xref: /linux/arch/x86/kernel/crash.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
3  *
4  * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
5  *
6  * Copyright (C) IBM Corporation, 2004. All rights reserved.
7  * Copyright (C) Red Hat Inc., 2014. All rights reserved.
8  * Authors:
9  *      Vivek Goyal <vgoyal@redhat.com>
10  *
11  */
12 
13 #define pr_fmt(fmt)	"kexec: " fmt
14 
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/reboot.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/elf.h>
22 #include <linux/elfcore.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 
27 #include <asm/processor.h>
28 #include <asm/hardirq.h>
29 #include <asm/nmi.h>
30 #include <asm/hw_irq.h>
31 #include <asm/apic.h>
32 #include <asm/io_apic.h>
33 #include <asm/hpet.h>
34 #include <linux/kdebug.h>
35 #include <asm/cpu.h>
36 #include <asm/reboot.h>
37 #include <asm/virtext.h>
38 #include <asm/intel_pt.h>
39 
40 /* Alignment required for elf header segment */
41 #define ELF_CORE_HEADER_ALIGN   4096
42 
43 /* This primarily represents number of split ranges due to exclusion */
44 #define CRASH_MAX_RANGES	16
45 
46 struct crash_mem_range {
47 	u64 start, end;
48 };
49 
50 struct crash_mem {
51 	unsigned int nr_ranges;
52 	struct crash_mem_range ranges[CRASH_MAX_RANGES];
53 };
54 
55 /* Misc data about ram ranges needed to prepare elf headers */
56 struct crash_elf_data {
57 	struct kimage *image;
58 	/*
59 	 * Total number of ram ranges we have after various adjustments for
60 	 * crash reserved region, etc.
61 	 */
62 	unsigned int max_nr_ranges;
63 
64 	/* Pointer to elf header */
65 	void *ehdr;
66 	/* Pointer to next phdr */
67 	void *bufp;
68 	struct crash_mem mem;
69 };
70 
71 /* Used while preparing memory map entries for second kernel */
72 struct crash_memmap_data {
73 	struct boot_params *params;
74 	/* Type of memory */
75 	unsigned int type;
76 };
77 
78 /*
79  * This is used to VMCLEAR all VMCSs loaded on the
80  * processor. And when loading kvm_intel module, the
81  * callback function pointer will be assigned.
82  *
83  * protected by rcu.
84  */
85 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
86 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
87 unsigned long crash_zero_bytes;
88 
89 static inline void cpu_crash_vmclear_loaded_vmcss(void)
90 {
91 	crash_vmclear_fn *do_vmclear_operation = NULL;
92 
93 	rcu_read_lock();
94 	do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
95 	if (do_vmclear_operation)
96 		do_vmclear_operation();
97 	rcu_read_unlock();
98 }
99 
100 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
101 
102 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
103 {
104 #ifdef CONFIG_X86_32
105 	struct pt_regs fixed_regs;
106 
107 	if (!user_mode(regs)) {
108 		crash_fixup_ss_esp(&fixed_regs, regs);
109 		regs = &fixed_regs;
110 	}
111 #endif
112 	crash_save_cpu(regs, cpu);
113 
114 	/*
115 	 * VMCLEAR VMCSs loaded on all cpus if needed.
116 	 */
117 	cpu_crash_vmclear_loaded_vmcss();
118 
119 	/* Disable VMX or SVM if needed.
120 	 *
121 	 * We need to disable virtualization on all CPUs.
122 	 * Having VMX or SVM enabled on any CPU may break rebooting
123 	 * after the kdump kernel has finished its task.
124 	 */
125 	cpu_emergency_vmxoff();
126 	cpu_emergency_svm_disable();
127 
128 	/*
129 	 * Disable Intel PT to stop its logging
130 	 */
131 	cpu_emergency_stop_pt();
132 
133 	disable_local_APIC();
134 }
135 
136 static void kdump_nmi_shootdown_cpus(void)
137 {
138 	nmi_shootdown_cpus(kdump_nmi_callback);
139 
140 	disable_local_APIC();
141 }
142 
143 #else
144 static void kdump_nmi_shootdown_cpus(void)
145 {
146 	/* There are no cpus to shootdown */
147 }
148 #endif
149 
150 void native_machine_crash_shutdown(struct pt_regs *regs)
151 {
152 	/* This function is only called after the system
153 	 * has panicked or is otherwise in a critical state.
