1 /* 2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps. 3 * 4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 5 * 6 * Copyright (C) IBM Corporation, 2004. All rights reserved. 7 * Copyright (C) Red Hat Inc., 2014. All rights reserved. 8 * Authors: 9 * Vivek Goyal <vgoyal@redhat.com> 10 * 11 */ 12 13 #define pr_fmt(fmt) "kexec: " fmt 14 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/smp.h> 18 #include <linux/reboot.h> 19 #include <linux/kexec.h> 20 #include <linux/delay.h> 21 #include <linux/elf.h> 22 #include <linux/elfcore.h> 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 26 #include <asm/processor.h> 27 #include <asm/hardirq.h> 28 #include <asm/nmi.h> 29 #include <asm/hw_irq.h> 30 #include <asm/apic.h> 31 #include <asm/io_apic.h> 32 #include <asm/hpet.h> 33 #include <linux/kdebug.h> 34 #include <asm/cpu.h> 35 #include <asm/reboot.h> 36 #include <asm/virtext.h> 37 38 /* Alignment required for elf header segment */ 39 #define ELF_CORE_HEADER_ALIGN 4096 40 41 /* This primarily represents number of split ranges due to exclusion */ 42 #define CRASH_MAX_RANGES 16 43 44 struct crash_mem_range { 45 u64 start, end; 46 }; 47 48 struct crash_mem { 49 unsigned int nr_ranges; 50 struct crash_mem_range ranges[CRASH_MAX_RANGES]; 51 }; 52 53 /* Misc data about ram ranges needed to prepare elf headers */ 54 struct crash_elf_data { 55 struct kimage *image; 56 /* 57 * Total number of ram ranges we have after various adjustments for 58 * GART, crash reserved region etc. 59 */ 60 unsigned int max_nr_ranges; 61 unsigned long gart_start, gart_end; 62 63 /* Pointer to elf header */ 64 void *ehdr; 65 /* Pointer to next phdr */ 66 void *bufp; 67 struct crash_mem mem; 68 }; 69 70 /* Used while preparing memory map entries for second kernel */ 71 struct crash_memmap_data { 72 struct boot_params *params; 73 /* Type of memory */ 74 unsigned int type; 75 }; 76 77 int in_crash_kexec; 78 79 /* 80 * This is used to VMCLEAR all VMCSs loaded on the 81 * processor. And when loading kvm_intel module, the 82 * callback function pointer will be assigned. 83 * 84 * protected by rcu. 85 */ 86 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL; 87 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss); 88 unsigned long crash_zero_bytes; 89 90 static inline void cpu_crash_vmclear_loaded_vmcss(void) 91 { 92 crash_vmclear_fn *do_vmclear_operation = NULL; 93 94 rcu_read_lock(); 95 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss); 96 if (do_vmclear_operation) 97 do_vmclear_operation(); 98 rcu_read_unlock(); 99 } 100 101 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) 102 103 static void kdump_nmi_callback(int cpu, struct pt_regs *regs) 104 { 105 #ifdef CONFIG_X86_32 106 struct pt_regs fixed_regs; 107 108 if (!user_mode_vm(regs)) { 109 crash_fixup_ss_esp(&fixed_regs, regs); 110 regs = &fixed_regs; 111 } 112 #endif 113 crash_save_cpu(regs, cpu); 114 115 /* 116 * VMCLEAR VMCSs loaded on all cpus if needed. 117 */ 118 cpu_crash_vmclear_loaded_vmcss(); 119 120 /* Disable VMX or SVM if needed. 121 * 122 * We need to disable virtualization on all CPUs. 123 * Having VMX or SVM enabled on any CPU may break rebooting 124 * after the kdump kernel has finished its task. 125 */ 126 cpu_emergency_vmxoff(); 127 cpu_emergency_svm_disable(); 128 129 disable_local_APIC(); 130 } 131 132 static void kdump_nmi_shootdown_cpus(void) 133 { 134 in_crash_kexec = 1; 135 nmi_shootdown_cpus(kdump_nmi_callback); 136 137 disable_local_APIC(); 138 } 139 140 #else 141 static void kdump_nmi_shootdown_cpus(void) 142 { 143 /* There are no cpus to shootdown */ 144 } 145 #endif 146 147 void native_machine_crash_shutdown(struct pt_regs *regs) 148 { 149 /* This function is only called after the system 150 * has panicked or is otherwise in a critical state. 