1 /* 2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps. 3 * 4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 5 * 6 * Copyright (C) IBM Corporation, 2004. All rights reserved. 7 * Copyright (C) Red Hat Inc., 2014. All rights reserved. 8 * Authors: 9 * Vivek Goyal <vgoyal@redhat.com> 10 * 11 */ 12 13 #define pr_fmt(fmt) "kexec: " fmt 14 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/smp.h> 18 #include <linux/reboot.h> 19 #include <linux/kexec.h> 20 #include <linux/delay.h> 21 #include <linux/elf.h> 22 #include <linux/elfcore.h> 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 27 #include <asm/processor.h> 28 #include <asm/hardirq.h> 29 #include <asm/nmi.h> 30 #include <asm/hw_irq.h> 31 #include <asm/apic.h> 32 #include <asm/io_apic.h> 33 #include <asm/hpet.h> 34 #include <linux/kdebug.h> 35 #include <asm/cpu.h> 36 #include <asm/reboot.h> 37 #include <asm/virtext.h> 38 #include <asm/intel_pt.h> 39 40 /* Alignment required for elf header segment */ 41 #define ELF_CORE_HEADER_ALIGN 4096 42 43 /* This primarily represents number of split ranges due to exclusion */ 44 #define CRASH_MAX_RANGES 16 45 46 struct crash_mem_range { 47 u64 start, end; 48 }; 49 50 struct crash_mem { 51 unsigned int nr_ranges; 52 struct crash_mem_range ranges[CRASH_MAX_RANGES]; 53 }; 54 55 /* Misc data about ram ranges needed to prepare elf headers */ 56 struct crash_elf_data { 57 struct kimage *image; 58 /* 59 * Total number of ram ranges we have after various adjustments for 60 * crash reserved region, etc. 61 */ 62 unsigned int max_nr_ranges; 63 64 /* Pointer to elf header */ 65 void *ehdr; 66 /* Pointer to next phdr */ 67 void *bufp; 68 struct crash_mem mem; 69 }; 70 71 /* Used while preparing memory map entries for second kernel */ 72 struct crash_memmap_data { 73 struct boot_params *params; 74 /* Type of memory */ 75 unsigned int type; 76 }; 77 78 /* 79 * This is used to VMCLEAR all VMCSs loaded on the 80 * processor. And when loading kvm_intel module, the 81 * callback function pointer will be assigned. 82 * 83 * protected by rcu. 84 */ 85 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL; 86 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss); 87 unsigned long crash_zero_bytes; 88 89 static inline void cpu_crash_vmclear_loaded_vmcss(void) 90 { 91 crash_vmclear_fn *do_vmclear_operation = NULL; 92 93 rcu_read_lock(); 94 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss); 95 if (do_vmclear_operation) 96 do_vmclear_operation(); 97 rcu_read_unlock(); 98 } 99 100 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) 101 102 static void kdump_nmi_callback(int cpu, struct pt_regs *regs) 103 { 104 #ifdef CONFIG_X86_32 105 struct pt_regs fixed_regs; 106 107 if (!user_mode(regs)) { 108 crash_fixup_ss_esp(&fixed_regs, regs); 109 regs = &fixed_regs; 110 } 111 #endif 112 crash_save_cpu(regs, cpu); 113 114 /* 115 * VMCLEAR VMCSs loaded on all cpus if needed. 116 */ 117 cpu_crash_vmclear_loaded_vmcss(); 118 119 /* Disable VMX or SVM if needed. 120 * 121 * We need to disable virtualization on all CPUs. 122 * Having VMX or SVM enabled on any CPU may break rebooting 123 * after the kdump kernel has finished its task. 124 */ 125 cpu_emergency_vmxoff(); 126 cpu_emergency_svm_disable(); 127 128 /* 129 * Disable Intel PT to stop its logging 130 */ 131 cpu_emergency_stop_pt(); 132 133 disable_local_APIC(); 134 } 135 136 void kdump_nmi_shootdown_cpus(void) 137 { 138 nmi_shootdown_cpus(kdump_nmi_callback); 139 140 disable_local_APIC(); 141 } 142 143 /* Override the weak function in kernel/panic.c */ 144 void crash_smp_send_stop(void) 145 { 146 static int cpus_stopped; 147 148 if (cpus_stopped) 149 return; 150 151 if (smp_ops.crash_stop_other_cpus) 152 smp_ops.crash_stop_other_cpus(); 153 else 154 smp_send_stop(); 155 156 cpus_stopped = 1; 157 } 158 159 #else 160 void crash_smp_send_stop(void) 161 { 162 /* There are no cpus to shootdown */ 163 } 164 #endif 165 166 void native_machine_crash_shutdown(struct pt_regs *regs) 167 { 168 /* This function is only called after the system 169 * has panicked or is otherwise in a critical state. 