xref: /linux/arch/x86/kernel/cpu/sgx/main.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/file.h>
5 #include <linux/freezer.h>
6 #include <linux/highmem.h>
7 #include <linux/kthread.h>
8 #include <linux/miscdevice.h>
9 #include <linux/node.h>
10 #include <linux/pagemap.h>
11 #include <linux/ratelimit.h>
12 #include <linux/sched/mm.h>
13 #include <linux/sched/signal.h>
14 #include <linux/slab.h>
15 #include <linux/sysfs.h>
16 #include <asm/sgx.h>
17 #include "driver.h"
18 #include "encl.h"
19 #include "encls.h"
20 
21 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
22 static int sgx_nr_epc_sections;
23 static struct task_struct *ksgxd_tsk;
24 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
25 static DEFINE_XARRAY(sgx_epc_address_space);
26 
27 /*
28  * These variables are part of the state of the reclaimer, and must be accessed
29  * with sgx_reclaimer_lock acquired.
30  */
31 static LIST_HEAD(sgx_active_page_list);
32 static DEFINE_SPINLOCK(sgx_reclaimer_lock);
33 
34 static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);
35 
36 /* Nodes with one or more EPC sections. */
37 static nodemask_t sgx_numa_mask;
38 
39 /*
40  * Array with one list_head for each possible NUMA node.  Each
41  * list contains all the sgx_epc_section's which are on that
42  * node.
43  */
44 static struct sgx_numa_node *sgx_numa_nodes;
45 
46 static LIST_HEAD(sgx_dirty_page_list);
47 
48 /*
49  * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
50  * from the input list, and made available for the page allocator. SECS pages
51  * prepending their children in the input list are left intact.
52  */
53 static void __sgx_sanitize_pages(struct list_head *dirty_page_list)
54 {
55 	struct sgx_epc_page *page;
56 	LIST_HEAD(dirty);
57 	int ret;
58 
59 	/* dirty_page_list is thread-local, no need for a lock: */
60 	while (!list_empty(dirty_page_list)) {
61 		if (kthread_should_stop())
62 			return;
63 
64 		page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
65 
66 		/*
67 		 * Checking page->poison without holding the node->lock
68 		 * is racy, but losing the race (i.e. poison is set just
69 		 * after the check) just means __eremove() will be uselessly
70 		 * called for a page that sgx_free_epc_page() will put onto
71 		 * the node->sgx_poison_page_list later.
72 		 */
73 		if (page->poison) {
74 			struct sgx_epc_section *section = &sgx_epc_sections[page->section];
75 			struct sgx_numa_node *node = section->node;
76 
77 			spin_lock(&node->lock);
78 			list_move(&page->list, &node->sgx_poison_page_list);
79 			spin_unlock(&node->lock);
80 
81 			continue;
82 		}
83 
84 		ret = __eremove(sgx_get_epc_virt_addr(page));
85 		if (!ret) {
86 			/*
87 			 * page is now sanitized.  Make it available via the SGX
88 			 * page allocator:
89 			 */
90 			list_del(&page->list);
91 			sgx_free_epc_page(page);
92 		} else {
93 			/* The page is not yet clean - move to the dirty list. */
94 			list_move_tail(&page->list, &dirty);
95 		}
96 
97 		cond_resched();
98 	}
99 
100 	list_splice(&dirty, dirty_page_list);
101 }
102 
103 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
104 {
105 	struct sgx_encl_page *page = epc_page->owner;
106 	struct sgx_encl *encl = page->encl;
107 	struct sgx_encl_mm *encl_mm;
108 	bool ret = true;
109 	int idx;
110 
111 	idx = srcu_read_lock(&encl->srcu);
112 
113 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
114 		if (!mmget_not_zero(encl_mm->mm))
115 			continue;
116 
117 		mmap_read_lock(encl_mm->mm);
118 		ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