154 	 * The minimum amount of code to allow a kexec'd kernel
155 	 * to run successfully needs to happen here.
156 	 *
157 	 * In practice this means shooting down the other cpus in
158 	 * an SMP system.
159 	 */
160 	/* The kernel is broken so disable interrupts */
161 	local_irq_disable();
162 
163 	kdump_nmi_shootdown_cpus();
164 
165 	/*
166 	 * VMCLEAR VMCSs loaded on this cpu if needed.
167 	 */
168 	cpu_crash_vmclear_loaded_vmcss();
169 
170 	/* Booting kdump kernel with VMX or SVM enabled won't work,
171 	 * because (among other limitations) we can't disable paging
172 	 * with the virt flags.
173 	 */
174 	cpu_emergency_vmxoff();
175 	cpu_emergency_svm_disable();
176 
177 	/*
178 	 * Disable Intel PT to stop its logging
179 	 */
180 	cpu_emergency_stop_pt();
181 
182 #ifdef CONFIG_X86_IO_APIC
183 	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
184 	ioapic_zap_locks();
185 	disable_IO_APIC();
186 #endif
187 	lapic_shutdown();
188 #ifdef CONFIG_HPET_TIMER
189 	hpet_disable();
190 #endif
191 	crash_save_cpu(regs, safe_smp_processor_id());
192 }
193 
194 #ifdef CONFIG_KEXEC_FILE
195 static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
196 {
197 	unsigned int *nr_ranges = arg;
198 
199 	(*nr_ranges)++;
200 	return 0;
201 }
202 
203 
204 /* Gather all the required information to prepare elf headers for ram regions */
205 static void fill_up_crash_elf_data(struct crash_elf_data *ced,
206 				   struct kimage *image)
207 {
208 	unsigned int nr_ranges = 0;
209 
210 	ced->image = image;
211 
212 	walk_system_ram_res(0, -1, &nr_ranges,
213 				get_nr_ram_ranges_callback);
214 
215 	ced->max_nr_ranges = nr_ranges;
216 
217 	/* Exclusion of crash region could split memory ranges */
218 	ced->max_nr_ranges++;
219 
220 	/* If crashk_low_res is not 0, another range split possible */
221 	if (crashk_low_res.end)
222 		ced->max_nr_ranges++;
223 }
224 
225 static int exclude_mem_range(struct crash_mem *mem,
226 		unsigned long long mstart, unsigned long long mend)
227 {
228 	int i, j;
229 	unsigned long long start, end;
230 	struct crash_mem_range temp_range = {0, 0};
231 
232 	for (i = 0; i < mem->nr_ranges; i++) {
233 		start = mem->ranges[i].start;
234 		end = mem->ranges[i].end;
235 
236 		if (mstart > end || mend < start)
237 			continue;
238 
239 		/* Truncate any area outside of range */
240 		if (mstart < start)
241 			mstart = start;
242 		if (mend > end)
243 			mend = end;
244 
245 		/* Found completely overlapping range */
246 		if (mstart == start && mend == end) {
247 			mem->ranges[i].start = 0;
248 			mem->ranges[i].end = 0;
249 			if (i < mem->nr_ranges - 1) {
250 				/* Shift rest of the ranges to left */
251 				for (j = i; j < mem->nr_ranges - 1; j++) {
252 					mem->ranges[j].start =
253 						mem->ranges[j+1].start;
254 					mem->ranges[j].end =
255 							mem->ranges[j+1].end;
256 				}
257 			}
258 			mem->nr_ranges--;
259 			return 0;
260 		}
261 
262 		if (mstart > start && mend < end) {
263 			/* Split original range */
264 			mem->ranges[i].end = mstart - 1;
265 			temp_range.start = mend + 1;
266 			temp_range.end = end;
267 		} else if (mstart != start)
268 			mem->ranges[i].end = mstart - 1;
269 		else
270 			mem->ranges[i].start = mend + 1;
271 		break;
272 	}
273 
274 	/* If a split happend, add the split to array */
275 	if (!temp_range.end)
276 		return 0;
277 
278 	/* Split happened */
279 	if (i == CRASH_MAX_RANGES - 1) {
280 		pr_err("Too many crash ranges after split\n");
281 		return -ENOMEM;
