1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2016-20 Intel Corporation. */ 3 4 #include <linux/file.h> 5 #include <linux/freezer.h> 6 #include <linux/highmem.h> 7 #include <linux/kthread.h> 8 #include <linux/miscdevice.h> 9 #include <linux/node.h> 10 #include <linux/pagemap.h> 11 #include <linux/ratelimit.h> 12 #include <linux/sched/mm.h> 13 #include <linux/sched/signal.h> 14 #include <linux/slab.h> 15 #include <linux/sysfs.h> 16 #include <linux/vmalloc.h> 17 #include <asm/msr.h> 18 #include <asm/sgx.h> 19 #include "driver.h" 20 #include "encl.h" 21 #include "encls.h" 22 23 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS]; 24 static int sgx_nr_epc_sections; 25 static struct task_struct *ksgxd_tsk; 26 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq); 27 static DEFINE_XARRAY(sgx_epc_address_space); 28 29 /* 30 * These variables are part of the state of the reclaimer, and must be accessed 31 * with sgx_reclaimer_lock acquired. 32 */ 33 static LIST_HEAD(sgx_active_page_list); 34 static DEFINE_SPINLOCK(sgx_reclaimer_lock); 35 36 static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0); 37 38 /* Nodes with one or more EPC sections. */ 39 static nodemask_t sgx_numa_mask; 40 41 /* 42 * Array with one list_head for each possible NUMA node. Each 43 * list contains all the sgx_epc_section's which are on that 44 * node. 45 */ 46 static struct sgx_numa_node *sgx_numa_nodes; 47 48 static LIST_HEAD(sgx_dirty_page_list); 49 50 /* 51 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed 52 * from the input list, and made available for the page allocator. SECS pages 53 * prepending their children in the input list are left intact. 54 * 55 * Return 0 when sanitization was successful or kthread was stopped, and the 56 * number of unsanitized pages otherwise. 57 */ 58 static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list) 59 { 60 unsigned long left_dirty = 0; 61 struct sgx_epc_page *page; 62 LIST_HEAD(dirty); 63 int ret; 64 65 /* dirty_page_list is thread-local, no need for a lock: */ 66 while (!list_empty(dirty_page_list)) { 67 if (kthread_should_stop()) 68 return 0; 69 70 page = list_first_entry(dirty_page_list, struct sgx_epc_page, list); 71 72 /* 73 * Checking page->poison without holding the node->lock 74 * is racy, but losing the race (i.e. poison is set just 75 * after the check) just means __eremove() will be uselessly 76 * called for a page that sgx_free_epc_page() will put onto 77 * the node->sgx_poison_page_list later. 78 */ 79 if (page->poison) { 80 struct sgx_epc_section *section = &sgx_epc_sections[page->section]; 81 struct sgx_numa_node *node = section->node; 82 83 spin_lock(&node->lock); 84 list_move(&page->list, &node->sgx_poison_page_list); 85 spin_unlock(&node->lock); 86 87 continue; 88 } 89 90 ret = __eremove(sgx_get_epc_virt_addr(page)); 91 if (!ret) { 92 /* 93 * page is now sanitized. Make it available via the SGX 94 * page allocator: 95 */ 96 list_del(&page->list); 97 sgx_free_epc_page(page); 98 } else { 99 /* The page is not yet clean - move to the dirty list. */ 100 list_move_tail(&page->list, &dirty); 101 left_dirty++; 102 } 103 104 cond_resched(); 105 } 106 107 list_splice(&dirty, dirty_page_list); 108 return left_dirty; 109 } 110 111 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page) 112 { 113 struct sgx_encl_page *page = epc_page->owner; 114 struct sgx_encl *encl = page->encl; 115 struct sgx_encl_mm *encl_mm; 116 bool ret = true; 117 int idx; 118 119 idx = srcu_read_lock(&encl->srcu); 120 121 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 122 if (!mmget_not_zero(encl_mm->mm)) 123 continue; 124 125 mmap_read_lock(encl_mm->mm); 126 ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page); 127 mmap_read_unlock(encl_mm->mm); 128 129 mmput_async(encl_mm->mm); 130 131 if (!ret) 132 break; 133 } 134 135 srcu_read_unlock(&encl->srcu, idx); 