xref: /linux/arch/x86/kernel/crash.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
3  *
4  * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
5  *
6  * Copyright (C) IBM Corporation, 2004. All rights reserved.
7  * Copyright (C) Red Hat Inc., 2014. All rights reserved.
8  * Authors:
9  *      Vivek Goyal <vgoyal@redhat.com>
10  *
11  */
12 
13 #define pr_fmt(fmt)	"kexec: " fmt
14 
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/reboot.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/elf.h>
22 #include <linux/elfcore.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 
27 #include <asm/processor.h>
28 #include <asm/hardirq.h>
29 #include <asm/nmi.h>
30 #include <asm/hw_irq.h>
31 #include <asm/apic.h>
32 #include <asm/io_apic.h>
33 #include <asm/hpet.h>
34 #include <linux/kdebug.h>
35 #include <asm/cpu.h>
36 #include <asm/reboot.h>
37 #include <asm/virtext.h>
38 #include <asm/intel_pt.h>
39 
40 /* Alignment required for elf header segment */
41 #define ELF_CORE_HEADER_ALIGN   4096
42 
43 /* This primarily represents number of split ranges due to exclusion */
44 #define CRASH_MAX_RANGES	16
45 
46 struct crash_mem_range {
47 	u64 start, end;
48 };
49 
50 struct crash_mem {
51 	unsigned int nr_ranges;
52 	struct crash_mem_range ranges[CRASH_MAX_RANGES];
53 };
54 
55 /* Misc data about ram ranges needed to prepare elf headers */
56 struct crash_elf_data {
57 	struct kimage *image;
58 	/*
59 	 * Total number of ram ranges we have after various adjustments for
60 	 * crash reserved region, etc.
61 	 */
62 	unsigned int max_nr_ranges;
63 
64 	/* Pointer to elf header */
65 	void *ehdr;
66 	/* Pointer to next phdr */
67 	void *bufp;
68 	struct crash_mem mem;
69 };
70 
71 /* Used while preparing memory map entries for second kernel */
72 struct crash_memmap_data {
73 	struct boot_params *params;
74 	/* Type of memory */
75 	unsigned int type;
76 };
77 
78 /*
79  * This is used to VMCLEAR all VMCSs loaded on the
80  * processor. And when loading kvm_intel module, the
81  * callback function pointer will be assigned.
82  *
83  * protected by rcu.
84  */
85 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
86 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
87 unsigned long crash_zero_bytes;
88 
89 static inline void cpu_crash_vmclear_loaded_vmcss(void)
90 {
91 	crash_vmclear_fn *do_vmclear_operation = NULL;
92 
93 	rcu_read_lock();
94 	do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
95 	if (do_vmclear_operation)
96 		do_vmclear_operation();
97 	rcu_read_unlock();
98 }
99 
100 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
101 
102 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
103 {
104 #ifdef CONFIG_X86_32
105 	struct pt_regs fixed_regs;
106 
107 	if (!user_mode(regs)) {
108 		crash_fixup_ss_esp(&fixed_regs, regs);
109 		regs = &fixed_regs;
110 	}
111 #endif
112 	crash_save_cpu(regs, cpu);
113 
114 	/*
115 	 * VMCLEAR VMCSs loaded on all cpus if needed.
116 	 */
117 	cpu_crash_vmclear_loaded_vmcss();
118 
119 	/* Disable VMX or SVM if needed.
120 	 *
121 	 * We need to disable virtualization on all CPUs.
122 	 * Having VMX or SVM enabled on any CPU may break rebooting
123 	 * after the kdump kernel has finished its task.
124 	 */
125 	cpu_emergency_vmxoff();
126 	cpu_emergency_svm_disable();
127 
128 	/*
129 	 * Disable Intel PT to stop its logging
130 	 */
131 	cpu_emergency_stop_pt();
132 
133 	disable_local_APIC();
134 }
135 
136 void kdump_nmi_shootdown_cpus(void)
137 {
138 	nmi_shootdown_cpus(kdump_nmi_callback);
139 
140 	disable_local_APIC();
141 }
142 
143 /* Override the weak function in kernel/panic.c */
144 void crash_smp_send_stop(void)
145 {
146 	static int cpus_stopped;
147 
148 	if (cpus_stopped)
149 		return;
150 
151 	if (smp_ops.crash_stop_other_cpus)
152 		smp_ops.crash_stop_other_cpus();
153 	else
154 		smp_send_stop();
155 
156 	cpus_stopped = 1;
157 }
158 
159 #else
160 void crash_smp_send_stop(void)
161 {
162 	/* There are no cpus to shootdown */
163 }
164 #endif
165 
166 void native_machine_crash_shutdown(struct pt_regs *regs)
167 {
168 	/* This function is only called after the system
169 	 * has panicked or is otherwise in a critical state.
