1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2016-20 Intel Corporation. */ 3 4 #include <linux/file.h> 5 #include <linux/freezer.h> 6 #include <linux/highmem.h> 7 #include <linux/kthread.h> 8 #include <linux/kvm_types.h> 9 #include <linux/miscdevice.h> 10 #include <linux/node.h> 11 #include <linux/pagemap.h> 12 #include <linux/ratelimit.h> 13 #include <linux/sched/mm.h> 14 #include <linux/sched/signal.h> 15 #include <linux/slab.h> 16 #include <linux/sysfs.h> 17 #include <linux/vmalloc.h> 18 #include <asm/msr.h> 19 #include <asm/sgx.h> 20 #include <asm/archrandom.h> 21 #include "driver.h" 22 #include "encl.h" 23 #include "encls.h" 24 25 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS]; 26 static int sgx_nr_epc_sections; 27 static struct task_struct *ksgxd_tsk; 28 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq); 29 static DEFINE_XARRAY(sgx_epc_address_space); 30 31 /* 32 * These variables are part of the state of the reclaimer, and must be accessed 33 * with sgx_reclaimer_lock acquired. 34 */ 35 static LIST_HEAD(sgx_active_page_list); 36 static DEFINE_SPINLOCK(sgx_reclaimer_lock); 37 38 static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0); 39 40 /* Nodes with one or more EPC sections. */ 41 static nodemask_t sgx_numa_mask; 42 43 /* 44 * Array with one list_head for each possible NUMA node. Each 45 * list contains all the sgx_epc_section's which are on that 46 * node. 47 */ 48 static struct sgx_numa_node *sgx_numa_nodes; 49 50 static LIST_HEAD(sgx_dirty_page_list); 51 52 /* 53 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed 54 * from the input list, and made available for the page allocator. SECS pages 55 * prepending their children in the input list are left intact. 56 * 57 * Return 0 when sanitization was successful or kthread was stopped, and the 58 * number of unsanitized pages otherwise. 59 */ 60 static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list) 61 { 62 unsigned long left_dirty = 0; 63 struct sgx_epc_page *page; 64 LIST_HEAD(dirty); 65 int ret; 66 67 /* dirty_page_list is thread-local, no need for a lock: */ 68 while (!list_empty(dirty_page_list)) { 69 if (kthread_should_stop()) 70 return 0; 71 72 page = list_first_entry(dirty_page_list, struct sgx_epc_page, list); 73 74 /* 75 * Checking page->poison without holding the node->lock 76 * is racy, but losing the race (i.e. poison is set just 77 * after the check) just means __eremove() will be uselessly 78 * called for a page that sgx_free_epc_page() will put onto 79 * the node->sgx_poison_page_list later. 80 */ 81 if (page->poison) { 82 struct sgx_epc_section *section = &sgx_epc_sections[page->section]; 83 struct sgx_numa_node *node = section->node; 84 85 spin_lock(&node->lock); 86 list_move(&page->list, &node->sgx_poison_page_list); 87 spin_unlock(&node->lock); 88 89 continue; 90 } 91 92 ret = __eremove(sgx_get_epc_virt_addr(page)); 93 if (!ret) { 94 /* 95 * page is now sanitized. Make it available via the SGX 96 * page allocator: 97 */ 98 list_del(&page->list); 99 sgx_free_epc_page(page); 100 } else { 101 /* The page is not yet clean - move to the dirty list. */ 102 list_move_tail(&page->list, &dirty); 103 left_dirty++; 104 } 105 106 cond_resched(); 107 } 108 109 list_splice(&dirty, dirty_page_list); 110 return left_dirty; 111 } 112 113 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page) 114 { 115 struct sgx_encl_page *page = epc_page->owner; 116 struct sgx_encl *encl = page->encl; 117 struct sgx_encl_mm *encl_mm; 118 bool ret = true; 119 int idx; 120 121 idx = srcu_read_lock(&encl->srcu); 122 123 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 124 if (!mmget_not_zero(encl_mm->mm)) 125 continue; 126 