151 * The minimum amount of code to allow a kexec'd kernel 152 * to run successfully needs to happen here. 153 * 154 * In practice this means shooting down the other cpus in 155 * an SMP system. 156 */ 157 /* The kernel is broken so disable interrupts */ 158 local_irq_disable(); 159 160 kdump_nmi_shootdown_cpus(); 161 162 /* 163 * VMCLEAR VMCSs loaded on this cpu if needed. 164 */ 165 cpu_crash_vmclear_loaded_vmcss(); 166 167 /* Booting kdump kernel with VMX or SVM enabled won't work, 168 * because (among other limitations) we can't disable paging 169 * with the virt flags. 170 */ 171 cpu_emergency_vmxoff(); 172 cpu_emergency_svm_disable(); 173 174 #ifdef CONFIG_X86_IO_APIC 175 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ 176 ioapic_zap_locks(); 177 disable_IO_APIC(); 178 #endif 179 lapic_shutdown(); 180 #ifdef CONFIG_HPET_TIMER 181 hpet_disable(); 182 #endif 183 crash_save_cpu(regs, safe_smp_processor_id()); 184 } 185 186 #ifdef CONFIG_KEXEC_FILE 187 static int get_nr_ram_ranges_callback(unsigned long start_pfn, 188 unsigned long nr_pfn, void *arg) 189 { 190 int *nr_ranges = arg; 191 192 (*nr_ranges)++; 193 return 0; 194 } 195 196 static int get_gart_ranges_callback(u64 start, u64 end, void *arg) 197 { 198 struct crash_elf_data *ced = arg; 199 200 ced->gart_start = start; 201 ced->gart_end = end; 202 203 /* Not expecting more than 1 gart aperture */ 204 return 1; 205 } 206 207 208 /* Gather all the required information to prepare elf headers for ram regions */ 209 static void fill_up_crash_elf_data(struct crash_elf_data *ced, 210 struct kimage *image) 211 { 212 unsigned int nr_ranges = 0; 213 214 ced->image = image; 215 216 walk_system_ram_range(0, -1, &nr_ranges, 217 get_nr_ram_ranges_callback); 218 219 ced->max_nr_ranges = nr_ranges; 220 221 /* 222 * We don't create ELF headers for GART aperture as an attempt 223 * to dump this memory in second kernel leads to hang/crash. 224 * If gart aperture is present, one needs to exclude that region 225 * and that could lead to need of extra phdr. 226 */ 227 walk_iomem_res("GART", IORESOURCE_MEM, 0, -1, 228 ced, get_gart_ranges_callback); 229 230 /* 231 * If we have gart region, excluding that could potentially split 232 * a memory range, resulting in extra header. Account for that. 233 */ 234 if (ced->gart_end) 235 ced->max_nr_ranges++; 236 237 /* Exclusion of crash region could split memory ranges */ 238 ced->max_nr_ranges++; 239 240 /* If crashk_low_res is not 0, another range split possible */ 241 if (crashk_low_res.end) 242 ced->max_nr_ranges++; 243 } 244 245 static int exclude_mem_range(struct crash_mem *mem, 246 unsigned long long mstart, unsigned long long mend) 247 { 248 int i, j; 249 unsigned long long start, end; 250 struct crash_mem_range temp_range = {0, 0}; 251 252 for (i = 0; i < mem->nr_ranges; i++) { 253 start = mem->ranges[i].start; 254 end = mem->ranges[i].end; 255 256 if (mstart > end || mend < start) 257 continue; 258 259 /* Truncate any area outside of range */ 260 if (mstart < start) 261 mstart = start; 262 if (mend > end) 263 mend = end; 264 265 /* Found completely overlapping range */ 266 if (mstart == start && mend == end) { 267 mem->ranges[i].start = 0; 268 mem->ranges[i].end = 0; 269 if (i < mem->nr_ranges - 1) { 270 /* Shift rest of the ranges to left */ 271 for (j = i; j < mem->nr_ranges - 1; j++) { 272 mem->ranges[j].start = 273 mem->ranges[j+1].start; 274 mem->ranges[j].end = 275 mem->ranges[j+1].end; 276 } 277 } 278 mem->nr_ranges--; 279 return 0; 280 } 281 282 if (mstart > start && mend < end) { 283 /* Split original range */ 284 mem->ranges[i].end = mstart - 1; 285 temp_range.start = mend + 1; 286 temp_range.end = end; 287 } else if (mstart != start) 288 mem->ranges[i].end = mstart - 1; 289 else 290 mem->ranges[i].start = mend + 1; 291 break; 292 } 293 294 /* If a split happend, add the split to