170 	 * The minimum amount of code to allow a kexec'd kernel
171 	 * to run successfully needs to happen here.
172 	 *
173 	 * In practice this means shooting down the other cpus in
174 	 * an SMP system.
175 	 */
176 	/* The kernel is broken so disable interrupts */
177 	local_irq_disable();
178 
179 	crash_smp_send_stop();
180 
181 	/*
182 	 * VMCLEAR VMCSs loaded on this cpu if needed.
183 	 */
184 	cpu_crash_vmclear_loaded_vmcss();
185 
186 	/* Booting kdump kernel with VMX or SVM enabled won't work,
187 	 * because (among other limitations) we can't disable paging
188 	 * with the virt flags.
189 	 */
190 	cpu_emergency_vmxoff();
191 	cpu_emergency_svm_disable();
192 
193 	/*
194 	 * Disable Intel PT to stop its logging
195 	 */
196 	cpu_emergency_stop_pt();
197 
198 #ifdef CONFIG_X86_IO_APIC
199 	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
200 	ioapic_zap_locks();
201 	disable_IO_APIC();
202 #endif
203 	lapic_shutdown();
204 #ifdef CONFIG_HPET_TIMER
205 	hpet_disable();
206 #endif
207 	crash_save_cpu(regs, safe_smp_processor_id());
208 }
209 
210 #ifdef CONFIG_KEXEC_FILE
211 static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
212 {
213 	unsigned int *nr_ranges = arg;
214 
215 	(*nr_ranges)++;
216 	return 0;
217 }
218 
219 
220 /* Gather all the required information to prepare elf headers for ram regions */
221 static void fill_up_crash_elf_data(struct crash_elf_data *ced,
222 				   struct kimage *image)
223 {
224 	unsigned int nr_ranges = 0;
225 
226 	ced->image = image;
227 
228 	walk_system_ram_res(0, -1, &nr_ranges,
229 				get_nr_ram_ranges_callback);
230 
231 	ced->max_nr_ranges = nr_ranges;
232 
233 	/* Exclusion of crash region could split memory ranges */
234 	ced->max_nr_ranges++;
235 
236 	/* If crashk_low_res is not 0, another range split possible */
237 	if (crashk_low_res.end)
238 		ced->max_nr_ranges++;
239 }
240 
241 static int exclude_mem_range(struct crash_mem *mem,
242 		unsigned long long mstart, unsigned long long mend)
243 {
244 	int i, j;
245 	unsigned long long start, end;
246 	struct crash_mem_range temp_range = {0, 0};
247 
248 	for (i = 0; i < mem->nr_ranges; i++) {
249 		start = mem->ranges[i].start;
250 		end = mem->ranges[i].end;
251 
252 		if (mstart > end || mend < start)
253 			continue;
254 
255 		/* Truncate any area outside of range */
256 		if (mstart < start)
257 			mstart = start;
258 		if (mend > end)
259 			mend = end;
260 
261 		/* Found completely overlapping range */
262 		if (mstart == start && mend == end) {
263 			mem->ranges[i].start = 0;
264 			mem->ranges[i].end = 0;
265 			if (i < mem->nr_ranges - 1) {
266 				/* Shift rest of the ranges to left */
267 				for (j = i; j < mem->nr_ranges - 1; j++) {
268 					mem->ranges[j].start =
269 						mem->ranges[j+1].start;
270 					mem->ranges[j].end =
271 							mem->ranges[j+1].end;
272 				}
273 			}
274 			mem->nr_ranges--;
275 			return 0;
276 		}
277 
278 		if (mstart > start && mend < end) {
279 			/* Split original range */
280 			mem->ranges[i].end = mstart - 1;
281 			temp_range.start = mend + 1;
282 			temp_range.end = end;
283 		} else if (mstart != start)
284 			mem->ranges[i].end = mstart - 1;
285 		else
286 			mem->ranges[i].start = mend + 1;
287 		break;
288 	}
289 
290 	/* If a split happend, add the split to array */
291 	if (!temp_range.end)
292 		return 0;
293 
294 	/* Split happened */
295 	if (i == CRASH_MAX_RANGES - 1) {
296 		pr_err("Too many crash ranges after split\n");
297 		return -ENOMEM;