127 mmap_read_lock(encl_mm->mm); 128 ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page); 129 mmap_read_unlock(encl_mm->mm); 130 131 mmput_async(encl_mm->mm); 132 133 if (!ret) 134 break; 135 } 136 137 srcu_read_unlock(&encl->srcu, idx); 138 139 if (!ret) 140 return false; 141 142 return true; 143 } 144 145 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page) 146 { 147 struct sgx_encl_page *page = epc_page->owner; 148 unsigned long addr = page->desc & PAGE_MASK; 149 struct sgx_encl *encl = page->encl; 150 int ret; 151 152 sgx_zap_enclave_ptes(encl, addr); 153 154 mutex_lock(&encl->lock); 155 156 ret = __eblock(sgx_get_epc_virt_addr(epc_page)); 157 if (encls_failed(ret)) 158 ENCLS_WARN(ret, "EBLOCK"); 159 160 mutex_unlock(&encl->lock); 161 } 162 163 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot, 164 struct sgx_backing *backing) 165 { 166 struct sgx_pageinfo pginfo; 167 int ret; 168 169 pginfo.addr = 0; 170 pginfo.secs = 0; 171 172 pginfo.contents = (unsigned long)kmap_local_page(backing->contents); 173 pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) + 174 backing->pcmd_offset; 175 176 ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot); 177 set_page_dirty(backing->pcmd); 178 set_page_dirty(backing->contents); 179 180 kunmap_local((void *)(unsigned long)(pginfo.metadata - 181 backing->pcmd_offset)); 182 kunmap_local((void *)(unsigned long)pginfo.contents); 183 184 return ret; 185 } 186 187 void sgx_ipi_cb(void *info) 188 { 189 } 190 191 /* 192 * Swap page to the regular memory transformed to the blocked state by using 193 * EBLOCK, which means that it can no longer be referenced (no new TLB entries). 194 * 195 * The first trial just tries to write the page assuming that some other thread 196 * has reset the count for threads inside the enclave by using ETRACK, and 197 * previous thread count has been zeroed out. The second trial calls ETRACK 198 * before EWB. If that fails we kick all the HW threads out, and then do EWB, 199 * which should be guaranteed the succeed. 200 */ 201 static void sgx_encl_ewb(struct sgx_epc_page *epc_page, 202 struct sgx_backing *backing) 203 { 204 struct sgx_encl_page *encl_page = epc_page->owner; 205 struct sgx_encl *encl = encl_page->encl; 206 struct sgx_va_page *va_page; 207 unsigned int va_offset; 208 void *va_slot; 209 int ret; 210 211 encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED; 212 213 va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, 214 list); 215 va_offset = sgx_alloc_va_slot(va_page); 216 va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset; 217 if (sgx_va_page_full(va_page)) 218 list_move_tail(&va_page->list, &encl->va_pages); 219 220 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 221 if (ret == SGX_NOT_TRACKED) { 222 ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page)); 223 if (ret) { 224 if (encls_failed(ret)) 225 ENCLS_WARN(ret, "ETRACK"); 226 } 227 228 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 229 if (ret == SGX_NOT_TRACKED) { 230 /* 231 * Slow path, send IPIs to kick cpus out of the 232 * enclave. Note, it's imperative that the cpu 233 * mask is generated *after* ETRACK, else we'll 234 * miss cpus that entered the enclave between 235 * generating the mask and incrementing epoch. 