119 		mmap_read_unlock(encl_mm->mm);
120 
121 		mmput_async(encl_mm->mm);
122 
123 		if (!ret)
124 			break;
125 	}
126 
127 	srcu_read_unlock(&encl->srcu, idx);
128 
129 	if (!ret)
130 		return false;
131 
132 	return true;
133 }
134 
135 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
136 {
137 	struct sgx_encl_page *page = epc_page->owner;
138 	unsigned long addr = page->desc & PAGE_MASK;
139 	struct sgx_encl *encl = page->encl;
140 	unsigned long mm_list_version;
141 	struct sgx_encl_mm *encl_mm;
142 	struct vm_area_struct *vma;
143 	int idx, ret;
144 
145 	do {
146 		mm_list_version = encl->mm_list_version;
147 
148 		/* Pairs with smp_rmb() in sgx_encl_mm_add(). */
149 		smp_rmb();
150 
151 		idx = srcu_read_lock(&encl->srcu);
152 
153 		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
154 			if (!mmget_not_zero(encl_mm->mm))
155 				continue;
156 
157 			mmap_read_lock(encl_mm->mm);
158 
159 			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
160 			if (!ret && encl == vma->vm_private_data)
161 				zap_vma_ptes(vma, addr, PAGE_SIZE);
162 
163 			mmap_read_unlock(encl_mm->mm);
164 
165 			mmput_async(encl_mm->mm);
166 		}
167 
168 		srcu_read_unlock(&encl->srcu, idx);
169 	} while (unlikely(encl->mm_list_version != mm_list_version));
170 
171 	mutex_lock(&encl->lock);
172 
173 	ret = __eblock(sgx_get_epc_virt_addr(epc_page));
174 	if (encls_failed(ret))
175 		ENCLS_WARN(ret, "EBLOCK");
176 
177 	mutex_unlock(&encl->lock);
178 }
179 
180 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
181 			  struct sgx_backing *backing)
182 {
183 	struct sgx_pageinfo pginfo;
184 	int ret;
185 
186 	pginfo.addr = 0;
187 	pginfo.secs = 0;
188 
189 	pginfo.contents = (unsigned long)kmap_atomic(backing->contents);
190 	pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) +
191 			  backing->pcmd_offset;
192 
193 	ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
194 	set_page_dirty(backing->pcmd);
195 	set_page_dirty(backing->contents);
196 
197 	kunmap_atomic((void *)(unsigned long)(pginfo.metadata -
198 					      backing->pcmd_offset));
199 	kunmap_atomic((void *)(unsigned long)pginfo.contents);
200 
201 	return ret;
202 }
203 
204 static void sgx_ipi_cb(void *info)
205 {
206 }
207 
208 static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl)
209 {
210 	cpumask_t *cpumask = &encl->cpumask;
211 	struct sgx_encl_mm *encl_mm;
212 	int idx;
213 
214 	/*
215 	 * Can race with sgx_encl_mm_add(), but ETRACK has already been
216 	 * executed, which means that the CPUs running in the new mm will enter
217 	 * into the enclave with a fresh epoch.
218 	 */
219 	cpumask_clear(cpumask);
220 
221 	idx = srcu_read_lock(&encl->srcu);
222 
223 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
224 		if (!mmget_not_zero(encl_mm->mm))
225 			continue;
226 
227 		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
228 
229 		mmput_async(encl_mm->mm);
230 	}
231 
232 	srcu_read_unlock(&encl->srcu, idx);
233 
234 	return cpumask;
235 }
236 
237 /*
238  * Swap page to the regular memory transformed to the blocked state by using
239  * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
240  *
241  * The first trial just tries to write the page assuming that some other thread
242  * has reset the count for threads inside the enclave by using ETRACK, and
243  * previous thread count has been zeroed out. The second trial calls ETRACK
244  * before EWB. If that fails we kick all the HW threads out, and then do EWB,
245  * which should be guaranteed the succeed.