170 * The minimum amount of code to allow a kexec'd kernel 171 * to run successfully needs to happen here. 172 * 173 * In practice this means shooting down the other cpus in 174 * an SMP system. 175 */ 176 /* The kernel is broken so disable interrupts */ 177 local_irq_disable(); 178 179 crash_smp_send_stop(); 180 181 /* 182 * VMCLEAR VMCSs loaded on this cpu if needed. 183 */ 184 cpu_crash_vmclear_loaded_vmcss(); 185 186 /* Booting kdump kernel with VMX or SVM enabled won't work, 187 * because (among other limitations) we can't disable paging 188 * with the virt flags. 189 */ 190 cpu_emergency_vmxoff(); 191 cpu_emergency_svm_disable(); 192 193 /* 194 * Disable Intel PT to stop its logging 195 */ 196 cpu_emergency_stop_pt(); 197 198 #ifdef CONFIG_X86_IO_APIC 199 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ 200 ioapic_zap_locks(); 201 disable_IO_APIC(); 202 #endif 203 lapic_shutdown(); 204 #ifdef CONFIG_HPET_TIMER 205 hpet_disable(); 206 #endif 207 crash_save_cpu(regs, safe_smp_processor_id()); 208 } 209 210 #ifdef CONFIG_KEXEC_FILE 211 static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg) 212 { 213 unsigned int *nr_ranges = arg; 214 215 (*nr_ranges)++; 216 return 0; 217 } 218 219 220 /* Gather all the required information to prepare elf headers for ram regions */ 221 static void fill_up_crash_elf_data(struct crash_elf_data *ced, 222 struct kimage *image) 223 { 224 unsigned int nr_ranges = 0; 225 226 ced->image = image; 227 228 walk_system_ram_res(0, -1, &nr_ranges, 229 get_nr_ram_ranges_callback); 230 231 ced->max_nr_ranges = nr_ranges; 232 233 /* Exclusion of crash region could split memory ranges */ 234 ced->max_nr_ranges++; 235 236 /* If crashk_low_res is not 0, another range split possible */ 237 if (crashk_low_res.end) 238 ced->max_nr_ranges++; 239 } 240 241 static int exclude_mem_range(struct crash_mem *mem, 242 unsigned long long mstart, unsigned long long mend) 243 { 244 int i, j; 245 unsigned long long start, end; 246 struct crash_mem_range temp_range = {0, 0}; 247 248 for (i = 0; i < mem->nr_ranges; i++) { 249 start = mem->ranges[i].start; 250 end = mem->ranges[i].end; 251 252 if (mstart > end || mend < start) 253 continue; 254 255 /* Truncate any area outside of range */ 256 if (mstart < start) 257 mstart = start; 258 if (mend > end) 259 mend = end; 260 261 /* Found completely overlapping range */ 262 if (mstart == start && mend == end) { 263 mem->ranges[i].start = 0; 264 mem->ranges[i].end = 0; 265 if (i < mem->nr_ranges - 1) { 266 /* Shift rest of the ranges to left */ 267 for (j = i; j < mem->nr_ranges - 1; j++) { 268 mem->ranges[j].start = 269 mem->ranges[j+1].start; 270 mem->ranges[j].end = 271 mem->ranges[j+1].end; 272 } 273 } 274 mem->nr_ranges--; 275 return 0; 276 } 277 278 if (mstart > start && mend < end) { 279 /* Split original range */ 280 mem->ranges[i].end = mstart - 1; 281 temp_range.start = mend + 1; 282 temp_range.end = end; 283 } else if (mstart != start) 284 mem->ranges[i].end = mstart - 1; 285 else 286 mem->ranges[i].start = mend + 1; 287 break; 288 } 289 290 /* If a split happend, add the split to array */ 291 if (!temp_range.end) 292 return 0; 293 294 /* Split happened */ 295 if (i == CRASH_MAX_RANGES - 1) { 296 pr_err("Too many crash ranges after split\n"); 297 return -ENOMEM; 298 } 299 300 /* Location where new range should go */ 301 j = i + 