136 137 if (!ret) 138 return false; 139 140 return true; 141 } 142 143 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page) 144 { 145 struct sgx_encl_page *page = epc_page->owner; 146 unsigned long addr = page->desc & PAGE_MASK; 147 struct sgx_encl *encl = page->encl; 148 int ret; 149 150 sgx_zap_enclave_ptes(encl, addr); 151 152 mutex_lock(&encl->lock); 153 154 ret = __eblock(sgx_get_epc_virt_addr(epc_page)); 155 if (encls_failed(ret)) 156 ENCLS_WARN(ret, "EBLOCK"); 157 158 mutex_unlock(&encl->lock); 159 } 160 161 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot, 162 struct sgx_backing *backing) 163 { 164 struct sgx_pageinfo pginfo; 165 int ret; 166 167 pginfo.addr = 0; 168 pginfo.secs = 0; 169 170 pginfo.contents = (unsigned long)kmap_local_page(backing->contents); 171 pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) + 172 backing->pcmd_offset; 173 174 ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot); 175 set_page_dirty(backing->pcmd); 176 set_page_dirty(backing->contents); 177 178 kunmap_local((void *)(unsigned long)(pginfo.metadata - 179 backing->pcmd_offset)); 180 kunmap_local((void *)(unsigned long)pginfo.contents); 181 182 return ret; 183 } 184 185 void sgx_ipi_cb(void *info) 186 { 187 } 188 189 /* 190 * Swap page to the regular memory transformed to the blocked state by using 191 * EBLOCK, which means that it can no longer be referenced (no new TLB entries). 192 * 193 * The first trial just tries to write the page assuming that some other thread 194 * has reset the count for threads inside the enclave by using ETRACK, and 195 * previous thread count has been zeroed out. The second trial calls ETRACK 196 * before EWB. If that fails we kick all the HW threads out, and then do EWB, 197 * which should be guaranteed the succeed. 198 */ 199 static void sgx_encl_ewb(struct sgx_epc_page *epc_page, 200 struct sgx_backing *backing) 201 { 202 struct sgx_encl_page *encl_page = epc_page->owner; 203 struct sgx_encl *encl = encl_page->encl; 204 struct sgx_va_page *va_page; 205 unsigned int va_offset; 206 void *va_slot; 207 int ret; 208 209 encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED; 210 211 va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, 212 list); 213 va_offset = sgx_alloc_va_slot(va_page); 214 va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset; 215 if (sgx_va_page_full(va_page)) 216 list_move_tail(&va_page->list, &encl->va_pages); 217 218 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 219 if (ret == SGX_NOT_TRACKED) { 220 ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page)); 221 if (ret) { 222 if (encls_failed(ret)) 223 ENCLS_WARN(ret, "ETRACK"); 224 } 225 226 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 227 if (ret == SGX_NOT_TRACKED) { 228 /* 229 * Slow path, send IPIs to kick cpus out of the 230 * enclave. Note, it's imperative that the cpu 231 * mask is generated *after* ETRACK, else we'll 232 * miss cpus that entered the enclave between 233 * generating the mask and incrementing epoch. 234 */ 235 on_each_cpu_mask(sgx_encl_cpumask(encl), 236 sgx_ipi_cb, NULL, 1); 237 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 238 } 239 } 240 241 if (ret) { 242 if (encls_failed(ret)) 243 ENCLS_WARN(ret, "EWB"); 244 245 sgx_free_va_slot(va_page, va_offset); 246 } else { 247 encl_page->desc |= va_offset; 248 encl_page->va_page = va_page; 249 } 250 } 251 252 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page, 253 struct sgx_backing *backing) 254 { 255 struct sgx_encl_page *encl_page = epc_page->owner; 256 struct sgx_encl *encl = encl_page->encl; 257 struct sgx_backing secs_backing; 258 int ret; 259 260 mutex_lock(&encl->lock); 261 262 sgx_encl_ewb(epc_page, backing); 263 encl_page->epc_page = NULL; 264 encl->secs_child_cnt--; 265 sgx_encl_put_backing(backing); 266 267 