236 */ 237 on_each_cpu_mask(sgx_encl_cpumask(encl), 238 sgx_ipi_cb, NULL, 1); 239 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 240 } 241 } 242 243 if (ret) { 244 if (encls_failed(ret)) 245 ENCLS_WARN(ret, "EWB"); 246 247 sgx_free_va_slot(va_page, va_offset); 248 } else { 249 encl_page->desc |= va_offset; 250 encl_page->va_page = va_page; 251 } 252 } 253 254 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page, 255 struct sgx_backing *backing) 256 { 257 struct sgx_encl_page *encl_page = epc_page->owner; 258 struct sgx_encl *encl = encl_page->encl; 259 struct sgx_backing secs_backing; 260 int ret; 261 262 mutex_lock(&encl->lock); 263 264 sgx_encl_ewb(epc_page, backing); 265 encl_page->epc_page = NULL; 266 encl->secs_child_cnt--; 267 sgx_encl_put_backing(backing); 268 269 if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) { 270 ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size), 271 &secs_backing); 272 if (ret) 273 goto out; 274 275 sgx_encl_ewb(encl->secs.epc_page, &secs_backing); 276 277 sgx_encl_free_epc_page(encl->secs.epc_page); 278 encl->secs.epc_page = NULL; 279 280 sgx_encl_put_backing(&secs_backing); 281 } 282 283 out: 284 mutex_unlock(&encl->lock); 285 } 286 287 /* 288 * Take a fixed number of pages from the head of the active page pool and 289 * reclaim them to the enclave's private shmem files. Skip the pages, which have 290 * been accessed since the last scan. Move those pages to the tail of active 291 * page pool so that the pages get scanned in LRU like fashion. 292 * 293 * Batch process a chunk of pages (at the moment 16) in order to degrade amount 294 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit 295 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI 296 * + EWB) but not sufficiently. Reclaiming one page at a time would also be 297 * problematic as it would increase the lock contention too much, which would 298 * halt forward progress. 299 */ 300 static void sgx_reclaim_pages(void) 301 { 302 struct sgx_epc_page *chunk[SGX_NR_TO_SCAN]; 303 struct sgx_backing backing[SGX_NR_TO_SCAN]; 304 struct sgx_encl_page *encl_page; 305 struct sgx_epc_page *epc_page; 306 pgoff_t page_index; 307 int cnt = 0; 308 int ret; 309 int i; 310 311 spin_lock(&sgx_reclaimer_lock); 312 for (i = 0; i < SGX_NR_TO_SCAN; i++) { 313 if (list_empty(&sgx_active_page_list)) 314 break; 315 316 epc_page = list_first_entry(&sgx_active_page_list, 317 struct sgx_epc_page, list); 318 list_del_init(&epc_page->list); 319 encl_page = epc_page->owner; 320 321 if (kref_get_unless_zero(&encl_page->encl->refcount) != 0) 322 chunk[cnt++] = epc_page; 323 else 324 /* The owner is freeing the page. No need to add the 325 * page back to the list of reclaimable pages. 326 */ 327 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 328 } 329 spin_unlock(&sgx_reclaimer_lock); 330 331 for (i = 0; i < cnt; i++) { 332 epc_page = chunk[i]; 333 encl_page = epc_page->owner; 334 335 if (!sgx_reclaimer_age(epc_page)) 336 goto skip; 337 338 page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); 339 340 mutex_lock(&encl_page->encl->lock); 341 ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]); 342 if (ret) { 343 mutex_unlock(&encl_page->encl->lock); 344 goto skip; 345 } 346 347 encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED; 348 mutex_unlock(&encl_page->encl->lock); 349 continue; 350 351 skip: 352 spin_lock(&sgx_reclaimer_lock); 353 list_add_tail(&epc_page->list, &sgx_active_page_list); 354 spin_unlock(&sgx_reclaimer_lock); 355 356 kref_put(&encl_page->encl->refcount, sgx_encl_release); 357 358 chunk[i] = NULL; 359 } 360 361 for (i = 0; i < cnt; i++) { 362 epc_page = chunk[i]; 363 if (epc_page) 364 sgx_reclaimer_block(epc_page); 365 } 366 367 for (i = 0; i < cnt; i++) { 368 epc_page = chunk[i]; 369 if (!epc_page) 370 continue; 371 372 encl_page = epc_page->owner; 373 sgx_reclaimer_write(epc_page, &backing[i]); 374 375 kref_put(&encl_page->encl->refcount, sgx_encl_release); 376 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 377 378 sgx_free_epc_page(epc_page); 379 } 380 } 381 382 static bool sgx_should_reclaim(unsigned long watermark) 383 { 384 return atomic_long_read(&sgx_nr_free_pages) < watermark && 385 !list_empty(&sgx_active_page_list); 386 } 387 388 /* 389 * sgx_reclaim_direct() should be called (without enclave's mutex held) 390 * in locations where SGX memory resources might be low and might be 391 * needed in order to make forward progress. 