246  */
247 static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
248 			 struct sgx_backing *backing)
249 {
250 	struct sgx_encl_page *encl_page = epc_page->owner;
251 	struct sgx_encl *encl = encl_page->encl;
252 	struct sgx_va_page *va_page;
253 	unsigned int va_offset;
254 	void *va_slot;
255 	int ret;
256 
257 	encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
258 
259 	va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
260 				   list);
261 	va_offset = sgx_alloc_va_slot(va_page);
262 	va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
263 	if (sgx_va_page_full(va_page))
264 		list_move_tail(&va_page->list, &encl->va_pages);
265 
266 	ret = __sgx_encl_ewb(epc_page, va_slot, backing);
267 	if (ret == SGX_NOT_TRACKED) {
268 		ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
269 		if (ret) {
270 			if (encls_failed(ret))
271 				ENCLS_WARN(ret, "ETRACK");
272 		}
273 
274 		ret = __sgx_encl_ewb(epc_page, va_slot, backing);
275 		if (ret == SGX_NOT_TRACKED) {
276 			/*
277 			 * Slow path, send IPIs to kick cpus out of the
278 			 * enclave.  Note, it's imperative that the cpu
279 			 * mask is generated *after* ETRACK, else we'll
280 			 * miss cpus that entered the enclave between
281 			 * generating the mask and incrementing epoch.
282 			 */
283 			on_each_cpu_mask(sgx_encl_ewb_cpumask(encl),
284 					 sgx_ipi_cb, NULL, 1);
285 			ret = __sgx_encl_ewb(epc_page, va_slot, backing);
286 		}
287 	}
288 
289 	if (ret) {
290 		if (encls_failed(ret))
291 			ENCLS_WARN(ret, "EWB");
292 
293 		sgx_free_va_slot(va_page, va_offset);
294 	} else {
295 		encl_page->desc |= va_offset;
296 		encl_page->va_page = va_page;
297 	}
298 }
299 
300 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
301 				struct sgx_backing *backing)
302 {
303 	struct sgx_encl_page *encl_page = epc_page->owner;
304 	struct sgx_encl *encl = encl_page->encl;
305 	struct sgx_backing secs_backing;
306 	int ret;
307 
308 	mutex_lock(&encl->lock);
309 
310 	sgx_encl_ewb(epc_page, backing);
311 	encl_page->epc_page = NULL;
312 	encl->secs_child_cnt--;
313 	sgx_encl_put_backing(backing);
314 
315 	if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
316 		ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size),
317 					   &secs_backing);
318 		if (ret)
319 			goto out;
320 
321 		sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
322 
323 		sgx_encl_free_epc_page(encl->secs.epc_page);
324 		encl->secs.epc_page = NULL;
325 
326 		sgx_encl_put_backing(&secs_backing);
327 	}
328 
329 out:
330 	mutex_unlock(&encl->lock);
331 }
332 
333 /*
334  * Take a fixed number of pages from the head of the active page pool and
335  * reclaim them to the enclave's private shmem files. Skip the pages, which have
336  * been accessed since the last scan. Move those pages to the tail of active
337  * page pool so that the pages get scanned in LRU like fashion.
338  *
339  * Batch process a chunk of pages (at the moment 16) in order to degrade amount
340  * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
341  * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
342  * + EWB) but not sufficiently. Reclaiming one page at a time would also be
343  * problematic as it would increase the lock contention too much, which would
344  * halt forward progress.
345  */
346 static void sgx_reclaim_pages(void)
347 {
348 	struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
349 	struct sgx_backing backing[SGX_NR_TO_SCAN];
350 	struct sgx_encl_page *encl_page;
351 	struct sgx_epc_page *epc_page;
352 	pgoff_t page_index;
353 	int cnt = 0;
354 	int ret;
355 	int i;
356 
357 	spin_lock(&sgx_reclaimer_lock);
358 	for (i = 0; i < SGX_NR_TO_SCAN; i++) {
359 		if (list_empty(&sgx_active_page_list))
360 			break;
361 
362 		epc_page = list_first_entry(&sgx_active_page_list,
363 					    struct sgx_epc_page, list);
364 		list_del_init(&epc_page->list);
365 		encl_page = epc_page->owner;
366 
367 		if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
368 			chunk[cnt++] = epc_page;
369 		else
370 			/* The owner is freeing the page. No need to add the
371 			 * page back to the list of reclaimable pages.