if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) { 268 ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size), 269 &secs_backing); 270 if (ret) 271 goto out; 272 273 sgx_encl_ewb(encl->secs.epc_page, &secs_backing); 274 275 sgx_encl_free_epc_page(encl->secs.epc_page); 276 encl->secs.epc_page = NULL; 277 278 sgx_encl_put_backing(&secs_backing); 279 } 280 281 out: 282 mutex_unlock(&encl->lock); 283 } 284 285 /* 286 * Take a fixed number of pages from the head of the active page pool and 287 * reclaim them to the enclave's private shmem files. Skip the pages, which have 288 * been accessed since the last scan. Move those pages to the tail of active 289 * page pool so that the pages get scanned in LRU like fashion. 290 * 291 * Batch process a chunk of pages (at the moment 16) in order to degrade amount 292 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit 293 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI 294 * + EWB) but not sufficiently. Reclaiming one page at a time would also be 295 * problematic as it would increase the lock contention too much, which would 296 * halt forward progress. 297 */ 298 static void sgx_reclaim_pages(void) 299 { 300 struct sgx_epc_page *chunk[SGX_NR_TO_SCAN]; 301 struct sgx_backing backing[SGX_NR_TO_SCAN]; 302 struct sgx_encl_page *encl_page; 303 struct sgx_epc_page *epc_page; 304 pgoff_t page_index; 305 int cnt = 0; 306 int ret; 307 int i; 308 309 spin_lock(&sgx_reclaimer_lock); 310 for (i = 0; i < SGX_NR_TO_SCAN; i++) { 311 if (list_empty(&sgx_active_page_list)) 312 break; 313 314 epc_page = list_first_entry(&sgx_active_page_list, 315 struct sgx_epc_page, list); 316 list_del_init(&epc_page->list); 317 encl_page = epc_page->owner; 318 319 if (kref_get_unless_zero(&encl_page->encl->refcount) != 0) 320 chunk[cnt++] = epc_page; 321 else 322 /* The owner is freeing the page. No need to add the 323 * page back to the list of reclaimable pages. 324 */ 325 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 326 } 327 spin_unlock(&sgx_reclaimer_lock); 328 329 for (i = 0; i < cnt; i++) { 330 epc_page = chunk[i]; 331 encl_page = epc_page->owner; 332 333 if (!sgx_reclaimer_age(epc_page)) 334 goto skip; 335 336 page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); 337 338 mutex_lock(&encl_page->encl->lock); 339 ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]); 340 if (ret) { 341 mutex_unlock(&encl_page->encl->lock); 342 goto skip; 343 } 344 345 encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED; 346 mutex_unlock(&encl_page->encl->lock); 347 continue; 348 349 skip: 350 spin_lock(&sgx_reclaimer_lock); 351 list_add_tail(&epc_page->list, &sgx_active_page_list); 352 spin_unlock(&sgx_reclaimer_lock); 353 354 kref_put(&encl_page->encl->refcount, sgx_encl_release); 355 356 chunk[i] = NULL; 357 } 358 359 for (i = 0; i < cnt; i++) { 360 epc_page = chunk[i]; 361 if (epc_page) 362 sgx_reclaimer_block(epc_page); 363 } 364 365 for (i = 0; i < cnt; i++) { 366 epc_page = chunk[i]; 367 if (!epc_page) 368 continue; 369 370 encl_page = epc_page->owner; 371 sgx_reclaimer_write(epc_page, &backing[i]); 372 373 kref_put(&encl_page->encl->refcount, sgx_encl_release); 374 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 375 376 sgx_free_epc_page(epc_page); 377 } 378 } 379 380 static bool sgx_should_reclaim(unsigned long watermark) 381 { 382 return atomic_long_read(&sgx_nr_free_pages) < watermark && 383 !list_empty(&sgx_active_page_list); 384 } 385 386 /* 387 * sgx_reclaim_direct() should be called (without enclave's mutex held) 388 * in locations where SGX memory resources might be low and might be 389 * needed in order to make forward progress. 390 */ 391 void sgx_reclaim_direct(void) 392 { 393 if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) 394 sgx_reclaim_pages(); 395 } 396 397 static int ksgxd(void *p) 398 { 399 set_freezable(); 400 401 /* 402 * Sanitize pages in order to recover from kexec(). The 2nd pass is 403 * required for SECS pages, whose child pages blocked EREMOVE. 