1; 302 if (j < mem->nr_ranges) { 303 /* Move over all ranges one slot towards the end */ 304 for (i = mem->nr_ranges - 1; i >= j; i--) 305 mem->ranges[i + 1] = mem->ranges[i]; 306 } 307 308 mem->ranges[j].start = temp_range.start; 309 mem->ranges[j].end = temp_range.end; 310 mem->nr_ranges++; 311 return 0; 312 } 313 314 /* 315 * Look for any unwanted ranges between mstart, mend and remove them. This 316 * might lead to split and split ranges are put in ced->mem.ranges[] array 317 */ 318 static int elf_header_exclude_ranges(struct crash_elf_data *ced, 319 unsigned long long mstart, unsigned long long mend) 320 { 321 struct crash_mem *cmem = &ced->mem; 322 int ret = 0; 323 324 memset(cmem->ranges, 0, sizeof(cmem->ranges)); 325 326 cmem->ranges[0].start = mstart; 327 cmem->ranges[0].end = mend; 328 cmem->nr_ranges = 1; 329 330 /* Exclude crashkernel region */ 331 ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end); 332 if (ret) 333 return ret; 334 335 if (crashk_low_res.end) { 336 ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end); 337 if (ret) 338 return ret; 339 } 340 341 return ret; 342 } 343 344 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg) 345 { 346 struct crash_elf_data *ced = arg; 347 Elf64_Ehdr *ehdr; 348 Elf64_Phdr *phdr; 349 unsigned long mstart, mend; 350 struct kimage *image = ced->image; 351 struct crash_mem *cmem; 352 int ret, i; 353 354 ehdr = ced->ehdr; 355 356 /* Exclude unwanted mem ranges */ 357 ret = elf_header_exclude_ranges(ced, start, end); 358 if (ret) 359 return ret; 360 361 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */ 362 cmem = &ced->mem; 363 364 for (i = 0; i < cmem->nr_ranges; i++) { 365 mstart = cmem->ranges[i].start; 366 mend = cmem->ranges[i].end; 367 368 phdr = ced->bufp; 369 ced->bufp += sizeof(Elf64_Phdr); 370 371 phdr->p_type = PT_LOAD; 372 phdr->p_flags = PF_R|PF_W|PF_X; 373 phdr->p_offset = mstart; 374 375 /* 376 * If a range matches backup region, adjust offset to backup 377 * segment. 378 */ 379 if (mstart == image->arch.backup_src_start && 380 (mend - mstart + 1) == image->arch.backup_src_sz) 381 phdr->p_offset = image->arch.backup_load_addr; 382 383 phdr->p_paddr = mstart; 384 phdr->p_vaddr = (unsigned long long) __va(mstart); 385 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 386 phdr->p_align = 0; 387 ehdr->e_phnum++; 388 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 389 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 390 ehdr->e_phnum, phdr->p_offset); 391 } 392 393 return ret; 394 } 395 396 static int prepare_elf64_headers(struct crash_elf_data *ced, 397 void **addr, unsigned long *sz) 398 { 399 Elf64_Ehdr *ehdr; 400 Elf64_Phdr *phdr; 401 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 402 unsigned char *buf, *bufp; 403 unsigned int cpu; 404 unsigned long long notes_addr; 405 int ret; 406 407 /* extra phdr for vmcoreinfo elf note */ 408 nr_phdr = nr_cpus + 1; 409 nr_phdr += ced->max_nr_ranges; 410 411 /* 412 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 413 * area on x86_64 (ffffffff80000000 - ffffffffa0000000). 414 * I think this is required by tools like gdb. So same physical 415 * memory will be mapped in two elf headers. One will contain kernel 416 * text virtual addresses and other will have __va(physical) addresses. 