392 */ 393 void sgx_reclaim_direct(void) 394 { 395 if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) 396 sgx_reclaim_pages(); 397 } 398 399 static int ksgxd(void *p) 400 { 401 set_freezable(); 402 403 /* 404 * Sanitize pages in order to recover from kexec(). The 2nd pass is 405 * required for SECS pages, whose child pages blocked EREMOVE. 406 */ 407 __sgx_sanitize_pages(&sgx_dirty_page_list); 408 WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list)); 409 410 while (!kthread_should_stop()) { 411 if (try_to_freeze()) 412 continue; 413 414 wait_event_freezable(ksgxd_waitq, 415 kthread_should_stop() || 416 sgx_should_reclaim(SGX_NR_HIGH_PAGES)); 417 418 if (sgx_should_reclaim(SGX_NR_HIGH_PAGES)) 419 sgx_reclaim_pages(); 420 421 cond_resched(); 422 } 423 424 return 0; 425 } 426 427 static bool __init sgx_page_reclaimer_init(void) 428 { 429 struct task_struct *tsk; 430 431 tsk = kthread_run(ksgxd, NULL, "ksgxd"); 432 if (IS_ERR(tsk)) 433 return false; 434 435 ksgxd_tsk = tsk; 436 437 return true; 438 } 439 440 bool current_is_ksgxd(void) 441 { 442 return current == ksgxd_tsk; 443 } 444 445 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid) 446 { 447 struct sgx_numa_node *node = &sgx_numa_nodes[nid]; 448 struct sgx_epc_page *page = NULL; 449 450 spin_lock(&node->lock); 451 452 if (list_empty(&node->free_page_list)) { 453 spin_unlock(&node->lock); 454 return NULL; 455 } 456 457 page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list); 458 list_del_init(&page->list); 459 page->flags = 0; 460 461 spin_unlock(&node->lock); 462 atomic_long_dec(&sgx_nr_free_pages); 463 464 return page; 465 } 466 467 /** 468 * __sgx_alloc_epc_page() - Allocate an EPC page 469 * 470 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start 471 * from the NUMA node, where the caller is executing. 472 * 473 * Return: 474 * - an EPC page: A borrowed EPC pages were available. 475 * - NULL: Out of EPC pages. 476 */ 477 struct sgx_epc_page *__sgx_alloc_epc_page(void) 478 { 479 struct sgx_epc_page *page; 480 int nid_of_current = numa_node_id(); 481 int nid_start, nid; 482 483 /* 484 * Try local node first. If it doesn't have an EPC section, 485 * fall back to the non-local NUMA nodes. 486 */ 487 if (node_isset(nid_of_current, sgx_numa_mask)) 488 nid_start = nid_of_current; 489 else 490 nid_start = next_node_in(nid_of_current, sgx_numa_mask); 491 492 nid = nid_start; 493 do { 494 page = __sgx_alloc_epc_page_from_node(nid); 495 if (page) 496 return page; 497 498 nid = next_node_in(nid, sgx_numa_mask); 499 } while (nid != nid_start); 500 501 return ERR_PTR(-ENOMEM); 502 } 503 504 /** 505 * sgx_mark_page_reclaimable() - Mark a page as reclaimable 506 * @page: EPC page 507 * 508 * Mark a page as reclaimable and add it to the active page list. Pages 509 * are automatically removed from the active list when freed. 