298 	}
299 
300 	/* Location where new range should go */
301 	j = i + 1;
302 	if (j < mem->nr_ranges) {
303 		/* Move over all ranges one slot towards the end */
304 		for (i = mem->nr_ranges - 1; i >= j; i--)
305 			mem->ranges[i + 1] = mem->ranges[i];
306 	}
307 
308 	mem->ranges[j].start = temp_range.start;
309 	mem->ranges[j].end = temp_range.end;
310 	mem->nr_ranges++;
311 	return 0;
312 }
313 
314 /*
315  * Look for any unwanted ranges between mstart, mend and remove them. This
316  * might lead to split and split ranges are put in ced->mem.ranges[] array
317  */
318 static int elf_header_exclude_ranges(struct crash_elf_data *ced,
319 		unsigned long long mstart, unsigned long long mend)
320 {
321 	struct crash_mem *cmem = &ced->mem;
322 	int ret = 0;
323 
324 	memset(cmem->ranges, 0, sizeof(cmem->ranges));
325 
326 	cmem->ranges[0].start = mstart;
327 	cmem->ranges[0].end = mend;
328 	cmem->nr_ranges = 1;
329 
330 	/* Exclude crashkernel region */
331 	ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
332 	if (ret)
333 		return ret;
334 
335 	if (crashk_low_res.end) {
336 		ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
337 		if (ret)
338 			return ret;
339 	}
340 
341 	return ret;
342 }
343 
344 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
345 {
346 	struct crash_elf_data *ced = arg;
347 	Elf64_Ehdr *ehdr;
348 	Elf64_Phdr *phdr;
349 	unsigned long mstart, mend;
350 	struct kimage *image = ced->image;
351 	struct crash_mem *cmem;
352 	int ret, i;
353 
354 	ehdr = ced->ehdr;
355 
356 	/* Exclude unwanted mem ranges */
357 	ret = elf_header_exclude_ranges(ced, start, end);
358 	if (ret)
359 		return ret;
360 
361 	/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
362 	cmem = &ced->mem;
363 
364 	for (i = 0; i < cmem->nr_ranges; i++) {
365 		mstart = cmem->ranges[i].start;
366 		mend = cmem->ranges[i].end;
367 
368 		phdr = ced->bufp;
369 		ced->bufp += sizeof(Elf64_Phdr);
370 
371 		phdr->p_type = PT_LOAD;
372 		phdr->p_flags = PF_R|PF_W|PF_X;
373 		phdr->p_offset  = mstart;
374 
375 		/*
376 		 * If a range matches backup region, adjust offset to backup
377 		 * segment.
378 		 */
379 		if (mstart == image->arch.backup_src_start &&
380 		    (mend - mstart + 1) == image->arch.backup_src_sz)
381 			phdr->p_offset = image->arch.backup_load_addr;
382 
383 		phdr->p_paddr = mstart;
384 		phdr->p_vaddr = (unsigned long long) __va(mstart);
385 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
386 		phdr->p_align = 0;
387 		ehdr->e_phnum++;
388 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
389 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
390 			ehdr->e_phnum, phdr->p_offset);
391 	}
392 
393 	return ret;
394 }
395 
396 static int prepare_elf64_headers(struct crash_elf_data *ced,
397 		void **addr, unsigned long *sz)
398 {
399 	Elf64_Ehdr *ehdr;
400 	Elf64_Phdr *phdr;
401 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
402 	unsigned char *buf, *bufp;
403 	unsigned int cpu;
404 	unsigned long long notes_addr;
405 	int ret;
406 
407 	/* extra phdr for vmcoreinfo elf note */
408 	nr_phdr = nr_cpus + 1;
409 	nr_phdr += ced->max_nr_ranges;
410 
411 	/*
412 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
413 	 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
414 	 * I think this is required by tools like gdb. So same physical
415 	 * memory will be mapped in two elf headers. One will contain kernel
416 	 * text virtual addresses and other will have __va(physical) addresses.