404 */ 405 __sgx_sanitize_pages(&sgx_dirty_page_list); 406 WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list)); 407 408 while (!kthread_should_stop()) { 409 if (try_to_freeze()) 410 continue; 411 412 wait_event_freezable(ksgxd_waitq, 413 kthread_should_stop() || 414 sgx_should_reclaim(SGX_NR_HIGH_PAGES)); 415 416 if (sgx_should_reclaim(SGX_NR_HIGH_PAGES)) 417 sgx_reclaim_pages(); 418 419 cond_resched(); 420 } 421 422 return 0; 423 } 424 425 static bool __init sgx_page_reclaimer_init(void) 426 { 427 struct task_struct *tsk; 428 429 tsk = kthread_run(ksgxd, NULL, "ksgxd"); 430 if (IS_ERR(tsk)) 431 return false; 432 433 ksgxd_tsk = tsk; 434 435 return true; 436 } 437 438 bool current_is_ksgxd(void) 439 { 440 return current == ksgxd_tsk; 441 } 442 443 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid) 444 { 445 struct sgx_numa_node *node = &sgx_numa_nodes[nid]; 446 struct sgx_epc_page *page = NULL; 447 448 spin_lock(&node->lock); 449 450 if (list_empty(&node->free_page_list)) { 451 spin_unlock(&node->lock); 452 return NULL; 453 } 454 455 page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list); 456 list_del_init(&page->list); 457 page->flags = 0; 458 459 spin_unlock(&node->lock); 460 atomic_long_dec(&sgx_nr_free_pages); 461 462 return page; 463 } 464 465 /** 466 * __sgx_alloc_epc_page() - Allocate an EPC page 467 * 468 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start 469 * from the NUMA node, where the caller is executing. 470 * 471 * Return: 472 * - an EPC page: A borrowed EPC pages were available. 473 * - NULL: Out of EPC pages. 474 */ 475 struct sgx_epc_page *__sgx_alloc_epc_page(void) 476 { 477 struct sgx_epc_page *page; 478 int nid_of_current = numa_node_id(); 479 int nid_start, nid; 480 481 /* 482 * Try local node first. If it doesn't have an EPC section, 483 * fall back to the non-local NUMA nodes. 484 */ 485 if (node_isset(nid_of_current, sgx_numa_mask)) 486 nid_start = nid_of_current; 487 else 488 nid_start = next_node_in(nid_of_current, sgx_numa_mask); 489 490 nid = nid_start; 491 do { 492 page = __sgx_alloc_epc_page_from_node(nid); 493 if (page) 494 return page; 495 496 nid = next_node_in(nid, sgx_numa_mask); 497 } while (nid != nid_start); 498 499 return ERR_PTR(-ENOMEM); 500 } 501 502 /** 503 * sgx_mark_page_reclaimable() - Mark a page as reclaimable 504 * @page: EPC page 505 * 506 * Mark a page as reclaimable and add it to the active page list. Pages 507 * are automatically removed from the active list when freed. 508 */ 509 void sgx_mark_page_reclaimable(struct sgx_epc_page *page) 510 { 511 spin_lock(&sgx_reclaimer_lock); 512 page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED; 513 list_add_tail(&page->list, &sgx_active_page_list); 514 spin_unlock(&sgx_reclaimer_lock); 515 } 516 517 /** 518 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list 519 * @page: EPC page 520 * 521 * Clear the reclaimable flag and remove the page from the active page list. 522 * 523 * Return: 524 * 0 on success, 525 * -EBUSY if the page is in the process of being reclaimed 526 */ 527 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page) 528 { 529 spin_lock(&sgx_reclaimer_lock); 530 if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) { 531 /* The page is being reclaimed. */ 532 if (list_empty(&page->list)) { 533 spin_unlock(&sgx_reclaimer_lock); 534 return -EBUSY; 535 } 536 537 list_del(&page->list); 538 page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 539 } 540 spin_unlock(&sgx_reclaimer_lock); 541 542 return 0; 543 } 544 545 /** 546 * sgx_alloc_epc_page() - Allocate an EPC page 547 * @owner: the owner of the EPC page 548 * @reclaim: reclaim pages if necessary 549 * 550 * Iterate through EPC sections and borrow a free EPC page to the caller. When a 551 * page is no longer needed it must be released with sgx_free_epc_page(). If 552 * @reclaim is set to true, directly reclaim pages when we are out of pages. No 553 * mm's can be locked when @reclaim is set to true. 554 * 555 * Finally, wake up ksgxd when the number of pages goes below the watermark 556 * before returning back to the caller. 