510 */ 511 void sgx_mark_page_reclaimable(struct sgx_epc_page *page) 512 { 513 spin_lock(&sgx_reclaimer_lock); 514 page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED; 515 list_add_tail(&page->list, &sgx_active_page_list); 516 spin_unlock(&sgx_reclaimer_lock); 517 } 518 519 /** 520 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list 521 * @page: EPC page 522 * 523 * Clear the reclaimable flag and remove the page from the active page list. 524 * 525 * Return: 526 * 0 on success, 527 * -EBUSY if the page is in the process of being reclaimed 528 */ 529 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page) 530 { 531 spin_lock(&sgx_reclaimer_lock); 532 if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) { 533 /* The page is being reclaimed. */ 534 if (list_empty(&page->list)) { 535 spin_unlock(&sgx_reclaimer_lock); 536 return -EBUSY; 537 } 538 539 list_del(&page->list); 540 page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 541 } 542 spin_unlock(&sgx_reclaimer_lock); 543 544 return 0; 545 } 546 547 /** 548 * sgx_alloc_epc_page() - Allocate an EPC page 549 * @owner: the owner of the EPC page 550 * @reclaim: reclaim pages if necessary 551 * 552 * Iterate through EPC sections and borrow a free EPC page to the caller. When a 553 * page is no longer needed it must be released with sgx_free_epc_page(). If 554 * @reclaim is set to true, directly reclaim pages when we are out of pages. No 555 * mm's can be locked when @reclaim is set to true. 556 * 557 * Finally, wake up ksgxd when the number of pages goes below the watermark 558 * before returning back to the caller. 559 * 560 * Return: 561 * an EPC page, 562 * -errno on error 563 */ 564 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim) 565 { 566 struct sgx_epc_page *page; 567 568 for ( ; ; ) { 569 page = __sgx_alloc_epc_page(); 570 if (!IS_ERR(page)) { 571 page->owner = owner; 572 break; 573 } 574 575 if (list_empty(&sgx_active_page_list)) 576 return ERR_PTR(-ENOMEM); 577 578 if (!reclaim) { 579 page = ERR_PTR(-EBUSY); 580 break; 581 } 582 583 if (signal_pending(current)) { 584 page = ERR_PTR(-ERESTARTSYS); 585 break; 586 } 587 588 sgx_reclaim_pages(); 589 cond_resched(); 590 } 591 592 if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) 593 wake_up(&ksgxd_waitq); 594 595 return page; 596 } 597 598 /** 599 * sgx_free_epc_page() - Free an EPC page 600 * @page: an EPC page 601 * 602 * Put the EPC page back to the list of free pages. It's the caller's 603 * responsibility to make sure that the page is in uninitialized state. In other 604 * words, do EREMOVE, EWB or whatever operation is necessary before calling 605 * this function. 606 */ 607 void sgx_free_epc_page(struct sgx_epc_page *page) 608 { 609 struct sgx_epc_section *section = &sgx_epc_sections[page->section]; 610 struct sgx_numa_node *node = section->node; 611 612 spin_lock(&node->lock); 613 614 page->owner = NULL; 615 if (page->poison) 616 list_add(&page->list, &node->sgx_poison_page_list); 617 else 618 list_add_tail(&page->list, &node->free_page_list); 619 page->flags = SGX_EPC_PAGE_IS_FREE; 620 621 spin_unlock(&node->lock); 622 atomic_long_inc(&sgx_nr_free_pages); 623 } 624 625 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size, 626 unsigned long index, 627 struct sgx_epc_section *section) 628 { 629 unsigned long nr_pages = size >> PAGE_SHIFT; 630 unsigned long i; 631 632 section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB); 633 if (!section->virt_addr) 634 return false; 635 636 section->pages = vmalloc_array(nr_pages, sizeof(struct sgx_epc_page)); 637 if (!section->pages) { 638 memunmap(section->virt_addr); 639 return false; 640 } 641 642 section->phys_addr = phys_addr; 643 xa_store_range(&sgx_epc_address_space, section->phys_addr, 644 phys_addr + size - 1, section, GFP_KERNEL); 645 646 for (i = 0; i < nr_pages; i++) { 647 section->pages[i].section = index; 648 section->pages[i].flags = 0; 649 section->pages[i].owner = NULL; 650 section->pages[i].poison = 0; 651 list_add_tail(§ion->pages[i].list, &sgx_dirty_page_list); 652 } 653 654 return true; 655 } 656 657 bool arch_is_platform_page(u64 paddr) 658 { 659 return !!xa_load(&sgx_epc_address_space, paddr); 