417 	 */
418 
419 	nr_phdr++;
420 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
421 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
422 
423 	buf = vzalloc(elf_sz);
424 	if (!buf)
425 		return -ENOMEM;
426 
427 	bufp = buf;
428 	ehdr = (Elf64_Ehdr *)bufp;
429 	bufp += sizeof(Elf64_Ehdr);
430 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
431 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
432 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
433 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
434 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
435 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
436 	ehdr->e_type = ET_CORE;
437 	ehdr->e_machine = ELF_ARCH;
438 	ehdr->e_version = EV_CURRENT;
439 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
440 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
441 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
442 
443 	/* Prepare one phdr of type PT_NOTE for each present cpu */
444 	for_each_present_cpu(cpu) {
445 		phdr = (Elf64_Phdr *)bufp;
446 		bufp += sizeof(Elf64_Phdr);
447 		phdr->p_type = PT_NOTE;
448 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
449 		phdr->p_offset = phdr->p_paddr = notes_addr;
450 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
451 		(ehdr->e_phnum)++;
452 	}
453 
454 	/* Prepare one PT_NOTE header for vmcoreinfo */
455 	phdr = (Elf64_Phdr *)bufp;
456 	bufp += sizeof(Elf64_Phdr);
457 	phdr->p_type = PT_NOTE;
458 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
459 	phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
460 	(ehdr->e_phnum)++;
461 
462 #ifdef CONFIG_X86_64
463 	/* Prepare PT_LOAD type program header for kernel text region */
464 	phdr = (Elf64_Phdr *)bufp;
465 	bufp += sizeof(Elf64_Phdr);
466 	phdr->p_type = PT_LOAD;
467 	phdr->p_flags = PF_R|PF_W|PF_X;
468 	phdr->p_vaddr = (Elf64_Addr)_text;
469 	phdr->p_filesz = phdr->p_memsz = _end - _text;
470 	phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
471 	(ehdr->e_phnum)++;
472 #endif
473 
474 	/* Prepare PT_LOAD headers for system ram chunks. */
475 	ced->ehdr = ehdr;
476 	ced->bufp = bufp;
477 	ret = walk_system_ram_res(0, -1, ced,
478 			prepare_elf64_ram_headers_callback);
479 	if (ret < 0)
480 		return ret;
481 
482 	*addr = buf;
483 	*sz = elf_sz;
484 	return 0;
485 }
486 
487 /* Prepare elf headers. Return addr and size */
488 static int prepare_elf_headers(struct kimage *image, void **addr,
489 					unsigned long *sz)
490 {
491 	struct crash_elf_data *ced;
492 	int ret;
493 
494 	ced = kzalloc(sizeof(*ced), GFP_KERNEL);
495 	if (!ced)
496 		return -ENOMEM;
497 
498 	fill_up_crash_elf_data(ced, image);
499 
500 	/* By default prepare 64bit headers */
501 	ret =  prepare_elf64_headers(ced, addr, sz);
502 	kfree(ced);
503 	return ret;
504 }
505 
506 static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
507 {
508 	unsigned int nr_e820_entries;
509 
510 	nr_e820_entries = params->e820_entries;
511 	if (nr_e820_entries >= E820MAX)
512 		return 1;
513 
514 	memcpy(&params->e820_map[nr_e820_entries], entry,
515 			sizeof(struct e820entry));
516 	params->e820_entries++;
517 	return 0;
518 }
519 
520 static int memmap_entry_callback(u64 start, u64 end, void *arg)
521 {
522 	struct crash_memmap_data *cmd = arg;
523 	struct boot_params *params = cmd->params;
524 	struct e820entry ei;
525 
526 	ei.addr = start;
527 	ei.size = end - start + 1;
528 	ei.type = cmd->type;
529 	add_e820_entry(params, &ei);
530 
531 	return 0;
532 }
533 
534 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
535 				 unsigned long long mstart,
536 				 unsigned long long mend)
537 {
538 	unsigned long start, end;
539 	int ret = 0;
540 
541 	cmem->ranges[0].start = mstart;
542 	cmem->ranges[0].end = mend;
543 	cmem->nr_ranges = 1;
544 
545 	/* Exclude Backup region */
546 	start = image->arch.backup_load_addr;
547 	end = start + image->arch.backup_src_sz - 1;
548 	ret = exclude_mem_range(cmem, start, end);
549 	if (ret)
550 		return ret;
551 
552 	/* Exclude elf header region */
553 	start = image->arch.elf_load_addr;
