1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Architecture specific (i386/x86_64) functions for kexec based crash dumps. 4 * 5 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 6 * 7 * Copyright (C) IBM Corporation, 2004. All rights reserved. 8 * Copyright (C) Red Hat Inc., 2014. All rights reserved. 9 * Authors: 10 * Vivek Goyal <vgoyal@redhat.com> 11 * 12 */ 13 14 #define pr_fmt(fmt) "kexec: " fmt 15 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/smp.h> 19 #include <linux/reboot.h> 20 #include <linux/kexec.h> 21 #include <linux/delay.h> 22 #include <linux/elf.h> 23 #include <linux/elfcore.h> 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/vmalloc.h> 27 #include <linux/memblock.h> 28 29 #include <asm/bootparam.h> 30 #include <asm/processor.h> 31 #include <asm/hardirq.h> 32 #include <asm/nmi.h> 33 #include <asm/hw_irq.h> 34 #include <asm/apic.h> 35 #include <asm/e820/types.h> 36 #include <asm/io_apic.h> 37 #include <asm/hpet.h> 38 #include <linux/kdebug.h> 39 #include <asm/cpu.h> 40 #include <asm/reboot.h> 41 #include <asm/intel_pt.h> 42 #include <asm/crash.h> 43 #include <asm/cmdline.h> 44 #include <asm/sev.h> 45 46 /* Used while preparing memory map entries for second kernel */ 47 struct crash_memmap_data { 48 struct boot_params *params; 49 /* Type of memory */ 50 unsigned int type; 51 }; 52 53 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) 54 55 static void kdump_nmi_callback(int cpu, struct pt_regs *regs) 56 { 57 crash_save_cpu(regs, cpu); 58 59 /* 60 * Disable Intel PT to stop its logging 61 */ 62 cpu_emergency_stop_pt(); 63 64 kdump_sev_callback(); 65 66 disable_local_APIC(); 67 } 68 69 void kdump_nmi_shootdown_cpus(void) 70 { 71 nmi_shootdown_cpus(kdump_nmi_callback); 72 73 disable_local_APIC(); 74 } 75 76 /* Override the weak function in kernel/panic.c */ 77 void crash_smp_send_stop(void) 78 { 79 static int cpus_stopped; 80 81 if (cpus_stopped) 82 return; 83 84 if (smp_ops.crash_stop_other_cpus) 85 smp_ops.crash_stop_other_cpus(); 86 else 87 smp_send_stop(); 88 89 cpus_stopped = 1; 90 } 91 92 #else 93 void crash_smp_send_stop(void) 94 { 95 /* There are no cpus to shootdown */ 96 } 97 #endif 98 99 void native_machine_crash_shutdown(struct pt_regs *regs) 100 { 101 /* This function is only called after the system 102 * has panicked or is otherwise in a critical state. 103 * The minimum amount of code to allow a kexec'd kernel 104 * to run successfully needs to happen here. 105 * 106 * In practice this means shooting down the other cpus in 107 * an SMP system. 108 */ 109 /* The kernel is broken so disable interrupts */ 110 local_irq_disable(); 111 112 crash_smp_send_stop(); 113 114 cpu_emergency_disable_virtualization(); 115 116 /* 117 * Disable Intel PT to stop its logging 118 */ 119 cpu_emergency_stop_pt(); 120 121 #ifdef CONFIG_X86_IO_APIC 122 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ 123 ioapic_zap_locks(); 124 clear_IO_APIC(); 125 #endif 126 lapic_shutdown(); 127 restore_boot_irq_mode(); 128 #ifdef CONFIG_HPET_TIMER 129 hpet_disable(); 130 #endif 131 132 /* 133 * Non-crash kexec calls enc_kexec_begin() while scheduling is still 134 * active. This allows the callback to wait until all in-flight 135 * shared<->private conversions are complete. In a crash scenario, 136 * enc_kexec_begin() gets called after all but one CPU have been shut 137 * down and interrupts have been disabled. This allows the callback to 138 * detect a race with the conversion and report it. 139 */ 140 x86_platform.guest.enc_kexec_begin(); 141 x86_platform.guest.enc_kexec_finish(); 142 143 crash_save_cpu(regs, smp_processor_id()); 144 } 145 146 #if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_HOTPLUG) 147 static int get_nr_ram_ranges_callback(struct resource *res, void *arg) 148 { 149 unsigned int *nr_ranges = arg; 150 151 (*nr_ranges)++; 152 return 0; 153 } 154 155 /* Gather all the required information to prepare elf headers for ram regions */ 156 static struct crash_mem *fill_up_crash_elf_data(void) 157 { 158 unsigned int nr_ranges = 0; 159 struct crash_mem *cmem; 160 161 walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback); 162 if (!nr_ranges) 163 return NULL; 164 165 /* 166 * Exclusion of crash region, crashk_low_res and/or crashk_cma_ranges 167 * may cause range splits. So add extra slots here. 168 * 169 * Exclusion of low 1M may not cause another range split, because the 170 * range of exclude is [0, 1M] and the condition for splitting a new 171 * region is that the start, end parameters are both in a certain 172 * existing region in cmem and cannot be equal to existing region's 173 * start or end. Obviously, the start of [0, 1M] cannot meet this 174 * condition. 175 * 176 * But in order to lest the low 1M could be changed in the future, 177 * (e.g. [start, 1M]), add a extra slot. 178 */ 179 nr_ranges += 3 + crashk_cma_cnt; 180 cmem = vzalloc(struct_size(cmem, ranges, nr_ranges)); 181 if (!cmem) 182 return NULL; 183 184 cmem->max_nr_ranges = nr_ranges; 185 186 return cmem; 187 } 188 189 /* 190 * Look for any unwanted ranges between mstart, mend and remove them. This 191 * might lead to split and split ranges are put in cmem->ranges[] array 192 */ 193 static int elf_header_exclude_ranges(struct crash_mem *cmem) 194 { 195 int ret = 0; 196 int i; 197 198 /* Exclude the low 1M because it is always reserved */ 199 ret = crash_exclude_mem_range(cmem, 0, SZ_1M - 1); 200 if (ret) 201 return ret; 202 203 /* Exclude crashkernel region */ 204 ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end); 205 if (ret) 206 return ret; 207 208 if (crashk_low_res.end) 209 ret = crash_exclude_mem_range(cmem, crashk_low_res.start, 210 crashk_low_res.end); 211 if (ret) 212 return ret; 213 214 for (i = 0; i < crashk_cma_cnt; ++i) { 215 ret = crash_exclude_mem_range(cmem, crashk_cma_ranges[i].start, 216 crashk_cma_ranges[i].end); 217 if (ret) 218 return ret; 219 } 220 221 return 0; 222 } 223 224 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg) 225 { 226 struct crash_mem *cmem = arg; 227 228 cmem->ranges[cmem->nr_ranges].start = res->start; 229 cmem->ranges[cmem->nr_ranges].end = res->end; 230 cmem->nr_ranges++; 231 232 return 0; 233 } 234 235 /* Prepare elf headers. Return addr and size */ 236 static int prepare_elf_headers(void **addr, unsigned long *sz, 237 unsigned long *nr_mem_ranges) 238 { 239 struct crash_mem *cmem; 240 int ret; 241 242 cmem = fill_up_crash_elf_data(); 243 if (!cmem) 244 return -ENOMEM; 245 246 ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback); 247 if (ret) 248 goto out; 249 250 /* Exclude unwanted mem ranges */ 251 ret = elf_header_exclude_ranges(cmem); 252 if (ret) 253 goto out; 254 255 /* Return the computed number of memory ranges, for hotplug usage */ 256 *nr_mem_ranges = cmem->nr_ranges; 257 258 /* By default prepare 64bit headers */ 259 ret = crash_prepare_elf64_headers(cmem, IS_ENABLED(CONFIG_X86_64), addr, sz); 260 261 out: 262 vfree(cmem); 263 return ret; 264 } 265 #endif 266 267 #ifdef CONFIG_KEXEC_FILE 268 static int add_e820_entry(struct boot_params *params, struct e820_entry *entry) 269 { 270 unsigned int nr_e820_entries; 271 272 nr_e820_entries = params->e820_entries; 273 if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE) 274 return 1; 275 276 memcpy(¶ms->e820_table[nr_e820_entries], entry, sizeof(struct e820_entry)); 277 params->e820_entries++; 278 return 0; 279 } 280 281 static int memmap_entry_callback(struct resource *res, void *arg) 282 { 283 struct crash_memmap_data *cmd = arg; 284 struct boot_params *params = cmd->params; 285 struct e820_entry ei; 286 287 ei.addr = res->start; 288 ei.size = resource_size(res); 289 ei.type = cmd->type; 290 add_e820_entry(params, &ei); 291 292 return 0; 293 } 294 295 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, 296 unsigned long long mstart, 297 unsigned long long mend) 298 { 299 unsigned long start, end; 300 int ret; 301 302 cmem->ranges[0].start = mstart; 303 cmem->ranges[0].end = mend; 304 cmem->nr_ranges = 1; 305 306 /* Exclude elf