660 } 661 EXPORT_SYMBOL_GPL(arch_is_platform_page); 662 663 static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr) 664 { 665 struct sgx_epc_section *section; 666 667 section = xa_load(&sgx_epc_address_space, paddr); 668 if (!section) 669 return NULL; 670 671 return §ion->pages[PFN_DOWN(paddr - section->phys_addr)]; 672 } 673 674 /* 675 * Called in process context to handle a hardware reported 676 * error in an SGX EPC page. 677 * If the MF_ACTION_REQUIRED bit is set in flags, then the 678 * context is the task that consumed the poison data. Otherwise 679 * this is called from a kernel thread unrelated to the page. 680 */ 681 int arch_memory_failure(unsigned long pfn, int flags) 682 { 683 struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT); 684 struct sgx_epc_section *section; 685 struct sgx_numa_node *node; 686 687 /* 688 * mm/memory-failure.c calls this routine for all errors 689 * where there isn't a "struct page" for the address. But that 690 * includes other address ranges besides SGX. 691 */ 692 if (!page) 693 return -ENXIO; 694 695 /* 696 * If poison was consumed synchronously. Send a SIGBUS to 697 * the task. Hardware has already exited the SGX enclave and 698 * will not allow re-entry to an enclave that has a memory 699 * error. The signal may help the task understand why the 700 * enclave is broken. 701 */ 702 if (flags & MF_ACTION_REQUIRED) 703 force_sig(SIGBUS); 704 705 section = &sgx_epc_sections[page->section]; 706 node = section->node; 707 708 spin_lock(&node->lock); 709 710 /* Already poisoned? Nothing more to do */ 711 if (page->poison) 712 goto out; 713 714 page->poison = 1; 715 716 /* 717 * If the page is on a free list, move it to the per-node 718 * poison page list. 719 */ 720 if (page->flags & SGX_EPC_PAGE_IS_FREE) { 721 list_move(&page->list, &node->sgx_poison_page_list); 722 goto out; 723 } 724 725 sgx_unmark_page_reclaimable(page); 726 727 /* 728 * TBD: Add additional plumbing to enable pre-emptive 729 * action for asynchronous poison notification. Until 730 * then just hope that the poison: 731 * a) is not accessed - sgx_free_epc_page() will deal with it 732 * when the user gives it back 733 * b) results in a recoverable machine check rather than 734 * a fatal one 735 */ 736 out: 737 spin_unlock(&node->lock); 738 return 0; 739 } 740 741 /* 742 * A section metric is concatenated in a way that @low bits 12-31 define the 743 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the 744 * metric. 745 */ 746 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high) 747 { 748 return (low & GENMASK_ULL(31, 12)) + 749 ((high & GENMASK_ULL(19, 0)) << 32); 750 } 751 752 #ifdef CONFIG_NUMA 753 static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf) 754 { 755 return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size); 756 } 757 static DEVICE_ATTR_RO(sgx_total_bytes); 758 759 static umode_t arch_node_attr_is_visible(struct kobject *kobj, 760 struct attribute *attr, int idx) 761 { 762 /* Make all x86/ attributes invisible when SGX is not initialized: */ 763 if (nodes_empty(sgx_numa_mask)) 764 return 0; 765 766 return attr->mode; 767 } 768 769 static struct attribute *arch_node_dev_attrs[] = { 770 &dev_attr_sgx_total_bytes.attr, 771 NULL, 772 }; 773 774 const struct attribute_group arch_node_dev_group = { 775 .name = "x86", 776 .attrs = arch_node_dev_attrs, 777 .is_visible = arch_node_attr_is_visible, 778 }; 779 780 static void __init arch_update_sysfs_visibility(int nid) 781 { 782 struct node *node = node_devices[nid]; 783 int ret; 784 785 ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group); 786 787 if (ret) 788 pr_err("sysfs update failed (%d), files may be invisible", ret); 