xref: /linux/arch/x86/kernel/crash.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
3  *
4  * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
5  *
6  * Copyright (C) IBM Corporation, 2004. All rights reserved.
7  * Copyright (C) Red Hat Inc., 2014. All rights reserved.
8  * Authors:
9  *      Vivek Goyal <vgoyal@redhat.com>
10  *
11  */
12 
13 #define pr_fmt(fmt)	"kexec: " fmt
14 
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/reboot.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/elf.h>
22 #include <linux/elfcore.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 
26 #include <asm/processor.h>
27 #include <asm/hardirq.h>
28 #include <asm/nmi.h>
29 #include <asm/hw_irq.h>
30 #include <asm/apic.h>
31 #include <asm/hpet.h>
32 #include <linux/kdebug.h>
33 #include <asm/cpu.h>
34 #include <asm/reboot.h>
35 #include <asm/virtext.h>
36 
37 /* Alignment required for elf header segment */
38 #define ELF_CORE_HEADER_ALIGN   4096
39 
40 /* This primarily represents number of split ranges due to exclusion */
41 #define CRASH_MAX_RANGES	16
42 
43 struct crash_mem_range {
44 	u64 start, end;
45 };
46 
47 struct crash_mem {
48 	unsigned int nr_ranges;
49 	struct crash_mem_range ranges[CRASH_MAX_RANGES];
50 };
51 
52 /* Misc data about ram ranges needed to prepare elf headers */
53 struct crash_elf_data {
54 	struct kimage *image;
55 	/*
56 	 * Total number of ram ranges we have after various adjustments for
57 	 * GART, crash reserved region etc.
58 	 */
59 	unsigned int max_nr_ranges;
60 	unsigned long gart_start, gart_end;
61 
62 	/* Pointer to elf header */
63 	void *ehdr;
64 	/* Pointer to next phdr */
65 	void *bufp;
66 	struct crash_mem mem;
67 };
68 
69 /* Used while preparing memory map entries for second kernel */
70 struct crash_memmap_data {
71 	struct boot_params *params;
72 	/* Type of memory */
73 	unsigned int type;
74 };
75 
76 int in_crash_kexec;
77 
78 /*
79  * This is used to VMCLEAR all VMCSs loaded on the
80  * processor. And when loading kvm_intel module, the
81  * callback function pointer will be assigned.
82  *
83  * protected by rcu.
84  */
85 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
86 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
87 unsigned long crash_zero_bytes;
88 
89 static inline void cpu_crash_vmclear_loaded_vmcss(void)
90 {
91 	crash_vmclear_fn *do_vmclear_operation = NULL;
92 
93 	rcu_read_lock();
94 	do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
95 	if (do_vmclear_operation)
96 		do_vmclear_operation();
97 	rcu_read_unlock();
98 }
99 
100 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
101 
102 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
103 {
104 #ifdef CONFIG_X86_32
105 	struct pt_regs fixed_regs;
106 
107 	if (!user_mode_vm(regs)) {
108 		crash_fixup_ss_esp(&fixed_regs, regs);
109 		regs = &fixed_regs;
110 	}
111 #endif
112 	crash_save_cpu(regs, cpu);
113 
114 	/*
115 	 * VMCLEAR VMCSs loaded on all cpus if needed.
116 	 */
117 	cpu_crash_vmclear_loaded_vmcss();
118 
119 	/* Disable VMX or SVM if needed.
120 	 *
121 	 * We need to disable virtualization on all CPUs.
122 	 * Having VMX or SVM enabled on any CPU may break rebooting
123 	 * after the kdump kernel has finished its task.
124 	 */
125 	cpu_emergency_vmxoff();
126 	cpu_emergency_svm_disable();
127 
128 	disable_local_APIC();
129 }
130 
131 static void kdump_nmi_shootdown_cpus(void)
132 {
133 	in_crash_kexec = 1;
134 	nmi_shootdown_cpus(kdump_nmi_callback);
135 
136 	disable_local_APIC();
137 }
138 
139 #else
140 static void kdump_nmi_shootdown_cpus(void)
141 {
142 	/* There are no cpus to shootdown */
143 }
144 #endif
145 
146 void native_machine_crash_shutdown(struct pt_regs *regs)
147 {
148 	/* This function is only called after the system
149 	 * has panicked or is otherwise in a critical state.
150 	 * The minimum amount of code to allow a kexec'd kernel
151 	 * to run successfully needs to happen here.
152 	 *
153 	 * In practice this means shooting down the other cpus in
154 	 * an SMP system.