header region */ 307 start = image->elf_load_addr; 308 end = start + image->elf_headers_sz - 1; 309 ret = crash_exclude_mem_range(cmem, start, end); 310 311 if (ret) 312 return ret; 313 314 /* Exclude dm crypt keys region */ 315 if (image->dm_crypt_keys_addr) { 316 start = image->dm_crypt_keys_addr; 317 end = start + image->dm_crypt_keys_sz - 1; 318 return crash_exclude_mem_range(cmem, start, end); 319 } 320 321 return ret; 322 } 323 324 /* Prepare memory map for crash dump kernel */ 325 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) 326 { 327 unsigned int nr_ranges = 0; 328 int i, ret = 0; 329 unsigned long flags; 330 struct e820_entry ei; 331 struct crash_memmap_data cmd; 332 struct crash_mem *cmem; 333 334 /* 335 * In the current x86 architecture code, the elfheader is always 336 * allocated at crashk_res.start. But it depends on the allocation 337 * position of elfheader in crashk_res. To avoid potential out of 338 * bounds in future, add an extra slot. 339 * 340 * And using random kexec_buf for passing dm crypt keys may cause a 341 * range split too, add another extra slot here. 342 */ 343 nr_ranges = 3; 344 cmem = vzalloc(struct_size(cmem, ranges, nr_ranges)); 345 if (!cmem) 346 return -ENOMEM; 347 348 cmem->max_nr_ranges = nr_ranges; 349 350 memset(&cmd, 0, sizeof(struct crash_memmap_data)); 351 cmd.params = params; 352 353 /* Add the low 1M */ 354 cmd.type = E820_TYPE_RAM; 355 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 356 walk_iomem_res_desc(IORES_DESC_NONE, flags, 0, (1<<20)-1, &cmd, 357 memmap_entry_callback); 358 359 /* Add ACPI tables */ 360 cmd.type = E820_TYPE_ACPI; 361 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 362 walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd, 363 memmap_entry_callback); 364 365 /* Add ACPI Non-volatile Storage */ 366 cmd.type = E820_TYPE_NVS; 367 walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd, 368 memmap_entry_callback); 369 370 /* Add e820 reserved ranges */ 371 cmd.type = E820_TYPE_RESERVED; 372 flags = IORESOURCE_MEM; 373 walk_iomem_res_desc(IORES_DESC_RESERVED, flags, 0, -1, &cmd, 374 memmap_entry_callback); 375 376 /* Add crashk_low_res region */ 377 if (crashk_low_res.end) { 378 ei.addr = crashk_low_res.start; 379 ei.size = resource_size(&crashk_low_res); 380 ei.type = E820_TYPE_RAM; 381 add_e820_entry(params, &ei); 382 } 383 384 /* Exclude some ranges from crashk_res and add rest to memmap */ 385 ret = memmap_exclude_ranges(image, cmem, crashk_res.start, crashk_res.end); 386 if (ret) 387 goto out; 388 389 for (i = 0; i < cmem->nr_ranges; i++) { 390 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; 391 392 /* If entry is less than a page, skip it */ 393 if (ei.size < PAGE_SIZE) 394 continue; 395 ei.addr = cmem->ranges[i].start; 396 ei.type = E820_TYPE_RAM; 397 add_e820_entry(params, &ei); 398 } 399 400 for (i = 0; i < crashk_cma_cnt; ++i) { 401 ei.addr = crashk_cma_ranges[i].start; 402 ei.size = crashk_cma_ranges[i].end - 403 crashk_cma_ranges[i].start + 1; 404 ei.type = E820_TYPE_RAM; 405 add_e820_entry(params, &ei); 406 } 407 408 out: 409 vfree(cmem); 410 return ret; 411 } 412 413 int crash_load_segments(struct kimage *image) 414 { 415 int ret; 416 unsigned long pnum = 0; 417 struct kexec_buf kbuf = { .image = image, .buf_min = 0, 418 .buf_max = ULONG_MAX, .top_down = false }; 419 420 /* Prepare elf headers and add a segment */ 421 ret = prepare_elf_headers(&kbuf.buffer, &kbuf.bufsz, &pnum); 422 if (ret) 423 return ret; 424 425 image->elf_headers = kbuf.buffer; 426 image->elf_headers_sz = kbuf.bufsz; 427 kbuf.memsz = kbuf.bufsz; 428 429 #ifdef CONFIG_CRASH_HOTPLUG 430 /* 431 * The elfcorehdr segment size accounts for VMCOREINFO, kernel_map, 432 * maximum CPUs and maximum memory ranges. 