372 			 */
373 			epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
374 	}
375 	spin_unlock(&sgx_reclaimer_lock);
376 
377 	for (i = 0; i < cnt; i++) {
378 		epc_page = chunk[i];
379 		encl_page = epc_page->owner;
380 
381 		if (!sgx_reclaimer_age(epc_page))
382 			goto skip;
383 
384 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
385 
386 		mutex_lock(&encl_page->encl->lock);
387 		ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]);
388 		if (ret) {
389 			mutex_unlock(&encl_page->encl->lock);
390 			goto skip;
391 		}
392 
393 		encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
394 		mutex_unlock(&encl_page->encl->lock);
395 		continue;
396 
397 skip:
398 		spin_lock(&sgx_reclaimer_lock);
399 		list_add_tail(&epc_page->list, &sgx_active_page_list);
400 		spin_unlock(&sgx_reclaimer_lock);
401 
402 		kref_put(&encl_page->encl->refcount, sgx_encl_release);
403 
404 		chunk[i] = NULL;
405 	}
406 
407 	for (i = 0; i < cnt; i++) {
408 		epc_page = chunk[i];
409 		if (epc_page)
410 			sgx_reclaimer_block(epc_page);
411 	}
412 
413 	for (i = 0; i < cnt; i++) {
414 		epc_page = chunk[i];
415 		if (!epc_page)
416 			continue;
417 
418 		encl_page = epc_page->owner;
419 		sgx_reclaimer_write(epc_page, &backing[i]);
420 
421 		kref_put(&encl_page->encl->refcount, sgx_encl_release);
422 		epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
423 
424 		sgx_free_epc_page(epc_page);
425 	}
426 }
427 
428 static bool sgx_should_reclaim(unsigned long watermark)
429 {
430 	return atomic_long_read(&sgx_nr_free_pages) < watermark &&
431 	       !list_empty(&sgx_active_page_list);
432 }
433 
434 static int ksgxd(void *p)
435 {
436 	set_freezable();
437 
438 	/*
439 	 * Sanitize pages in order to recover from kexec(). The 2nd pass is
440 	 * required for SECS pages, whose child pages blocked EREMOVE.
441 	 */
442 	__sgx_sanitize_pages(&sgx_dirty_page_list);
443 	__sgx_sanitize_pages(&sgx_dirty_page_list);
444 
445 	/* sanity check: */
446 	WARN_ON(!list_empty(&sgx_dirty_page_list));
447 
448 	while (!kthread_should_stop()) {
449 		if (try_to_freeze())
450 			continue;
451 
452 		wait_event_freezable(ksgxd_waitq,
453 				     kthread_should_stop() ||
454 				     sgx_should_reclaim(SGX_NR_HIGH_PAGES));
455 
456 		if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
457 			sgx_reclaim_pages();
458 
459 		cond_resched();
460 	}
461 
462 	return 0;
463 }
464 
465 static bool __init sgx_page_reclaimer_init(void)
466 {
467 	struct task_struct *tsk;
468 
469 	tsk = kthread_run(ksgxd, NULL, "ksgxd");
470 	if (IS_ERR(tsk))
471 		return false;
472 
473 	ksgxd_tsk = tsk;
474 
475 	return true;
476 }
477 
478 bool current_is_ksgxd(void)
479 {
480 	return current == ksgxd_tsk;
481 }
482 
483 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
484 {
485 	struct sgx_numa_node *node = &sgx_numa_nodes[nid];
486 	struct sgx_epc_page *page = NULL;
487 
488 	spin_lock(&node->lock);
489 
490 	if (list_empty(&node->free_page_list)) {
491 		spin_unlock(&node->lock);
492 		return NULL;
493 	}
494 
495 	page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
496 	list_del_init(&page->list);
497 	page->flags = 0;
498 
499 	spin_unlock(&node->lock);
500 	atomic_long_dec(&sgx_nr_free_pages);
501 
502 	return page;
503 }
504 
505 /**
506  * __sgx_alloc_epc_page() - Allocate an EPC page
507  *
508  * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
509  * from the NUMA node, where the caller is executing.