155 	 */
156 	/* The kernel is broken so disable interrupts */
157 	local_irq_disable();
158 
159 	kdump_nmi_shootdown_cpus();
160 
161 	/*
162 	 * VMCLEAR VMCSs loaded on this cpu if needed.
163 	 */
164 	cpu_crash_vmclear_loaded_vmcss();
165 
166 	/* Booting kdump kernel with VMX or SVM enabled won't work,
167 	 * because (among other limitations) we can't disable paging
168 	 * with the virt flags.
169 	 */
170 	cpu_emergency_vmxoff();
171 	cpu_emergency_svm_disable();
172 
173 #ifdef CONFIG_X86_IO_APIC
174 	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
175 	ioapic_zap_locks();
176 	disable_IO_APIC();
177 #endif
178 	lapic_shutdown();
179 #ifdef CONFIG_HPET_TIMER
180 	hpet_disable();
181 #endif
182 	crash_save_cpu(regs, safe_smp_processor_id());
183 }
184 
185 #ifdef CONFIG_KEXEC_FILE
186 static int get_nr_ram_ranges_callback(unsigned long start_pfn,
187 				unsigned long nr_pfn, void *arg)
188 {
189 	int *nr_ranges = arg;
190 
191 	(*nr_ranges)++;
192 	return 0;
193 }
194 
195 static int get_gart_ranges_callback(u64 start, u64 end, void *arg)
196 {
197 	struct crash_elf_data *ced = arg;
198 
199 	ced->gart_start = start;
200 	ced->gart_end = end;
201 
202 	/* Not expecting more than 1 gart aperture */
203 	return 1;
204 }
205 
206 
207 /* Gather all the required information to prepare elf headers for ram regions */
208 static void fill_up_crash_elf_data(struct crash_elf_data *ced,
209 				   struct kimage *image)
210 {
211 	unsigned int nr_ranges = 0;
212 
213 	ced->image = image;
214 
215 	walk_system_ram_range(0, -1, &nr_ranges,
216 				get_nr_ram_ranges_callback);
217 
218 	ced->max_nr_ranges = nr_ranges;
219 
220 	/*
221 	 * We don't create ELF headers for GART aperture as an attempt
222 	 * to dump this memory in second kernel leads to hang/crash.
223 	 * If gart aperture is present, one needs to exclude that region
224 	 * and that could lead to need of extra phdr.
225 	 */
226 	walk_iomem_res("GART", IORESOURCE_MEM, 0, -1,
227 				ced, get_gart_ranges_callback);
228 
229 	/*
230 	 * If we have gart region, excluding that could potentially split
231 	 * a memory range, resulting in extra header. Account for  that.
232 	 */
233 	if (ced->gart_end)
234 		ced->max_nr_ranges++;
235 
236 	/* Exclusion of crash region could split memory ranges */
237 	ced->max_nr_ranges++;
238 
239 	/* If crashk_low_res is not 0, another range split possible */
240 	if (crashk_low_res.end != 0)
241 		ced->max_nr_ranges++;
242 }
243 
244 static int exclude_mem_range(struct crash_mem *mem,
245 		unsigned long long mstart, unsigned long long mend)
246 {
247 	int i, j;
248 	unsigned long long start, end;
249 	struct crash_mem_range temp_range = {0, 0};
250 
251 	for (i = 0; i < mem->nr_ranges; i++) {
252 		start = mem->ranges[i].start;
253 		end = mem->ranges[i].end;
254 
255 		if (mstart > end || mend < start)
256 			continue;
257 
258 		/* Truncate any area outside of range */
259 		if (mstart < start)
260 			mstart = start;
261 		if (mend > end)
262 			mend = end;
263 
264 		/* Found completely overlapping range */
265 		if (mstart == start && mend == end) {
266 			mem->ranges[i].start = 0;
267 			mem->ranges[i].end = 0;
268 			if (i < mem->nr_ranges - 1) {
269 				/* Shift rest of the ranges to left */
270 				for (j = i; j < mem->nr_ranges - 1; j++) {
271 					mem->ranges[j].start =
272 						mem->ranges[j+1].start;
273 					mem->ranges[j].end =
274 							mem->ranges[j+1].end;
275 				}
276 			}
277 			mem->nr_ranges--;
278 			return 0;
279 		}
280 
281 		if (mstart > start && mend < end) {
282 			/* Split original range */
283 			mem->ranges[i].end = mstart - 1;
284 			temp_range.start = mend + 1;
285 			temp_range.end = end;
286 		} else if (mstart != start)
287 			mem->ranges[i].end = mstart - 1;
288 		else
289 			mem->ranges[i].start = mend + 1;
290 		break;
291 	}
292 