433 */ 434 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) 435 pnum = 2 + CONFIG_NR_CPUS_DEFAULT + CONFIG_CRASH_MAX_MEMORY_RANGES; 436 else 437 pnum += 2 + CONFIG_NR_CPUS_DEFAULT; 438 439 if (pnum < (unsigned long)PN_XNUM) { 440 kbuf.memsz = pnum * sizeof(Elf64_Phdr); 441 kbuf.memsz += sizeof(Elf64_Ehdr); 442 443 image->elfcorehdr_index = image->nr_segments; 444 445 /* Mark as usable to crash kernel, else crash kernel fails on boot */ 446 image->elf_headers_sz = kbuf.memsz; 447 } else { 448 pr_err("number of Phdrs %lu exceeds max\n", pnum); 449 } 450 #endif 451 452 kbuf.buf_align = ELF_CORE_HEADER_ALIGN; 453 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; 454 ret = kexec_add_buffer(&kbuf); 455 if (ret) 456 return ret; 457 image->elf_load_addr = kbuf.mem; 458 kexec_dprintk("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", 459 image->elf_load_addr, kbuf.bufsz, kbuf.memsz); 460 461 return ret; 462 } 463 #endif /* CONFIG_KEXEC_FILE */ 464 465 #ifdef CONFIG_CRASH_HOTPLUG 466 467 #undef pr_fmt 468 #define pr_fmt(fmt) "crash hp: " fmt 469 470 int arch_crash_hotplug_support(struct kimage *image, unsigned long kexec_flags) 471 { 472 473 #ifdef CONFIG_KEXEC_FILE 474 if (image->file_mode) 475 return 1; 476 #endif 477 /* 478 * Initially, crash hotplug support for kexec_load was added 479 * with the KEXEC_UPDATE_ELFCOREHDR flag. Later, this 480 * functionality was expanded to accommodate multiple kexec 481 * segment updates, leading to the introduction of the 482 * KEXEC_CRASH_HOTPLUG_SUPPORT kexec flag bit. Consequently, 483 * when the kexec tool sends either of these flags, it indicates 484 * that the required kexec segment (elfcorehdr) is excluded from 485 * the SHA calculation. 486 */ 487 return (kexec_flags & KEXEC_UPDATE_ELFCOREHDR || 488 kexec_flags & KEXEC_CRASH_HOTPLUG_SUPPORT); 489 } 490 491 unsigned int arch_crash_get_elfcorehdr_size(void) 492 { 493 unsigned int sz; 494 495 /* kernel_map, VMCOREINFO and maximum CPUs */ 496 sz = 2 + CONFIG_NR_CPUS_DEFAULT; 497 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) 498 sz += CONFIG_CRASH_MAX_MEMORY_RANGES; 499 sz *= sizeof(Elf64_Phdr); 500 return sz; 501 } 502 503 /** 504 * arch_crash_handle_hotplug_event() - Handle hotplug elfcorehdr changes 505 * @image: a pointer to kexec_crash_image 506 * @arg: struct memory_notify handler for memory hotplug case and 507 * NULL for CPU hotplug case. 508 * 509 * Prepare the new elfcorehdr and replace the existing elfcorehdr. 510 */ 511 void arch_crash_handle_hotplug_event(struct kimage *image, void *arg) 512 { 513 void *elfbuf = NULL, *old_elfcorehdr; 514 unsigned long nr_mem_ranges; 515 unsigned long mem, memsz; 516 unsigned long elfsz = 0; 517 518 /* 519 * As crash_prepare_elf64_headers() has already described all 520 * possible CPUs, there is no need to update the elfcorehdr 521 * for additional CPU changes. 522 */ 523 if ((image->file_mode || image->elfcorehdr_updated) && 524 ((image->hp_action == KEXEC_CRASH_HP_ADD_CPU) || 525 (image->hp_action == KEXEC_CRASH_HP_REMOVE_CPU))) 526 return; 527 528 /* 529 * Create the new elfcorehdr reflecting the changes to CPU and/or 530 * memory resources. 531 */ 532 if (prepare_elf_headers(&elfbuf, &elfsz, &nr_mem_ranges)) { 533 pr_err("unable to create new elfcorehdr"); 534 goto out; 535 } 536 537 /* 538 * Obtain address and size of the elfcorehdr segment, and 539 * check it against the new elfcorehdr buffer. 540 */ 541 mem = image->segment[image->elfcorehdr_index].mem; 542 memsz = image->segment[image->elfcorehdr_index].memsz; 543 if (elfsz > memsz) { 544 pr_err("update elfcorehdr elfsz %lu > memsz %lu", 545 elfsz, memsz); 546 goto out; 547 } 548 549 /* 550 * Copy new elfcorehdr over the old elfcorehdr at destination. 551 */ 552 old_elfcorehdr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT)); 553 if (!old_elfcorehdr) { 554 pr_err("mapping elfcorehdr segment failed\n"); 555 goto out; 556 } 557 558 /* 559 * Temporarily invalidate the crash image while the 560 * elfcorehdr is updated. 561 */ 562 xchg(&kexec_crash_image, NULL); 563 memcpy_flushcache(old_elfcorehdr, elfbuf, elfsz); 564 xchg(&kexec_crash_image, image); 565 kunmap_local(old_elfcorehdr); 566 pr_debug("updated elfcorehdr\n"); 567 568 out: 569 vfree(elfbuf); 570 } 571 #endif 572