510  *
511  * Return:
512  * - an EPC page:	A borrowed EPC pages were available.
513  * - NULL:		Out of EPC pages.
514  */
515 struct sgx_epc_page *__sgx_alloc_epc_page(void)
516 {
517 	struct sgx_epc_page *page;
518 	int nid_of_current = numa_node_id();
519 	int nid = nid_of_current;
520 
521 	if (node_isset(nid_of_current, sgx_numa_mask)) {
522 		page = __sgx_alloc_epc_page_from_node(nid_of_current);
523 		if (page)
524 			return page;
525 	}
526 
527 	/* Fall back to the non-local NUMA nodes: */
528 	while (true) {
529 		nid = next_node_in(nid, sgx_numa_mask);
530 		if (nid == nid_of_current)
531 			break;
532 
533 		page = __sgx_alloc_epc_page_from_node(nid);
534 		if (page)
535 			return page;
536 	}
537 
538 	return ERR_PTR(-ENOMEM);
539 }
540 
541 /**
542  * sgx_mark_page_reclaimable() - Mark a page as reclaimable
543  * @page:	EPC page
544  *
545  * Mark a page as reclaimable and add it to the active page list. Pages
546  * are automatically removed from the active list when freed.
547  */
548 void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
549 {
550 	spin_lock(&sgx_reclaimer_lock);
551 	page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
552 	list_add_tail(&page->list, &sgx_active_page_list);
553 	spin_unlock(&sgx_reclaimer_lock);
554 }
555 
556 /**
557  * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
558  * @page:	EPC page
559  *
560  * Clear the reclaimable flag and remove the page from the active page list.
561  *
562  * Return:
563  *   0 on success,
564  *   -EBUSY if the page is in the process of being reclaimed
565  */
566 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
567 {
568 	spin_lock(&sgx_reclaimer_lock);
569 	if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
570 		/* The page is being reclaimed. */
571 		if (list_empty(&page->list)) {
572 			spin_unlock(&sgx_reclaimer_lock);
573 			return -EBUSY;
574 		}
575 
576 		list_del(&page->list);
577 		page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
578 	}
579 	spin_unlock(&sgx_reclaimer_lock);
580 
581 	return 0;
582 }
583 
584 /**
585  * sgx_alloc_epc_page() - Allocate an EPC page
586  * @owner:	the owner of the EPC page
587  * @reclaim:	reclaim pages if necessary
588  *
589  * Iterate through EPC sections and borrow a free EPC page to the caller. When a
590  * page is no longer needed it must be released with sgx_free_epc_page(). If
591  * @reclaim is set to true, directly reclaim pages when we are out of pages. No
592  * mm's can be locked when @reclaim is set to true.
593  *
594  * Finally, wake up ksgxd when the number of pages goes below the watermark
595  * before returning back to the caller.
596  *
597  * Return:
598  *   an EPC page,
599  *   -errno on error
600  */
601 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
602 {
603 	struct sgx_epc_page *page;
604 
605 	for ( ; ; ) {
606 		page = __sgx_alloc_epc_page();
607 		if (!IS_ERR(page)) {
608 			page->owner = owner;
609 			break;
610 		}
611 
612 		if (list_empty(&sgx_active_page_list))
613 			return ERR_PTR(-ENOMEM);
614 
615 		if (!reclaim) {
616 			page = ERR_PTR(-EBUSY);
617 			break;
618 		}
619 
620 		if (signal_pending(current)) {
621 			page = ERR_PTR(-ERESTARTSYS);
622 			break;
623 		}
624 
625 		sgx_reclaim_pages();
626 		cond_resched();
627 	}
628 
629 	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
630 		wake_up(&ksgxd_waitq);
631 
632 	return page;
633 }
634 
635 /**
636  * sgx_free_epc_page() - Free an EPC page
637  * @page:	an EPC page
638  *
639  * Put the EPC page back to the list of free pages. It's the caller's
640  * responsibility to make sure that the page is in uninitialized state. In other
641  * words, do EREMOVE, EWB or whatever operation is necessary before calling
642  * this function.
