 388 (mend - mstart + 1) == image->arch.backup_src_sz) 389 phdr->p_offset = image->arch.backup_load_addr; 390 391 phdr->p_paddr = mstart; 392 phdr->p_vaddr = (unsigned long long) __va(mstart); 393 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 394 phdr->p_align = 0; 395 ehdr->e_phnum++; 396 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 397 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 398 ehdr->e_phnum, phdr->p_offset); 399 } 400 401 return ret; 402 } 403 404 static int prepare_elf64_headers(struct crash_elf_data *ced, 405 void **addr, unsigned long *sz) 406 { 407 Elf64_Ehdr *ehdr; 408 Elf64_Phdr *phdr; 409 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 410 unsigned char *buf, *bufp; 411 unsigned int cpu; 412 unsigned long long notes_addr; 413 int ret; 414 415 /* extra phdr for vmcoreinfo elf note */ 416 nr_phdr = nr_cpus + 1; 417 nr_phdr += ced->max_nr_ranges; 418 419 /* 420 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 421 * area on x86_64 (ffffffff80000000 - ffffffffa0000000). 422 * I think this is required by tools like gdb. So same physical 423 * memory will be mapped in two elf headers. One will contain kernel 424 * text virtual addresses and other will have __va(physical) addresses. 425 */ 426 427 nr_phdr++; 428 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 429 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 430 431 buf = vzalloc(elf_sz); 432 if (!buf) 433 return -ENOMEM; 434 435 bufp = buf; 436 ehdr = (Elf64_Ehdr *)bufp; 437 bufp += sizeof(Elf64_Ehdr); 438 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 439 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 440 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 441 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 442 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 443 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 444 ehdr->e_type = ET_CORE; 445 ehdr->e_machine = ELF_ARCH; 446 ehdr->e_version = EV_CURRENT; 447 ehdr->e_phoff = sizeof(Elf64_Ehdr); 448 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 449 ehdr->e_phentsize = sizeof(Elf64_Phdr); 450 451 /* Prepare one phdr of type PT_NOTE for each present cpu */ 452 for_each_present_cpu(cpu) { 453 phdr = (Elf64_Phdr *)bufp; 454 bufp += sizeof(Elf64_Phdr); 455 phdr->p_type = PT_NOTE; 456 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 457 phdr->p_offset = phdr->p_paddr = notes_addr; 458 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 459 (ehdr->e_phnum)++; 460 } 461 462 /* Prepare one PT_NOTE header for vmcoreinfo */ 463 phdr = (Elf64_Phdr *)bufp; 464 bufp += sizeof(Elf64_Phdr); 465 phdr->p_type = PT_NOTE; 466 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 467 phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note); 468 (ehdr->e_phnum)++; 469 470 #ifdef CONFIG_X86_64 471 /* Prepare PT_LOAD type program header for kernel text region */ 472 phdr = (Elf64_Phdr *)bufp; 473 bufp += sizeof(Elf64_Phdr); 474 phdr->p_type = PT_LOAD; 475 phdr->p_flags = PF_R|PF_W|PF_X; 476 phdr->p_vaddr = (Elf64_Addr)_text; 477 phdr->p_filesz = phdr->p_memsz = _end - _text; 478 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 479 (ehdr->e_phnum)++; 480 #endif 481 482 /* Prepare PT_LOAD headers for system ram chunks. */ 483 ced->ehdr = ehdr; 484 ced->bufp = bufp; 485 ret = walk_system_ram_res(0, -1, ced, 486 prepare_elf64_ram_headers_callback); 487 if (ret < 0) 488 return ret; 489 490 *addr = buf; 491 *sz = elf_sz; 492 return 0; 493 } 494 495 /* Prepare elf headers. Return addr and size */ 496 static int prepare_elf_headers(struct kimage *image, void **addr, 497 unsigned long *sz) 498 { 499 struct crash_elf_data *ced; 500 int ret; 501 502 ced = kzalloc(sizeof(*ced), GFP_KERNEL); 503 if (!ced) 504 return -ENOMEM; 505 506 fill_up_crash_elf_data(ced, image); 507 508 /* By default prepare 64bit headers */ 509 ret = prepare_elf64_headers(ced, addr, sz); 510 kfree(ced); 511 return ret; 512 } 513 514 static int add_e820_entry(struct boot_params *params, struct e820entry *entry) 515 { 516 unsigned int nr_e820_entries; 517 518 nr_e820_entries = params->e820_entries; 519 if (nr_e820_entries >= E820MAX) 520 return 1; 521 522 memcpy(¶ms->e820_map[nr_e820_entries], entry, 523 sizeof(struct e820entry)); 524 params->e820_entries++; 525 return 0; 526 } 527 528 static int memmap_entry_callback(u64 start, u64 end, void *arg) 529 { 530 struct crash_memmap_data *cmd = arg; 531 struct boot_params *params = cmd->params; 532 struct e820entry ei; 533 534 