array */ 295 if (!temp_range.end) 296 return 0; 297 298 /* Split happened */ 299 if (i == CRASH_MAX_RANGES - 1) { 300 pr_err("Too many crash ranges after split\n"); 301 return -ENOMEM; 302 } 303 304 /* Location where new range should go */ 305 j = i + 1; 306 if (j < mem->nr_ranges) { 307 /* Move over all ranges one slot towards the end */ 308 for (i = mem->nr_ranges - 1; i >= j; i--) 309 mem->ranges[i + 1] = mem->ranges[i]; 310 } 311 312 mem->ranges[j].start = temp_range.start; 313 mem->ranges[j].end = temp_range.end; 314 mem->nr_ranges++; 315 return 0; 316 } 317 318 /* 319 * Look for any unwanted ranges between mstart, mend and remove them. This 320 * might lead to split and split ranges are put in ced->mem.ranges[] array 321 */ 322 static int elf_header_exclude_ranges(struct crash_elf_data *ced, 323 unsigned long long mstart, unsigned long long mend) 324 { 325 struct crash_mem *cmem = &ced->mem; 326 int ret = 0; 327 328 memset(cmem->ranges, 0, sizeof(cmem->ranges)); 329 330 cmem->ranges[0].start = mstart; 331 cmem->ranges[0].end = mend; 332 cmem->nr_ranges = 1; 333 334 /* Exclude crashkernel region */ 335 ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end); 336 if (ret) 337 return ret; 338 339 if (crashk_low_res.end) { 340 ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end); 341 if (ret) 342 return ret; 343 } 344 345 /* Exclude GART region */ 346 if (ced->gart_end) { 347 ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end); 348 if (ret) 349 return ret; 350 } 351 352 return ret; 353 } 354 355 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg) 356 { 357 struct crash_elf_data *ced = arg; 358 Elf64_Ehdr *ehdr; 359 Elf64_Phdr *phdr; 360 unsigned long mstart, mend; 361 struct kimage *image = ced->image; 362 struct crash_mem *cmem; 363 int ret, i; 364 365 ehdr = ced->ehdr; 366 367 /* Exclude unwanted mem ranges */ 368 ret = elf_header_exclude_ranges(ced, start, end); 369 if (ret) 370 return ret; 371 372 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */ 373 cmem = &ced->mem; 374 375 for (i = 0; i < cmem->nr_ranges; i++) { 376 mstart = cmem->ranges[i].start; 377 mend = cmem->ranges[i].end; 378 379 phdr = ced->bufp; 380 ced->bufp += sizeof(Elf64_Phdr); 381 382 phdr->p_type = PT_LOAD; 383 phdr->p_flags = PF_R|PF_W|PF_X; 384 phdr->p_offset = mstart; 385 386 /* 387 * If a range matches backup region, adjust offset to backup 388 * segment. 389 */ 390 if (mstart == image->arch.backup_src_start && 391 (mend - mstart + 1) == image->arch.backup_src_sz) 392 phdr->p_offset = image->arch.backup_load_addr; 393 394 phdr->p_paddr = mstart; 395 phdr->p_vaddr = (unsigned long long) __va(mstart); 396 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 397 phdr->p_align = 0; 398 ehdr->e_phnum++; 399 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 400 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 401 ehdr->e_phnum, phdr->p_offset); 402 } 403 404 return ret; 405 } 406 407 static int prepare_elf64_headers(struct crash_elf_data *ced, 408 void **addr, unsigned long *sz) 409 { 410 Elf64_Ehdr *ehdr; 411 Elf64_Phdr *phdr; 412 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 413 unsigned char *buf, *bufp; 414 unsigned int cpu; 415 unsigned long long notes_addr; 416 int ret; 417 418 /* extra phdr for vmcoreinfo elf note */ 419 nr_phdr = nr_cpus + 1; 420 nr_phdr += ced->max_nr_ranges; 421 422 /* 423 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 424 * area on x86_64 (ffffffff80000000 - ffffffffa0000000). 425 * I think this is required by tools like gdb. So same physical 426 * memory will be mapped in two elf headers. One will contain kernel 427 * text virtual addresses and other will have __va(physical) addresses. 