557 * 558 * Return: 559 * an EPC page, 560 * -errno on error 561 */ 562 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim) 563 { 564 struct sgx_epc_page *page; 565 566 for ( ; ; ) { 567 page = __sgx_alloc_epc_page(); 568 if (!IS_ERR(page)) { 569 page->owner = owner; 570 break; 571 } 572 573 if (list_empty(&sgx_active_page_list)) 574 return ERR_PTR(-ENOMEM); 575 576 if (!reclaim) { 577 page = ERR_PTR(-EBUSY); 578 break; 579 } 580 581 if (signal_pending(current)) { 582 page = ERR_PTR(-ERESTARTSYS); 583 break; 584 } 585 586 sgx_reclaim_pages(); 587 cond_resched(); 588 } 589 590 if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) 591 wake_up(&ksgxd_waitq); 592 593 return page; 594 } 595 596 /** 597 * sgx_free_epc_page() - Free an EPC page 598 * @page: an EPC page 599 * 600 * Put the EPC page back to the list of free pages. It's the caller's 601 * responsibility to make sure that the page is in uninitialized state. In other 602 * words, do EREMOVE, EWB or whatever operation is necessary before calling 603 * this function. 604 */ 605 void sgx_free_epc_page(struct sgx_epc_page *page) 606 { 607 struct sgx_epc_section *section = &sgx_epc_sections[page->section]; 608 struct sgx_numa_node *node = section->node; 609 610 spin_lock(&node->lock); 611 612 page->owner = NULL; 613 if (page->poison) 614 list_add(&page->list, &node->sgx_poison_page_list); 615 else 616 list_add_tail(&page->list, &node->free_page_list); 617 page->flags = SGX_EPC_PAGE_IS_FREE; 618 619 spin_unlock(&node->lock); 620 atomic_long_inc(&sgx_nr_free_pages); 621 } 622 623 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size, 624 unsigned long index, 625 struct sgx_epc_section *section) 626 { 627 unsigned long nr_pages = size >> PAGE_SHIFT; 628 unsigned long i; 629 630 section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB); 631 if (!section->virt_addr) 632 return false; 633 634 section->pages = vmalloc_array(nr_pages, sizeof(struct sgx_epc_page)); 635 if (!section->pages) { 636 memunmap(section->virt_addr); 637 return false; 638 } 639 640 section->phys_addr = phys_addr; 641 xa_store_range(&sgx_epc_address_space, section->phys_addr, 642 phys_addr + size - 1, section, GFP_KERNEL); 643 644 for (i = 0; i < nr_pages; i++) { 645 section->pages[i].section = index; 646 section->pages[i].flags = 0; 647 section->pages[i].owner = NULL; 648 section->pages[i].poison = 0; 649 list_add_tail(§ion->pages[i].list, &sgx_dirty_page_list); 650 } 651 652 return true; 653 } 654 655 bool arch_is_platform_page(u64 paddr) 656 { 657 return !!xa_load(&sgx_epc_address_space, paddr); 658 } 659 EXPORT_SYMBOL_GPL(arch_is_platform_page); 660 661 static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr) 662 { 663 struct sgx_epc_section *section; 664 665 section = xa_load(&sgx_epc_address_space, paddr); 666 if (!section) 667 return NULL; 668 669 return §ion->pages[PFN_DOWN(paddr - section->phys_addr)]; 670 } 671 672 /* 673 * Called in process context to handle a hardware reported 674 * error in an SGX EPC page. 675 * If the MF_ACTION_REQUIRED bit is set in flags, then the 676 * context is the task that consumed the poison data. Otherwise 677 * this is called from a kernel thread unrelated to the page. 678 */ 679 int arch_memory_failure(unsigned long pfn, int flags) 680 { 681 struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT); 682 struct sgx_epc_section *section; 683 struct sgx_numa_node *node; 684 685 /* 686 * mm/memory-failure.c calls this routine for all errors 687 * where there isn't a "struct page" for the address. But that 688 * includes other address ranges besides SGX. 689 */ 690 if (!page) 691 return -ENXIO; 692 693 /* 694 * If poison was consumed synchronously. Send a SIGBUS to 695 * the task. Hardware has already exited the SGX enclave and 696 * will not allow re-entry to an enclave that has a memory 697 * error. The signal may help the task understand why the 698 * enclave is broken. 