282 	}
283 
284 	/* Location where new range should go */
285 	j = i + 1;
286 	if (j < mem->nr_ranges) {
287 		/* Move over all ranges one slot towards the end */
288 		for (i = mem->nr_ranges - 1; i >= j; i--)
289 			mem->ranges[i + 1] = mem->ranges[i];
290 	}
291 
292 	mem->ranges[j].start = temp_range.start;
293 	mem->ranges[j].end = temp_range.end;
294 	mem->nr_ranges++;
295 	return 0;
296 }
297 
298 /*
299  * Look for any unwanted ranges between mstart, mend and remove them. This
300  * might lead to split and split ranges are put in ced->mem.ranges[] array
301  */
302 static int elf_header_exclude_ranges(struct crash_elf_data *ced,
303 		unsigned long long mstart, unsigned long long mend)
304 {
305 	struct crash_mem *cmem = &ced->mem;
306 	int ret = 0;
307 
308 	memset(cmem->ranges, 0, sizeof(cmem->ranges));
309 
310 	cmem->ranges[0].start = mstart;
311 	cmem->ranges[0].end = mend;
312 	cmem->nr_ranges = 1;
313 
314 	/* Exclude crashkernel region */
315 	ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
316 	if (ret)
317 		return ret;
318 
319 	if (crashk_low_res.end) {
320 		ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
321 		if (ret)
322 			return ret;
323 	}
324 
325 	return ret;
326 }
327 
328 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
329 {
330 	struct crash_elf_data *ced = arg;
331 	Elf64_Ehdr *ehdr;
332 	Elf64_Phdr *phdr;
333 	unsigned long mstart, mend;
334 	struct kimage *image = ced->image;
335 	struct crash_mem *cmem;
336 	int ret, i;
337 
338 	ehdr = ced->ehdr;
339 
340 	/* Exclude unwanted mem ranges */
341 	ret = elf_header_exclude_ranges(ced, start, end);
342 	if (ret)
343 		return ret;
344 
345 	/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
346 	cmem = &ced->mem;
347 
348 	for (i = 0; i < cmem->nr_ranges; i++) {
349 		mstart = cmem->ranges[i].start;
350 		mend = cmem->ranges[i].end;
351 
352 		phdr = ced->bufp;
353 		ced->bufp += sizeof(Elf64_Phdr);
354 
355 		phdr->p_type = PT_LOAD;
356 		phdr->p_flags = PF_R|PF_W|PF_X;
357 		phdr->p_offset  = mstart;
358 
359 		/*
360 		 * If a range matches backup region, adjust offset to backup
361 		 * segment.
362 		 */
363 		if (mstart == image->arch.backup_src_start &&
364 		    (mend - mstart + 1) == image->arch.backup_src_sz)
365 			phdr->p_offset = image->arch.backup_load_addr;
366 
367 		phdr->p_paddr = mstart;
368 		phdr->p_vaddr = (unsigned long long) __va(mstart);
369 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
370 		phdr->p_align = 0;
371 		ehdr->e_phnum++;
372 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
373 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
374 			ehdr->e_phnum, phdr->p_offset);
375 	}
376 
377 	return ret;
378 }
379 
380 static int prepare_elf64_headers(struct crash_elf_data *ced,
381 		void **addr, unsigned long *sz)
382 {
383 	Elf64_Ehdr *ehdr;
384 	Elf64_Phdr *phdr;
385 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
386 	unsigned char *buf, *bufp;
387 	unsigned int cpu;
388 	unsigned long long notes_addr;
389 	int ret;
390 
391 	/* extra phdr for vmcoreinfo elf note */
392 	nr_phdr = nr_cpus + 1;
393 	nr_phdr += ced->max_nr_ranges;
394 
395 	/*
396 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
397 	 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
398 	 * I think this is required by tools like gdb. So same physical
399 	 * memory will be mapped in two elf headers. One will contain kernel
400 	 * text virtual addresses and other will have __va(physical) addresses.