789 } 790 #else /* !CONFIG_NUMA */ 791 static void __init arch_update_sysfs_visibility(int nid) {} 792 #endif 793 794 static bool __init sgx_page_cache_init(void) 795 { 796 u32 eax, ebx, ecx, edx, type; 797 u64 pa, size; 798 int nid; 799 int i; 800 801 sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL); 802 if (!sgx_numa_nodes) 803 return false; 804 805 for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) { 806 cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx); 807 808 type = eax & SGX_CPUID_EPC_MASK; 809 if (type == SGX_CPUID_EPC_INVALID) 810 break; 811 812 if (type != SGX_CPUID_EPC_SECTION) { 813 pr_err_once("Unknown EPC section type: %u\n", type); 814 break; 815 } 816 817 pa = sgx_calc_section_metric(eax, ebx); 818 size = sgx_calc_section_metric(ecx, edx); 819 820 pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1); 821 822 if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) { 823 pr_err("No free memory for an EPC section\n"); 824 break; 825 } 826 827 nid = numa_map_to_online_node(phys_to_target_node(pa)); 828 if (nid == NUMA_NO_NODE) { 829 /* The physical address is already printed above. */ 830 pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n"); 831 nid = 0; 832 } 833 834 if (!node_isset(nid, sgx_numa_mask)) { 835 spin_lock_init(&sgx_numa_nodes[nid].lock); 836 INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list); 837 INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list); 838 node_set(nid, sgx_numa_mask); 839 sgx_numa_nodes[nid].size = 0; 840 841 /* Make SGX-specific node sysfs files visible: */ 842 arch_update_sysfs_visibility(nid); 843 } 844 845 sgx_epc_sections[i].node = &sgx_numa_nodes[nid]; 846 sgx_numa_nodes[nid].size += size; 847 848 sgx_nr_epc_sections++; 849 } 850 851 if (!sgx_nr_epc_sections) { 852 pr_err("There are zero EPC sections.\n"); 853 return false; 854 } 855 856 for_each_online_node(nid) { 857 if (!node_isset(nid, sgx_numa_mask) && 858 node_state(nid, N_MEMORY) && node_state(nid, N_CPU)) 859 pr_info("node%d has both CPUs and memory but doesn't have an EPC section\n", 860 nid); 861 } 862 863 return true; 864 } 865 866 /* 867 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller. 868 * Bare-metal driver requires to update them to hash of enclave's signer 869 * before EINIT. KVM needs to update them to guest's virtual MSR values 870 * before doing EINIT from guest. 871 */ 872 void sgx_update_lepubkeyhash(u64 *lepubkeyhash) 873 { 874 int i; 875 876 WARN_ON_ONCE(preemptible()); 877 878 for (i = 0; i < 4; i++) 879 wrmsrq(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]); 880 } 881 882 const struct file_operations sgx_provision_fops = { 883 .owner = THIS_MODULE, 884 }; 885 886 static struct miscdevice sgx_dev_provision = { 887 .minor = MISC_DYNAMIC_MINOR, 888 .name = "sgx_provision", 889 .nodename = "sgx_provision", 890 .fops = &sgx_provision_fops, 891 }; 892 893 /** 894 * sgx_set_attribute() - Update allowed attributes given file descriptor 895 * @allowed_attributes: Pointer to allowed enclave attributes 896 * @attribute_fd: File descriptor for specific attribute 897 * 898 * Append enclave attribute indicated by file descriptor to allowed 899 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by 900 * /dev/sgx_provision is supported. 901 * 902 * Return: 903 * -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes 904 * -EINVAL: Invalid, or not supported file descriptor 905 */ 906 int sgx_set_attribute(unsigned long *allowed_attributes, 907 unsigned int attribute_fd) 908 { 909 CLASS(fd, f)(attribute_fd); 910 911 if (fd_empty(f)) 912 return -EINVAL; 913 914 if (fd_file(f)->f_op != &sgx_provision_fops) 915 return -EINVAL; 916 917 *allowed_attributes |= SGX_ATTR_PROVISIONKEY; 918 return 0; 919 } 920 EXPORT_SYMBOL_FOR_KVM(sgx_set_attribute); 921 922 /* Counter to count the active SGX users */ 923 static int sgx_usage_count; 924 925 /** 926 * sgx_update_svn() - Attempt to call ENCLS[EUPDATESVN]. 