554 	end = start + image->arch.elf_headers_sz - 1;
555 	return exclude_mem_range(cmem, start, end);
556 }
557 
558 /* Prepare memory map for crash dump kernel */
559 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
560 {
561 	int i, ret = 0;
562 	unsigned long flags;
563 	struct e820entry ei;
564 	struct crash_memmap_data cmd;
565 	struct crash_mem *cmem;
566 
567 	cmem = vzalloc(sizeof(struct crash_mem));
568 	if (!cmem)
569 		return -ENOMEM;
570 
571 	memset(&cmd, 0, sizeof(struct crash_memmap_data));
572 	cmd.params = params;
573 
574 	/* Add first 640K segment */
575 	ei.addr = image->arch.backup_src_start;
576 	ei.size = image->arch.backup_src_sz;
577 	ei.type = E820_RAM;
578 	add_e820_entry(params, &ei);
579 
580 	/* Add ACPI tables */
581 	cmd.type = E820_ACPI;
582 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
583 	walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
584 		       memmap_entry_callback);
585 
586 	/* Add ACPI Non-volatile Storage */
587 	cmd.type = E820_NVS;
588 	walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
589 			memmap_entry_callback);
590 
591 	/* Add crashk_low_res region */
592 	if (crashk_low_res.end) {
593 		ei.addr = crashk_low_res.start;
594 		ei.size = crashk_low_res.end - crashk_low_res.start + 1;
595 		ei.type = E820_RAM;
596 		add_e820_entry(params, &ei);
597 	}
598 
599 	/* Exclude some ranges from crashk_res and add rest to memmap */
600 	ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
601 						crashk_res.end);
602 	if (ret)
603 		goto out;
604 
605 	for (i = 0; i < cmem->nr_ranges; i++) {
606 		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
607 
608 		/* If entry is less than a page, skip it */
609 		if (ei.size < PAGE_SIZE)
610 			continue;
611 		ei.addr = cmem->ranges[i].start;
612 		ei.type = E820_RAM;
613 		add_e820_entry(params, &ei);
614 	}
615 
616 out:
617 	vfree(cmem);
618 	return ret;
619 }
620 
621 static int determine_backup_region(u64 start, u64 end, void *arg)
622 {
623 	struct kimage *image = arg;
624 
625 	image->arch.backup_src_start = start;
626 	image->arch.backup_src_sz = end - start + 1;
627 
628 	/* Expecting only one range for backup region */
629 	return 1;
630 }
631 
632 int crash_load_segments(struct kimage *image)
633 {
634 	int ret;
635 	struct kexec_buf kbuf = { .image = image, .buf_min = 0,
636 				  .buf_max = ULONG_MAX, .top_down = false };
637 
638 	/*
639 	 * Determine and load a segment for backup area. First 640K RAM
640 	 * region is backup source
641 	 */
642 
643 	ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
644 				image, determine_backup_region);
645 
646 	/* Zero or postive return values are ok */
647 	if (ret < 0)
648 		return ret;
649 
650 	/* Add backup segment. */
651 	if (image->arch.backup_src_sz) {
652 		kbuf.buffer = &crash_zero_bytes;
653 		kbuf.bufsz = sizeof(crash_zero_bytes);
654 		kbuf.memsz = image->arch.backup_src_sz;
655 		kbuf.buf_align = PAGE_SIZE;
656 		/*
657 		 * Ideally there is no source for backup segment. This is
658 		 * copied in purgatory after crash. Just add a zero filled
659 		 * segment for now to make sure checksum logic works fine.
660 		 */
661 		ret = kexec_add_buffer(&kbuf);
662 		if (ret)
663 			return ret;
664 		image->arch.backup_load_addr = kbuf.mem;
665 		pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
666 			 image->arch.backup_load_addr,
667 			 image->arch.backup_src_start, kbuf.memsz);
668 	}
669 
670 	/* Prepare elf headers and add a segment */
671 	ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
672 	if (ret)
673 		return ret;
674 
675 	image->arch.elf_headers = kbuf.buffer;
676 	image->arch.elf_headers_sz = kbuf.bufsz;
677 
678 	kbuf.memsz = kbuf.bufsz;
679 	kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
680 	ret = kexec_add_buffer(&kbuf);
681 	if (ret) {
682 		vfree((void *)image->arch.elf_headers);
683 		return ret;
684 	}
685 	image->arch.elf_load_addr = kbuf.mem;
686 	pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
687 		 image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz);
688 
689 	return ret;
690 }
691 #endif /* CONFIG_KEXEC_FILE */
692