293 	/* If a split happend, add the split to array */
294 	if (!temp_range.end)
295 		return 0;
296 
297 	/* Split happened */
298 	if (i == CRASH_MAX_RANGES - 1) {
299 		pr_err("Too many crash ranges after split\n");
300 		return -ENOMEM;
301 	}
302 
303 	/* Location where new range should go */
304 	j = i + 1;
305 	if (j < mem->nr_ranges) {
306 		/* Move over all ranges one slot towards the end */
307 		for (i = mem->nr_ranges - 1; i >= j; i--)
308 			mem->ranges[i + 1] = mem->ranges[i];
309 	}
310 
311 	mem->ranges[j].start = temp_range.start;
312 	mem->ranges[j].end = temp_range.end;
313 	mem->nr_ranges++;
314 	return 0;
315 }
316 
317 /*
318  * Look for any unwanted ranges between mstart, mend and remove them. This
319  * might lead to split and split ranges are put in ced->mem.ranges[] array
320  */
321 static int elf_header_exclude_ranges(struct crash_elf_data *ced,
322 		unsigned long long mstart, unsigned long long mend)
323 {
324 	struct crash_mem *cmem = &ced->mem;
325 	int ret = 0;
326 
327 	memset(cmem->ranges, 0, sizeof(cmem->ranges));
328 
329 	cmem->ranges[0].start = mstart;
330 	cmem->ranges[0].end = mend;
331 	cmem->nr_ranges = 1;
332 
333 	/* Exclude crashkernel region */
334 	ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
335 	if (ret)
336 		return ret;
337 
338 	ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
339 	if (ret)
340 		return ret;
341 
342 	/* Exclude GART region */
343 	if (ced->gart_end) {
344 		ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end);
345 		if (ret)
346 			return ret;
347 	}
348 
349 	return ret;
350 }
351 
352 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
353 {
354 	struct crash_elf_data *ced = arg;
355 	Elf64_Ehdr *ehdr;
356 	Elf64_Phdr *phdr;
357 	unsigned long mstart, mend;
358 	struct kimage *image = ced->image;
359 	struct crash_mem *cmem;
360 	int ret, i;
361 
362 	ehdr = ced->ehdr;
363 
364 	/* Exclude unwanted mem ranges */
365 	ret = elf_header_exclude_ranges(ced, start, end);
366 	if (ret)
367 		return ret;
368 
369 	/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
370 	cmem = &ced->mem;
371 
372 	for (i = 0; i < cmem->nr_ranges; i++) {
373 		mstart = cmem->ranges[i].start;
374 		mend = cmem->ranges[i].end;
375 
376 		phdr = ced->bufp;
377 		ced->bufp += sizeof(Elf64_Phdr);
378 
379 		phdr->p_type = PT_LOAD;
380 		phdr->p_flags = PF_R|PF_W|PF_X;
381 		phdr->p_offset  = mstart;
382 
383 		/*
384 		 * If a range matches backup region, adjust offset to backup
385 		 * segment.
386 		 */
387 		if (mstart == image->arch.backup_src_start &&
388 		    (mend - mstart + 1) == image->arch.backup_src_sz)
389 			phdr->p_offset = image->arch.backup_load_addr;
390 
391 		phdr->p_paddr = mstart;
392 		phdr->p_vaddr = (unsigned long long) __va(mstart);
393 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
394 		phdr->p_align = 0;
395 		ehdr->e_phnum++;
396 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
397 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
398 			ehdr->e_phnum, phdr->p_offset);
399 	}
400 
401 	return ret;
402 }
403 
404 static int prepare_elf64_headers(struct crash_elf_data *ced,
405 		void **addr, unsigned long *sz)
406 {
407 	Elf64_Ehdr *ehdr;
408 	Elf64_Phdr *phdr;
409 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
410 	unsigned char *buf, *bufp;
411 	unsigned int cpu;
412 	unsigned long long notes_addr;
413 	int ret;
414 
415 	/* extra phdr for vmcoreinfo elf note */
416 	nr_phdr = nr_cpus + 1;
417 	nr_phdr += ced->max_nr_ranges;
418 
419 	/*
420 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
421 	 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
422 	 * I think this is required by tools like gdb. So same physical
423 	 * memory will be mapped in two elf headers. One will contain kernel
424 	 * text virtual addresses and other will have __va(physical) addresses.