699 */ 700 if (flags & MF_ACTION_REQUIRED) 701 force_sig(SIGBUS); 702 703 section = &sgx_epc_sections[page->section]; 704 node = section->node; 705 706 spin_lock(&node->lock); 707 708 /* Already poisoned? Nothing more to do */ 709 if (page->poison) 710 goto out; 711 712 page->poison = 1; 713 714 /* 715 * If the page is on a free list, move it to the per-node 716 * poison page list. 717 */ 718 if (page->flags & SGX_EPC_PAGE_IS_FREE) { 719 list_move(&page->list, &node->sgx_poison_page_list); 720 goto out; 721 } 722 723 sgx_unmark_page_reclaimable(page); 724 725 /* 726 * TBD: Add additional plumbing to enable pre-emptive 727 * action for asynchronous poison notification. Until 728 * then just hope that the poison: 729 * a) is not accessed - sgx_free_epc_page() will deal with it 730 * when the user gives it back 731 * b) results in a recoverable machine check rather than 732 * a fatal one 733 */ 734 out: 735 spin_unlock(&node->lock); 736 return 0; 737 } 738 739 /* 740 * A section metric is concatenated in a way that @low bits 12-31 define the 741 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the 742 * metric. 743 */ 744 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high) 745 { 746 return (low & GENMASK_ULL(31, 12)) + 747 ((high & GENMASK_ULL(19, 0)) << 32); 748 } 749 750 #ifdef CONFIG_NUMA 751 static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf) 752 { 753 return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size); 754 } 755 static DEVICE_ATTR_RO(sgx_total_bytes); 756 757 static umode_t arch_node_attr_is_visible(struct kobject *kobj, 758 struct attribute *attr, int idx) 759 { 760 /* Make all x86/ attributes invisible when SGX is not initialized: */ 761 if (nodes_empty(sgx_numa_mask)) 762 return 0; 763 764 return attr->mode; 765 } 766 767 static struct attribute *arch_node_dev_attrs[] = { 768 &dev_attr_sgx_total_bytes.attr, 769 NULL, 770 }; 771 772 const struct attribute_group arch_node_dev_group = { 773 .name = "x86", 774 .attrs = arch_node_dev_attrs, 775 .is_visible = arch_node_attr_is_visible, 776 }; 777 778 static void __init arch_update_sysfs_visibility(int nid) 779 { 780 struct node *node = node_devices[nid]; 781 int ret; 782 783 ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group); 784 785 if (ret) 786 pr_err("sysfs update failed (%d), files may be invisible", ret); 787 } 788 #else /* !CONFIG_NUMA */ 789 static void __init arch_update_sysfs_visibility(int nid) {} 790 #endif 791 792 static bool __init sgx_page_cache_init(void) 793 { 794 u32 eax, ebx, ecx, edx, type; 795 u64 pa, size; 796 int nid; 797 int i; 798 799 sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL); 800 if (!sgx_numa_nodes) 801 return false; 802 803 for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) { 804 cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx); 805 806 type = eax & SGX_CPUID_EPC_MASK; 807 if (type == SGX_CPUID_EPC_INVALID) 808 break; 809 810 if (type != SGX_CPUID_EPC_SECTION) { 811 pr_err_once("Unknown EPC section type: %u\n", type); 812 break; 813 } 814 815 pa = sgx_calc_section_metric(eax, ebx); 816 size = sgx_calc_section_metric(ecx, edx); 817 818 pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1); 819 820 if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) { 821 pr_err("No free memory for an EPC section\n"); 822 break; 823 } 824 825 nid = numa_map_to_online_node(phys_to_target_node(pa)); 