417 */ 418 419 nr_phdr++; 420 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 421 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 422 423 buf = vzalloc(elf_sz); 424 if (!buf) 425 return -ENOMEM; 426 427 bufp = buf; 428 ehdr = (Elf64_Ehdr *)bufp; 429 bufp += sizeof(Elf64_Ehdr); 430 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 431 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 432 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 433 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 434 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 435 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 436 ehdr->e_type = ET_CORE; 437 ehdr->e_machine = ELF_ARCH; 438 ehdr->e_version = EV_CURRENT; 439 ehdr->e_phoff = sizeof(Elf64_Ehdr); 440 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 441 ehdr->e_phentsize = sizeof(Elf64_Phdr); 442 443 /* Prepare one phdr of type PT_NOTE for each present cpu */ 444 for_each_present_cpu(cpu) { 445 phdr = (Elf64_Phdr *)bufp; 446 bufp += sizeof(Elf64_Phdr); 447 phdr->p_type = PT_NOTE; 448 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 449 phdr->p_offset = phdr->p_paddr = notes_addr; 450 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 451 (ehdr->e_phnum)++; 452 } 453 454 /* Prepare one PT_NOTE header for vmcoreinfo */ 455 phdr = (Elf64_Phdr *)bufp; 456 bufp += sizeof(Elf64_Phdr); 457 phdr->p_type = PT_NOTE; 458 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 459 phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note); 460 (ehdr->e_phnum)++; 461 462 #ifdef CONFIG_X86_64 463 /* Prepare PT_LOAD type program header for kernel text region */ 464 phdr = (Elf64_Phdr *)bufp; 465 bufp += sizeof(Elf64_Phdr); 466 phdr->p_type = PT_LOAD; 467 phdr->p_flags = PF_R|PF_W|PF_X; 468 phdr->p_vaddr = (Elf64_Addr)_text; 469 phdr->p_filesz = phdr->p_memsz = _end - _text; 470 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 471 (ehdr->e_phnum)++; 472 #endif 473 474 /* Prepare PT_LOAD headers for system ram chunks. */ 475 ced->ehdr = ehdr; 476 ced->bufp = bufp; 477 ret = walk_system_ram_res(0, -1, ced, 478 prepare_elf64_ram_headers_callback); 479 if (ret < 0) 480 return ret; 481 482 *addr = buf; 483 *sz = elf_sz; 484 return 0; 485 } 486 487 /* Prepare elf headers. Return addr and size */ 488 static int prepare_elf_headers(struct kimage *image, void **addr, 489 unsigned long *sz) 490 { 491 struct crash_elf_data *ced; 492 int ret; 493 494 ced = kzalloc(sizeof(*ced), GFP_KERNEL); 495 if (!ced) 496 return -ENOMEM; 497 498 fill_up_crash_elf_data(ced, image); 499 500 /* By default prepare 64bit headers */ 501 ret = prepare_elf64_headers(ced, addr, sz); 502 kfree(ced); 503 return ret; 504 } 505 506 static int add_e820_entry(struct boot_params *params, struct e820entry *entry) 507 { 508 unsigned int nr_e820_entries; 509 510 nr_e820_entries = params->e820_entries; 511 if (nr_e820_entries >= E820MAX) 512 return 1; 513 514 memcpy(¶ms->e820_map[nr_e820_entries], entry, 515 sizeof(struct e820entry)); 516 params->e820_entries++; 517 return 0; 518 } 519 520 static int memmap_entry_callback(u64 start, u64 end, void *arg) 521 { 522 struct crash_memmap_data *cmd = arg; 523 struct boot_params *params = cmd->params; 524 struct e820entry ei; 525 526 ei.addr = start; 527 ei.size = end - start + 1; 528 ei.type = cmd->type; 529 add_e820_entry(params, &ei); 530 531 return 0; 532 } 533 534 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, 535 unsigned long long mstart, 536 unsigned long long mend) 537 { 538 unsigned long start, end; 539 int ret = 0; 540 541 cmem->ranges[0].start = mstart; 542 cmem->ranges[0].end = mend; 543 cmem->nr_ranges = 1; 544 545 /* Exclude Backup region */ 546 start = image->arch.backup_load_addr; 547 end = start + image->arch.backup_src_sz - 1; 548 ret = exclude_mem_range(cmem, start, end); 549 if (ret) 550 return ret; 551 552 /* Exclude elf header region */ 553 start = image->arch.elf_load_addr; 554 end = start + image->arch.elf_headers_sz - 1; 555 return exclude_mem_range(cmem, start, end); 556 } 557 558 /* Prepare memory map for crash dump kernel */ 559 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) 