428 */ 429 430 nr_phdr++; 431 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 432 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 433 434 buf = vzalloc(elf_sz); 435 if (!buf) 436 return -ENOMEM; 437 438 bufp = buf; 439 ehdr = (Elf64_Ehdr *)bufp; 440 bufp += sizeof(Elf64_Ehdr); 441 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 442 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 443 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 444 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 445 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 446 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 447 ehdr->e_type = ET_CORE; 448 ehdr->e_machine = ELF_ARCH; 449 ehdr->e_version = EV_CURRENT; 450 ehdr->e_phoff = sizeof(Elf64_Ehdr); 451 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 452 ehdr->e_phentsize = sizeof(Elf64_Phdr); 453 454 /* Prepare one phdr of type PT_NOTE for each present cpu */ 455 for_each_present_cpu(cpu) { 456 phdr = (Elf64_Phdr *)bufp; 457 bufp += sizeof(Elf64_Phdr); 458 phdr->p_type = PT_NOTE; 459 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 460 phdr->p_offset = phdr->p_paddr = notes_addr; 461 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 462 (ehdr->e_phnum)++; 463 } 464 465 /* Prepare one PT_NOTE header for vmcoreinfo */ 466 phdr = (Elf64_Phdr *)bufp; 467 bufp += sizeof(Elf64_Phdr); 468 phdr->p_type = PT_NOTE; 469 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 470 phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note); 471 (ehdr->e_phnum)++; 472 473 #ifdef CONFIG_X86_64 474 /* Prepare PT_LOAD type program header for kernel text region */ 475 phdr = (Elf64_Phdr *)bufp; 476 bufp += sizeof(Elf64_Phdr); 477 phdr->p_type = PT_LOAD; 478 phdr->p_flags = PF_R|PF_W|PF_X; 479 phdr->p_vaddr = (Elf64_Addr)_text; 480 phdr->p_filesz = phdr->p_memsz = _end - _text; 481 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 482 (ehdr->e_phnum)++; 483 #endif 484 485 /* Prepare PT_LOAD headers for system ram chunks. */ 486 ced->ehdr = ehdr; 487 ced->bufp = bufp; 488 ret = walk_system_ram_res(0, -1, ced, 489 prepare_elf64_ram_headers_callback); 490 if (ret < 0) 491 return ret; 492 493 *addr = buf; 494 *sz = elf_sz; 495 return 0; 496 } 497 498 /* Prepare elf headers. Return addr and size */ 499 static int prepare_elf_headers(struct kimage *image, void **addr, 500 unsigned long *sz) 501 { 502 struct crash_elf_data *ced; 503 int ret; 504 505 ced = kzalloc(sizeof(*ced), GFP_KERNEL); 506 if (!ced) 507 return -ENOMEM; 508 509 fill_up_crash_elf_data(ced, image); 510 511 /* By default prepare 64bit headers */ 512 ret = prepare_elf64_headers(ced, addr, sz); 513 kfree(ced); 514 return ret; 515 } 516 517 static int add_e820_entry(struct boot_params *params, struct e820entry *entry) 518 { 519 unsigned int nr_e820_entries; 520 521 nr_e820_entries = params->e820_entries; 522 if (nr_e820_entries >= E820MAX) 523 return 1; 524 525 memcpy(¶ms->e820_map[nr_e820_entries], entry, 526 sizeof(struct e820entry)); 527 params->e820_entries++; 528 return 0; 529 } 530 531 static int memmap_entry_callback(u64 start, u64 end, void *arg) 532 { 533 struct crash_memmap_data *cmd = arg; 534 struct boot_params *params = cmd->params; 535 struct e820entry ei; 536 537 ei.addr = start; 538 ei.size = end - start + 1; 539 ei.type = cmd->type; 540 add_e820_entry(params, &ei); 541 542 return 0; 543 } 544 545 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, 546 unsigned long long mstart, 547 unsigned long long mend) 548 { 549 unsigned long start, end; 550 int ret = 0; 551 552 cmem->ranges[0].start = mstart; 553 cmem->ranges[0].end = mend; 554 cmem->nr_ranges = 1; 555 556 /* Exclude Backup region */ 557 start = image->arch.backup_load_addr; 558 end = start + image->arch.backup_src_sz - 1; 559 ret = exclude_mem_range(cmem, start, end); 560 if (ret) 561 return ret; 562 563 /* Exclude elf header region */ 564 start = image->arch.elf_load_addr; 