425 	 */
426 
427 	nr_phdr++;
428 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
429 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
430 
431 	buf = vzalloc(elf_sz);
432 	if (!buf)
433 		return -ENOMEM;
434 
435 	bufp = buf;
436 	ehdr = (Elf64_Ehdr *)bufp;
437 	bufp += sizeof(Elf64_Ehdr);
438 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
439 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
440 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
441 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
442 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
443 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
444 	ehdr->e_type = ET_CORE;
445 	ehdr->e_machine = ELF_ARCH;
446 	ehdr->e_version = EV_CURRENT;
447 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
448 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
449 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
450 
451 	/* Prepare one phdr of type PT_NOTE for each present cpu */
452 	for_each_present_cpu(cpu) {
453 		phdr = (Elf64_Phdr *)bufp;
454 		bufp += sizeof(Elf64_Phdr);
455 		phdr->p_type = PT_NOTE;
456 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
457 		phdr->p_offset = phdr->p_paddr = notes_addr;
458 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
459 		(ehdr->e_phnum)++;
460 	}
461 
462 	/* Prepare one PT_NOTE header for vmcoreinfo */
463 	phdr = (Elf64_Phdr *)bufp;
464 	bufp += sizeof(Elf64_Phdr);
465 	phdr->p_type = PT_NOTE;
466 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
467 	phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
468 	(ehdr->e_phnum)++;
469 
470 #ifdef CONFIG_X86_64
471 	/* Prepare PT_LOAD type program header for kernel text region */
472 	phdr = (Elf64_Phdr *)bufp;
473 	bufp += sizeof(Elf64_Phdr);
474 	phdr->p_type = PT_LOAD;
475 	phdr->p_flags = PF_R|PF_W|PF_X;
476 	phdr->p_vaddr = (Elf64_Addr)_text;
477 	phdr->p_filesz = phdr->p_memsz = _end - _text;
478 	phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
479 	(ehdr->e_phnum)++;
480 #endif
481 
482 	/* Prepare PT_LOAD headers for system ram chunks. */
483 	ced->ehdr = ehdr;
484 	ced->bufp = bufp;
485 	ret = walk_system_ram_res(0, -1, ced,
486 			prepare_elf64_ram_headers_callback);
487 	if (ret < 0)
488 		return ret;
489 
490 	*addr = buf;
491 	*sz = elf_sz;
492 	return 0;
493 }
494 
495 /* Prepare elf headers. Return addr and size */
496 static int prepare_elf_headers(struct kimage *image, void **addr,
497 					unsigned long *sz)
498 {
499 	struct crash_elf_data *ced;
500 	int ret;
501 
502 	ced = kzalloc(sizeof(*ced), GFP_KERNEL);
503 	if (!ced)
504 		return -ENOMEM;
505 
506 	fill_up_crash_elf_data(ced, image);
507 
508 	/* By default prepare 64bit headers */
509 	ret =  prepare_elf64_headers(ced, addr, sz);
510 	kfree(ced);
511 	return ret;
512 }
513 
514 static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
515 {
516 	unsigned int nr_e820_entries;
517 
518 	nr_e820_entries = params->e820_entries;
519 	if (nr_e820_entries >= E820MAX)
520 		return 1;
521 
522 	memcpy(&params->e820_map[nr_e820_entries], entry,
523 			sizeof(struct e820entry));
524 	params->e820_entries++;
525 	return 0;
526 }
527 
528 static int memmap_entry_callback(u64 start, u64 end, void *arg)
529 {
530 	struct crash_memmap_data *cmd = arg;
531 	struct boot_params *params = cmd->params;
532 	struct e820entry ei;
533 
534 	ei.addr = start;
535 	ei.size = end - start + 1;
536 	ei.type = cmd->type;
537 	add_e820_entry(params, &ei);
538 
539 	return 0;
540 }
541 
542 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
543 				 unsigned long long mstart,
544 				 unsigned long long mend)
545 {
546 	unsigned long start, end;
547 	int ret = 0;
548 
549 	cmem->ranges[0].start = mstart;
550 	cmem->ranges[0].end = mend;
551 	cmem->nr_ranges = 1;
552 
553 	/* Exclude Backup region */
554 	start = image->arch.backup_load_addr;
555 	end = start + image->arch.backup_src_sz - 1;
556 	ret = exclude_mem_range(cmem, start, end);
557 	if (ret)
558 		return ret;
559 
560 	/* Exclude elf header region */