826 if (nid == NUMA_NO_NODE) { 827 /* The physical address is already printed above. */ 828 pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n"); 829 nid = 0; 830 } 831 832 if (!node_isset(nid, sgx_numa_mask)) { 833 spin_lock_init(&sgx_numa_nodes[nid].lock); 834 INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list); 835 INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list); 836 node_set(nid, sgx_numa_mask); 837 sgx_numa_nodes[nid].size = 0; 838 839 /* Make SGX-specific node sysfs files visible: */ 840 arch_update_sysfs_visibility(nid); 841 } 842 843 sgx_epc_sections[i].node = &sgx_numa_nodes[nid]; 844 sgx_numa_nodes[nid].size += size; 845 846 sgx_nr_epc_sections++; 847 } 848 849 if (!sgx_nr_epc_sections) { 850 pr_err("There are zero EPC sections.\n"); 851 return false; 852 } 853 854 for_each_online_node(nid) { 855 if (!node_isset(nid, sgx_numa_mask) && 856 node_state(nid, N_MEMORY) && node_state(nid, N_CPU)) 857 pr_info("node%d has both CPUs and memory but doesn't have an EPC section\n", 858 nid); 859 } 860 861 return true; 862 } 863 864 /* 865 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller. 866 * Bare-metal driver requires to update them to hash of enclave's signer 867 * before EINIT. KVM needs to update them to guest's virtual MSR values 868 * before doing EINIT from guest. 869 */ 870 void sgx_update_lepubkeyhash(u64 *lepubkeyhash) 871 { 872 int i; 873 874 WARN_ON_ONCE(preemptible()); 875 876 for (i = 0; i < 4; i++) 877 wrmsrq(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]); 878 } 879 880 const struct file_operations sgx_provision_fops = { 881 .owner = THIS_MODULE, 882 }; 883 884 static struct miscdevice sgx_dev_provision = { 885 .minor = MISC_DYNAMIC_MINOR, 886 .name = "sgx_provision", 887 .nodename = "sgx_provision", 888 .fops = &sgx_provision_fops, 889 }; 890 891 /** 892 * sgx_set_attribute() - Update allowed attributes given file descriptor 893 * @allowed_attributes: Pointer to allowed enclave attributes 894 * @attribute_fd: File descriptor for specific attribute 895 * 896 * Append enclave attribute indicated by file descriptor to allowed 897 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by 898 * /dev/sgx_provision is supported. 899 * 900 * Return: 901 * -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes 902 * -EINVAL: Invalid, or not supported file descriptor 903 */ 904 int sgx_set_attribute(unsigned long *allowed_attributes, 905 unsigned int attribute_fd) 906 { 907 CLASS(fd, f)(attribute_fd); 908 909 if (fd_empty(f)) 910 return -EINVAL; 911 912 if (fd_file(f)->f_op != &sgx_provision_fops) 913 return -EINVAL; 914 915 *allowed_attributes |= SGX_ATTR_PROVISIONKEY; 916 return 0; 917 } 918 EXPORT_SYMBOL_GPL(sgx_set_attribute); 919 920 static int __init sgx_init(void) 921 { 922 int ret; 923 int i; 924 925 if (!cpu_feature_enabled(X86_FEATURE_SGX)) 926 return -ENODEV; 927 928 if (!sgx_page_cache_init()) 929 return -ENOMEM; 930 931 if (!sgx_page_reclaimer_init()) { 932 ret = -ENOMEM; 933 goto err_page_cache; 934 } 935 936 ret = misc_register(&sgx_dev_provision); 937 if (ret) 938 goto err_kthread; 939 940 /* 941 * Always try to initialize the native *and* KVM drivers. 942 * The KVM driver is less picky than the native one and 943 * can function if the native one is not supported on the 944 * current system or fails to initialize. 945 * 946 * Error out only if both fail to initialize. 947 */ 948 ret = sgx_drv_init(); 949 950 if (sgx_vepc_init() && ret) 951 goto err_provision; 952 953 return 0; 954 955 err_provision: 956 misc_deregister(&sgx_dev_provision); 957 958 err_kthread: 959 kthread_stop(ksgxd_tsk); 960 961 err_page_cache: 962 for (i = 0; i < sgx_nr_epc_sections; i++) { 963 vfree(sgx_epc_sections[i].pages); 964 memunmap(sgx_epc_sections[i].virt_addr); 965 } 966 967 return ret; 968 } 969 970 device_initcall(sgx_init); 971