401 	 */
402 
403 	nr_phdr++;
404 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
405 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
406 
407 	buf = vzalloc(elf_sz);
408 	if (!buf)
409 		return -ENOMEM;
410 
411 	bufp = buf;
412 	ehdr = (Elf64_Ehdr *)bufp;
413 	bufp += sizeof(Elf64_Ehdr);
414 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
415 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
416 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
417 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
418 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
419 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
420 	ehdr->e_type = ET_CORE;
421 	ehdr->e_machine = ELF_ARCH;
422 	ehdr->e_version = EV_CURRENT;
423 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
424 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
425 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
426 
427 	/* Prepare one phdr of type PT_NOTE for each present cpu */
428 	for_each_present_cpu(cpu) {
429 		phdr = (Elf64_Phdr *)bufp;
430 		bufp += sizeof(Elf64_Phdr);
431 		phdr->p_type = PT_NOTE;
432 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
433 		phdr->p_offset = phdr->p_paddr = notes_addr;
434 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
435 		(ehdr->e_phnum)++;
436 	}
437 
438 	/* Prepare one PT_NOTE header for vmcoreinfo */
439 	phdr = (Elf64_Phdr *)bufp;
440 	bufp += sizeof(Elf64_Phdr);
441 	phdr->p_type = PT_NOTE;
442 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
443 	phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
444 	(ehdr->e_phnum)++;
445 
446 #ifdef CONFIG_X86_64
447 	/* Prepare PT_LOAD type program header for kernel text region */
448 	phdr = (Elf64_Phdr *)bufp;
449 	bufp += sizeof(Elf64_Phdr);
450 	phdr->p_type = PT_LOAD;
451 	phdr->p_flags = PF_R|PF_W|PF_X;
452 	phdr->p_vaddr = (Elf64_Addr)_text;
453 	phdr->p_filesz = phdr->p_memsz = _end - _text;
454 	phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
455 	(ehdr->e_phnum)++;
456 #endif
457 
458 	/* Prepare PT_LOAD headers for system ram chunks. */
459 	ced->ehdr = ehdr;
460 	ced->bufp = bufp;
461 	ret = walk_system_ram_res(0, -1, ced,
462 			prepare_elf64_ram_headers_callback);
463 	if (ret < 0)
464 		return ret;
465 
466 	*addr = buf;
467 	*sz = elf_sz;
468 	return 0;
469 }
470 
471 /* Prepare elf headers. Return addr and size */
472 static int prepare_elf_headers(struct kimage *image, void **addr,
473 					unsigned long *sz)
474 {
475 	struct crash_elf_data *ced;
476 	int ret;
477 
478 	ced = kzalloc(sizeof(*ced), GFP_KERNEL);
479 	if (!ced)
480 		return -ENOMEM;
481 
482 	fill_up_crash_elf_data(ced, image);
483 
484 	/* By default prepare 64bit headers */
485 	ret =  prepare_elf64_headers(ced, addr, sz);
486 	kfree(ced);
487 	return ret;
488 }
489 
490 static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
491 {
492 	unsigned int nr_e820_entries;
493 
494 	nr_e820_entries = params->e820_entries;
495 	if (nr_e820_entries >= E820MAX)
496 		return 1;
497 
498 	memcpy(&params->e820_map[nr_e820_entries], entry,
499 			sizeof(struct e820entry));
500 	params->e820_entries++;
501 	return 0;
502 }
503 
504 static int memmap_entry_callback(u64 start, u64 end, void *arg)
505 {
506 	struct crash_memmap_data *cmd = arg;
507 	struct boot_params *params = cmd->params;
508 	struct e820entry ei;
509 
510 	ei.addr = start;
511 	ei.size = end - start + 1;
512 	ei.type = cmd->type;
513 	add_e820_entry(params, &ei);
514 
515 	return 0;
516 }
517 
518 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
519 				 unsigned long long mstart,
520 				 unsigned long long mend)
521 {
522 	unsigned long start, end;
523 	int ret = 0;
524 
525 	cmem->ranges[0].start = mstart;
526 	cmem->ranges[0].end = mend;
527 	cmem->nr_ranges = 1;
528 
529 	/* Exclude Backup region */
530 	start = image->arch.backup_load_addr;
531 	end = start + image->arch.backup_src_sz - 1;
532 	ret = exclude_mem_range(cmem, start, end);
533 	if (ret)
534 		return ret;
535 
536 	/* Exclude elf header region */