565 end = start + image->arch.elf_headers_sz - 1; 566 return exclude_mem_range(cmem, start, end); 567 } 568 569 /* Prepare memory map for crash dump kernel */ 570 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) 571 { 572 int i, ret = 0; 573 unsigned long flags; 574 struct e820entry ei; 575 struct crash_memmap_data cmd; 576 struct crash_mem *cmem; 577 578 cmem = vzalloc(sizeof(struct crash_mem)); 579 if (!cmem) 580 return -ENOMEM; 581 582 memset(&cmd, 0, sizeof(struct crash_memmap_data)); 583 cmd.params = params; 584 585 /* Add first 640K segment */ 586 ei.addr = image->arch.backup_src_start; 587 ei.size = image->arch.backup_src_sz; 588 ei.type = E820_RAM; 589 add_e820_entry(params, &ei); 590 591 /* Add ACPI tables */ 592 cmd.type = E820_ACPI; 593 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 594 walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd, 595 memmap_entry_callback); 596 597 /* Add ACPI Non-volatile Storage */ 598 cmd.type = E820_NVS; 599 walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd, 600 memmap_entry_callback); 601 602 /* Add crashk_low_res region */ 603 if (crashk_low_res.end) { 604 ei.addr = crashk_low_res.start; 605 ei.size = crashk_low_res.end - crashk_low_res.start + 1; 606 ei.type = E820_RAM; 607 add_e820_entry(params, &ei); 608 } 609 610 /* Exclude some ranges from crashk_res and add rest to memmap */ 611 ret = memmap_exclude_ranges(image, cmem, crashk_res.start, 612 crashk_res.end); 613 if (ret) 614 goto out; 615 616 for (i = 0; i < cmem->nr_ranges; i++) { 617 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; 618 619 /* If entry is less than a page, skip it */ 620 if (ei.size < PAGE_SIZE) 621 continue; 622 ei.addr = cmem->ranges[i].start; 623 ei.type = E820_RAM; 624 add_e820_entry(params, &ei); 625 } 626 627 out: 628 vfree(cmem); 629 return ret; 630 } 631 632 static int determine_backup_region(u64 start, u64 end, void *arg) 633 { 634 struct kimage *image = arg; 635 636 image->arch.backup_src_start = start; 637 image->arch.backup_src_sz = end - start + 1; 638 639 /* Expecting only one range for backup region */ 640 return 1; 641 } 642 643 int crash_load_segments(struct kimage *image) 644 { 645 unsigned long src_start, src_sz, elf_sz; 646 void *elf_addr; 647 int ret; 648 649 /* 650 * Determine and load a segment for backup area. First 640K RAM 651 * region is backup source 652 */ 653 654 ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END, 655 image, determine_backup_region); 656 657 /* Zero or postive return values are ok */ 658 if (ret < 0) 659 return ret; 660 661 src_start = image->arch.backup_src_start; 662 src_sz = image->arch.backup_src_sz; 663 664 /* Add backup segment. */ 665 if (src_sz) { 666 /* 667 * Ideally there is no source for backup segment. This is 668 * copied in purgatory after crash. Just add a zero filled 669 * segment for now to make sure checksum logic works fine. 670 */ 671 ret = kexec_add_buffer(image, (char *)&crash_zero_bytes, 672 sizeof(crash_zero_bytes), src_sz, 673 PAGE_SIZE, 0, -1, 0, 674 &image->arch.backup_load_addr); 675 if (ret) 676 return ret; 677 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n", 678 image->arch.backup_load_addr, src_start, src_sz); 679 } 680 681 /* Prepare elf headers and add a segment */ 682 ret = prepare_elf_headers(image, &elf_addr, &elf_sz); 683 if (ret) 684 return ret; 685 686 image->arch.elf_headers = elf_addr; 687 image->arch.elf_headers_sz = elf_sz; 688 689 ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz, 690 ELF_CORE_HEADER_ALIGN, 0, -1, 0, 691 &image->arch.elf_load_addr); 692 if (ret) { 693 vfree((void *)image->arch.elf_headers); 694 return ret; 695 } 696 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", 697 image->arch.elf_load_addr, elf_sz, elf_sz); 698 699 return ret; 700 } 701 #endif /* CONFIG_KEXEC_FILE */ 702