ei.addr = start; 535 ei.size = end - start + 1; 536 ei.type = cmd->type; 537 add_e820_entry(params, &ei); 538 539 return 0; 540 } 541 542 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, 543 unsigned long long mstart, 544 unsigned long long mend) 545 { 546 unsigned long start, end; 547 int ret = 0; 548 549 cmem->ranges[0].start = mstart; 550 cmem->ranges[0].end = mend; 551 cmem->nr_ranges = 1; 552 553 /* Exclude Backup region */ 554 start = image->arch.backup_load_addr; 555 end = start + image->arch.backup_src_sz - 1; 556 ret = exclude_mem_range(cmem, start, end); 557 if (ret) 558 return ret; 559 560 /* Exclude elf header region */ 561 start = image->arch.elf_load_addr; 562 end = start + image->arch.elf_headers_sz - 1; 563 return exclude_mem_range(cmem, start, end); 564 } 565 566 /* Prepare memory map for crash dump kernel */ 567 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) 568 { 569 int i, ret = 0; 570 unsigned long flags; 571 struct e820entry ei; 572 struct crash_memmap_data cmd; 573 struct crash_mem *cmem; 574 575 cmem = vzalloc(sizeof(struct crash_mem)); 576 if (!cmem) 577 return -ENOMEM; 578 579 memset(&cmd, 0, sizeof(struct crash_memmap_data)); 580 cmd.params = params; 581 582 /* Add first 640K segment */ 583 ei.addr = image->arch.backup_src_start; 584 ei.size = image->arch.backup_src_sz; 585 ei.type = E820_RAM; 586 add_e820_entry(params, &ei); 587 588 /* Add ACPI tables */ 589 cmd.type = E820_ACPI; 590 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 591 walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd, 592 memmap_entry_callback); 593 594 /* Add ACPI Non-volatile Storage */ 595 cmd.type = E820_NVS; 596 walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd, 597 memmap_entry_callback); 598 599 /* Add crashk_low_res region */ 600 if (crashk_low_res.end) { 601 ei.addr = crashk_low_res.start; 602 ei.size = crashk_low_res.end - crashk_low_res.start + 1; 603 ei.type = E820_RAM; 604 add_e820_entry(params, &ei); 605 } 606 607 /* Exclude some ranges from crashk_res and add rest to memmap */ 608 ret = memmap_exclude_ranges(image, cmem, crashk_res.start, 609 crashk_res.end); 610 if (ret) 611 goto out; 612 613 for (i = 0; i < cmem->nr_ranges; i++) { 614 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; 615 616 /* If entry is less than a page, skip it */ 617 if (ei.size < PAGE_SIZE) 618 continue; 619 ei.addr = cmem->ranges[i].start; 620 ei.type = E820_RAM; 621 add_e820_entry(params, &ei); 622 } 623 624 out: 625 vfree(cmem); 626 return ret; 627 } 628 629 static int determine_backup_region(u64 start, u64 end, void *arg) 630 { 631 struct kimage *image = arg; 632 633 image->arch.backup_src_start = start; 634 image->arch.backup_src_sz = end - start + 1; 635 636 /* Expecting only one range for backup region */ 637 return 1; 638 } 639 640 int crash_load_segments(struct kimage *image) 641 { 642 unsigned long src_start, src_sz, elf_sz; 643 void *elf_addr; 644 int ret; 645 646 /* 647 * Determine and load a segment for backup area. First 640K RAM 648 * region is backup source 649 */ 650 651 ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END, 652 image, determine_backup_region); 653 654 /* Zero or postive return values are ok */ 655 if (ret < 0) 656 return ret; 657 658 src_start = image->arch.backup_src_start; 659 src_sz = image->arch.backup_src_sz; 660 661 /* Add backup segment. */ 662 if (src_sz) { 663 /* 664 * Ideally there is no source for backup segment. This is 665 * copied in purgatory after crash. Just add a zero filled 666 * segment for now to make sure checksum logic works fine. 667 */ 668 ret = kexec_add_buffer(image, (char *)&crash_zero_bytes, 669 sizeof(crash_zero_bytes), src_sz, 670 PAGE_SIZE, 0, -1, 0, 671 &image->arch.backup_load_addr); 672 if (ret) 673 return ret; 674 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n", 675 image->arch.backup_load_addr, src_start, src_sz); 676 } 677 678 /* Prepare elf headers and add a segment */ 679 ret = prepare_elf_headers(image, &elf_addr, &elf_sz); 680 if (ret) 681 return ret; 682 683 image->arch.elf_headers = elf_addr; 684 image->arch.elf_headers_sz = elf_sz; 685 686 ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz, 687 ELF_CORE_HEADER_ALIGN, 0, -1, 0, 688 &image->arch.elf_load_addr); 689 if (ret) { 690 vfree((void *)image->arch.elf_headers); 691 return ret; 692 } 693 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", 694 image->arch.elf_load_addr, elf_sz, elf_sz); 695 696 return ret; 697 } 698 #endif /* CONFIG_KEXEC_FILE */ 699