561 	start = image->arch.elf_load_addr;
562 	end = start + image->arch.elf_headers_sz - 1;
563 	return exclude_mem_range(cmem, start, end);
564 }
565 
566 /* Prepare memory map for crash dump kernel */
567 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
568 {
569 	int i, ret = 0;
570 	unsigned long flags;
571 	struct e820entry ei;
572 	struct crash_memmap_data cmd;
573 	struct crash_mem *cmem;
574 
575 	cmem = vzalloc(sizeof(struct crash_mem));
576 	if (!cmem)
577 		return -ENOMEM;
578 
579 	memset(&cmd, 0, sizeof(struct crash_memmap_data));
580 	cmd.params = params;
581 
582 	/* Add first 640K segment */
583 	ei.addr = image->arch.backup_src_start;
584 	ei.size = image->arch.backup_src_sz;
585 	ei.type = E820_RAM;
586 	add_e820_entry(params, &ei);
587 
588 	/* Add ACPI tables */
589 	cmd.type = E820_ACPI;
590 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
591 	walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd,
592 		       memmap_entry_callback);
593 
594 	/* Add ACPI Non-volatile Storage */
595 	cmd.type = E820_NVS;
596 	walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd,
597 			memmap_entry_callback);
598 
599 	/* Add crashk_low_res region */
600 	if (crashk_low_res.end) {
601 		ei.addr = crashk_low_res.start;
602 		ei.size = crashk_low_res.end - crashk_low_res.start + 1;
603 		ei.type = E820_RAM;
604 		add_e820_entry(params, &ei);
605 	}
606 
607 	/* Exclude some ranges from crashk_res and add rest to memmap */
608 	ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
609 						crashk_res.end);
610 	if (ret)
611 		goto out;
612 
613 	for (i = 0; i < cmem->nr_ranges; i++) {
614 		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
615 
616 		/* If entry is less than a page, skip it */
617 		if (ei.size < PAGE_SIZE)
618 			continue;
619 		ei.addr = cmem->ranges[i].start;
620 		ei.type = E820_RAM;
621 		add_e820_entry(params, &ei);
622 	}
623 
624 out:
625 	vfree(cmem);
626 	return ret;
627 }
628 
629 static int determine_backup_region(u64 start, u64 end, void *arg)
630 {
631 	struct kimage *image = arg;
632 
633 	image->arch.backup_src_start = start;
634 	image->arch.backup_src_sz = end - start + 1;
635 
636 	/* Expecting only one range for backup region */
637 	return 1;
638 }
639 
640 int crash_load_segments(struct kimage *image)
641 {
642 	unsigned long src_start, src_sz, elf_sz;
643 	void *elf_addr;
644 	int ret;
645 
646 	/*
647 	 * Determine and load a segment for backup area. First 640K RAM
648 	 * region is backup source
649 	 */
650 
651 	ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
652 				image, determine_backup_region);
653 
654 	/* Zero or postive return values are ok */
655 	if (ret < 0)
656 		return ret;
657 
658 	src_start = image->arch.backup_src_start;
659 	src_sz = image->arch.backup_src_sz;
660 
661 	/* Add backup segment. */
662 	if (src_sz) {
663 		/*
664 		 * Ideally there is no source for backup segment. This is
665 		 * copied in purgatory after crash. Just add a zero filled
666 		 * segment for now to make sure checksum logic works fine.
667 		 */
668 		ret = kexec_add_buffer(image, (char *)&crash_zero_bytes,
669 				       sizeof(crash_zero_bytes), src_sz,
670 				       PAGE_SIZE, 0, -1, 0,
671 				       &image->arch.backup_load_addr);
672 		if (ret)
673 			return ret;
674 		pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
675 			 image->arch.backup_load_addr, src_start, src_sz);
676 	}
677 
678 	/* Prepare elf headers and add a segment */
679 	ret = prepare_elf_headers(image, &elf_addr, &elf_sz);
680 	if (ret)
681 		return ret;
682 
683 	image->arch.elf_headers = elf_addr;
684 	image->arch.elf_headers_sz = elf_sz;
685 
686 	ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz,
687 			ELF_CORE_HEADER_ALIGN, 0, -1, 0,
688 			&image->arch.elf_load_addr);
689 	if (ret) {
690 		vfree((void *)image->arch.elf_headers);
691 		return ret;
692 	}
693 	pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
694 		 image->arch.elf_load_addr, elf_sz, elf_sz);
695 
696 	return ret;
697 }
698 #endif /* CONFIG_KEXEC_FILE */
699