560 { 561 int i, ret = 0; 562 unsigned long flags; 563 struct e820entry ei; 564 struct crash_memmap_data cmd; 565 struct crash_mem *cmem; 566 567 cmem = vzalloc(sizeof(struct crash_mem)); 568 if (!cmem) 569 return -ENOMEM; 570 571 memset(&cmd, 0, sizeof(struct crash_memmap_data)); 572 cmd.params = params; 573 574 /* Add first 640K segment */ 575 ei.addr = image->arch.backup_src_start; 576 ei.size = image->arch.backup_src_sz; 577 ei.type = E820_RAM; 578 add_e820_entry(params, &ei); 579 580 /* Add ACPI tables */ 581 cmd.type = E820_ACPI; 582 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 583 walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd, 584 memmap_entry_callback); 585 586 /* Add ACPI Non-volatile Storage */ 587 cmd.type = E820_NVS; 588 walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd, 589 memmap_entry_callback); 590 591 /* Add crashk_low_res region */ 592 if (crashk_low_res.end) { 593 ei.addr = crashk_low_res.start; 594 ei.size = crashk_low_res.end - crashk_low_res.start + 1; 595 ei.type = E820_RAM; 596 add_e820_entry(params, &ei); 597 } 598 599 /* Exclude some ranges from crashk_res and add rest to memmap */ 600 ret = memmap_exclude_ranges(image, cmem, crashk_res.start, 601 crashk_res.end); 602 if (ret) 603 goto out; 604 605 for (i = 0; i < cmem->nr_ranges; i++) { 606 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; 607 608 /* If entry is less than a page, skip it */ 609 if (ei.size < PAGE_SIZE) 610 continue; 611 ei.addr = cmem->ranges[i].start; 612 ei.type = E820_RAM; 613 add_e820_entry(params, &ei); 614 } 615 616 out: 617 vfree(cmem); 618 return ret; 619 } 620 621 static int determine_backup_region(u64 start, u64 end, void *arg) 622 { 623 struct kimage *image = arg; 624 625 image->arch.backup_src_start = start; 626 image->arch.backup_src_sz = end - start + 1; 627 628 /* Expecting only one range for backup region */ 629 return 1; 630 } 631 632 int crash_load_segments(struct kimage *image) 633 { 634 int ret; 635 struct kexec_buf kbuf = { .image = image, .buf_min = 0, 636 .buf_max = ULONG_MAX, .top_down = false }; 637 638 /* 639 * Determine and load a segment for backup area. First 640K RAM 640 * region is backup source 641 */ 642 643 ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END, 644 image, determine_backup_region); 645 646 /* Zero or postive return values are ok */ 647 if (ret < 0) 648 return ret; 649 650 /* Add backup segment. */ 651 if (image->arch.backup_src_sz) { 652 kbuf.buffer = &crash_zero_bytes; 653 kbuf.bufsz = sizeof(crash_zero_bytes); 654 kbuf.memsz = image->arch.backup_src_sz; 655 kbuf.buf_align = PAGE_SIZE; 656 /* 657 * Ideally there is no source for backup segment. This is 658 * copied in purgatory after crash. Just add a zero filled 659 * segment for now to make sure checksum logic works fine. 660 */ 661 ret = kexec_add_buffer(&kbuf); 662 if (ret) 663 return ret; 664 image->arch.backup_load_addr = kbuf.mem; 665 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n", 666 image->arch.backup_load_addr, 667 image->arch.backup_src_start, kbuf.memsz); 668 } 669 670 /* Prepare elf headers and add a segment */ 671 ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz); 672 if (ret) 673 return ret; 674 675 image->arch.elf_headers = kbuf.buffer; 676 image->arch.elf_headers_sz = kbuf.bufsz; 677 678 kbuf.memsz = kbuf.bufsz; 679 kbuf.buf_align = ELF_CORE_HEADER_ALIGN; 680 ret = kexec_add_buffer(&kbuf); 681 if (ret) { 682 vfree((void *)image->arch.elf_headers); 683 return ret; 684 } 685 image->arch.elf_load_addr = kbuf.mem; 686 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", 687 image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz); 688 689 return ret; 690 } 691 #endif /* CONFIG_KEXEC_FILE */ 692