537 	start = image->arch.elf_load_addr;
538 	end = start + image->arch.elf_headers_sz - 1;
539 	return exclude_mem_range(cmem, start, end);
540 }
541 
542 /* Prepare memory map for crash dump kernel */
543 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
544 {
545 	int i, ret = 0;
546 	unsigned long flags;
547 	struct e820entry ei;
548 	struct crash_memmap_data cmd;
549 	struct crash_mem *cmem;
550 
551 	cmem = vzalloc(sizeof(struct crash_mem));
552 	if (!cmem)
553 		return -ENOMEM;
554 
555 	memset(&cmd, 0, sizeof(struct crash_memmap_data));
556 	cmd.params = params;
557 
558 	/* Add first 640K segment */
559 	ei.addr = image->arch.backup_src_start;
560 	ei.size = image->arch.backup_src_sz;
561 	ei.type = E820_RAM;
562 	add_e820_entry(params, &ei);
563 
564 	/* Add ACPI tables */
565 	cmd.type = E820_ACPI;
566 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
567 	walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
568 		       memmap_entry_callback);
569 
570 	/* Add ACPI Non-volatile Storage */
571 	cmd.type = E820_NVS;
572 	walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
573 			memmap_entry_callback);
574 
575 	/* Add crashk_low_res region */
576 	if (crashk_low_res.end) {
577 		ei.addr = crashk_low_res.start;
578 		ei.size = crashk_low_res.end - crashk_low_res.start + 1;
579 		ei.type = E820_RAM;
580 		add_e820_entry(params, &ei);
581 	}
582 
583 	/* Exclude some ranges from crashk_res and add rest to memmap */
584 	ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
585 						crashk_res.end);
586 	if (ret)
587 		goto out;
588 
589 	for (i = 0; i < cmem->nr_ranges; i++) {
590 		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
591 
592 		/* If entry is less than a page, skip it */
593 		if (ei.size < PAGE_SIZE)
594 			continue;
595 		ei.addr = cmem->ranges[i].start;
596 		ei.type = E820_RAM;
597 		add_e820_entry(params, &ei);
598 	}
599 
600 out:
601 	vfree(cmem);
602 	return ret;
603 }
604 
605 static int determine_backup_region(u64 start, u64 end, void *arg)
606 {
607 	struct kimage *image = arg;
608 
609 	image->arch.backup_src_start = start;
610 	image->arch.backup_src_sz = end - start + 1;
611 
612 	/* Expecting only one range for backup region */
613 	return 1;
614 }
615 
616 int crash_load_segments(struct kimage *image)
617 {
618 	unsigned long src_start, src_sz, elf_sz;
619 	void *elf_addr;
620 	int ret;
621 
622 	/*
623 	 * Determine and load a segment for backup area. First 640K RAM
624 	 * region is backup source
625 	 */
626 
627 	ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
628 				image, determine_backup_region);
629 
630 	/* Zero or postive return values are ok */
631 	if (ret < 0)
632 		return ret;
633 
634 	src_start = image->arch.backup_src_start;
635 	src_sz = image->arch.backup_src_sz;
636 
637 	/* Add backup segment. */
638 	if (src_sz) {
639 		/*
640 		 * Ideally there is no source for backup segment. This is
641 		 * copied in purgatory after crash. Just add a zero filled
642 		 * segment for now to make sure checksum logic works fine.
643 		 */
644 		ret = kexec_add_buffer(image, (char *)&crash_zero_bytes,
645 				       sizeof(crash_zero_bytes), src_sz,
646 				       PAGE_SIZE, 0, -1, 0,
647 				       &image->arch.backup_load_addr);
648 		if (ret)
649 			return ret;
650 		pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
651 			 image->arch.backup_load_addr, src_start, src_sz);
652 	}
653 
654 	/* Prepare elf headers and add a segment */
655 	ret = prepare_elf_headers(image, &elf_addr, &elf_sz);
656 	if (ret)
657 		return ret;
658 
659 	image->arch.elf_headers = elf_addr;
660 	image->arch.elf_headers_sz = elf_sz;
661 
662 	ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz,
663 			ELF_CORE_HEADER_ALIGN, 0, -1, 0,
664 			&image->arch.elf_load_addr);
665 	if (ret) {
666 		vfree((void *)image->arch.elf_headers);
667 		return ret;
668 	}
669 	pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
670 		 image->arch.elf_load_addr, elf_sz, elf_sz);
671 
672 	return ret;
673 }
674 #endif /* CONFIG_KEXEC_FILE */
675