927 * 928 * This instruction attempts to update CPUSVN to the 929 * currently loaded microcode update SVN and generate new 930 * cryptographic assets. 931 * 932 * Return: 933 * * %0: - Success or not supported 934 * * %-EAGAIN: - Can be safely retried, failure is due to lack of 935 * * entropy in RNG 936 * * %-EIO: - Unexpected error, retries are not advisable 937 */ 938 static int sgx_update_svn(void) 939 { 940 int ret; 941 942 /* 943 * If EUPDATESVN is not available, it is ok to 944 * silently skip it to comply with legacy behavior. 945 */ 946 if (!cpu_feature_enabled(X86_FEATURE_SGX_EUPDATESVN)) 947 return 0; 948 949 /* 950 * EPC is guaranteed to be empty when there are no users. 951 * Ensure we are on our first user before proceeding further. 952 */ 953 WARN(sgx_usage_count, "Elevated usage count when calling EUPDATESVN\n"); 954 955 for (int i = 0; i < RDRAND_RETRY_LOOPS; i++) { 956 ret = __eupdatesvn(); 957 958 /* Stop on success or unexpected errors: */ 959 if (ret != SGX_INSUFFICIENT_ENTROPY) 960 break; 961 } 962 963 switch (ret) { 964 case 0: 965 /* 966 * SVN successfully updated. 967 * Let users know when the update was successful. 968 */ 969 pr_info("SVN updated successfully\n"); 970 return 0; 971 case SGX_NO_UPDATE: 972 /* 973 * SVN update failed since the current SVN is 974 * not newer than CPUSVN. This is the most 975 * common case and indicates no harm. 976 */ 977 return 0; 978 case SGX_INSUFFICIENT_ENTROPY: 979 /* 980 * SVN update failed due to lack of entropy in DRNG. 981 * Indicate to userspace that it should retry. 982 */ 983 return -EAGAIN; 984 default: 985 break; 986 } 987 988 /* 989 * EUPDATESVN was called when EPC is empty, all other error 990 * codes are unexpected. 991 */ 992 ENCLS_WARN(ret, "EUPDATESVN"); 993 return -EIO; 994 } 995 996 /* Mutex to ensure no concurrent EPC accesses during EUPDATESVN */ 997 static DEFINE_MUTEX(sgx_svn_lock); 998 999 int sgx_inc_usage_count(void) 1000 { 1001 int ret; 1002 1003 guard(mutex)(&sgx_svn_lock); 1004 1005 if (!sgx_usage_count) { 1006 ret = sgx_update_svn(); 1007 if (ret) 1008 return ret; 1009 } 1010 1011 sgx_usage_count++; 1012 1013 return 0; 1014 } 1015 1016 void sgx_dec_usage_count(void) 1017 { 1018 guard(mutex)(&sgx_svn_lock); 1019 sgx_usage_count--; 1020 } 1021 1022 static int __init sgx_init(void) 1023 { 1024 int ret; 1025 int i; 1026 1027 if (!cpu_feature_enabled(X86_FEATURE_SGX)) 1028 return -ENODEV; 1029 1030 if (!sgx_page_cache_init()) 1031 return -ENOMEM; 1032 1033 if (!sgx_page_reclaimer_init()) { 1034 ret = -ENOMEM; 1035 goto err_page_cache; 1036 } 1037 1038 ret = misc_register(&sgx_dev_provision); 1039 if (ret) 1040 goto err_kthread; 1041 1042 /* 1043 * Always try to initialize the native *and* KVM drivers. 1044 * The KVM driver is less picky than the native one and 1045 * can function if the native one is not supported on the 1046 * current system or fails to initialize. 1047 * 1048 * Error out only if both fail to initialize. 1049 */ 1050 ret = sgx_drv_init(); 1051 1052 if (sgx_vepc_init() && ret) 1053 goto err_provision; 1054 1055 return 0; 1056 1057 err_provision: 1058 misc_deregister(&sgx_dev_provision); 1059 1060 err_kthread: 1061 kthread_stop(ksgxd_tsk); 1062 1063 err_page_cache: 1064 for (i = 0; i < sgx_nr_epc_sections; i++) { 1065 vfree(sgx_epc_sections[i].pages); 1066 memunmap(sgx_epc_sections[i].virt_addr); 1067 } 1068 1069 return ret; 1070 } 1071 1072 device_initcall(sgx_init); 1073