643  */
644 void sgx_free_epc_page(struct sgx_epc_page *page)
645 {
646 	struct sgx_epc_section *section = &sgx_epc_sections[page->section];
647 	struct sgx_numa_node *node = section->node;
648 
649 	spin_lock(&node->lock);
650 
651 	page->owner = NULL;
652 	if (page->poison)
653 		list_add(&page->list, &node->sgx_poison_page_list);
654 	else
655 		list_add_tail(&page->list, &node->free_page_list);
656 	page->flags = SGX_EPC_PAGE_IS_FREE;
657 
658 	spin_unlock(&node->lock);
659 	atomic_long_inc(&sgx_nr_free_pages);
660 }
661 
662 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
663 					 unsigned long index,
664 					 struct sgx_epc_section *section)
665 {
666 	unsigned long nr_pages = size >> PAGE_SHIFT;
667 	unsigned long i;
668 
669 	section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
670 	if (!section->virt_addr)
671 		return false;
672 
673 	section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
674 	if (!section->pages) {
675 		memunmap(section->virt_addr);
676 		return false;
677 	}
678 
679 	section->phys_addr = phys_addr;
680 	xa_store_range(&sgx_epc_address_space, section->phys_addr,
681 		       phys_addr + size - 1, section, GFP_KERNEL);
682 
683 	for (i = 0; i < nr_pages; i++) {
684 		section->pages[i].section = index;
685 		section->pages[i].flags = 0;
686 		section->pages[i].owner = NULL;
687 		section->pages[i].poison = 0;
688 		list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
689 	}
690 
691 	return true;
692 }
693 
694 bool arch_is_platform_page(u64 paddr)
695 {
696 	return !!xa_load(&sgx_epc_address_space, paddr);
697 }
698 EXPORT_SYMBOL_GPL(arch_is_platform_page);
699 
700 static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
701 {
702 	struct sgx_epc_section *section;
703 
704 	section = xa_load(&sgx_epc_address_space, paddr);
705 	if (!section)
706 		return NULL;
707 
708 	return &section->pages[PFN_DOWN(paddr - section->phys_addr)];
709 }
710 
711 /*
712  * Called in process context to handle a hardware reported
713  * error in an SGX EPC page.
714  * If the MF_ACTION_REQUIRED bit is set in flags, then the
715  * context is the task that consumed the poison data. Otherwise
716  * this is called from a kernel thread unrelated to the page.
717  */
718 int arch_memory_failure(unsigned long pfn, int flags)
719 {
720 	struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
721 	struct sgx_epc_section *section;
722 	struct sgx_numa_node *node;
723 
724 	/*
725 	 * mm/memory-failure.c calls this routine for all errors
726 	 * where there isn't a "struct page" for the address. But that
727 	 * includes other address ranges besides SGX.
728 	 */
729 	if (!page)
730 		return -ENXIO;
731 
732 	/*
733 	 * If poison was consumed synchronously. Send a SIGBUS to
734 	 * the task. Hardware has already exited the SGX enclave and
735 	 * will not allow re-entry to an enclave that has a memory
736 	 * error. The signal may help the task understand why the
737 	 * enclave is broken.
738 	 */
739 	if (flags & MF_ACTION_REQUIRED)
740 		force_sig(SIGBUS);
741 
742 	section = &sgx_epc_sections[page->section];
743 	node = section->node;
744 
745 	spin_lock(&node->lock);
746 
747 	/* Already poisoned? Nothing more to do */
748 	if (page->poison)
749 		goto out;
750 
751 	page->poison = 1;
752 
753 	/*
754 	 * If the page is on a free list, move it to the per-node
755 	 * poison page list.
756 	 */
757 	if (page->flags & SGX_EPC_PAGE_IS_FREE) {
758 		list_move(&page->list, &node->sgx_poison_page_list);
759 		goto out;
760 	}
761 
762 	/*
763 	 * TBD: Add additional plumbing to enable pre-emptive
764 	 * action for asynchronous poison notification. Until
765 	 * then just hope that the poison:
766 	 * a) is not accessed - sgx_free_epc_page() will deal with it
767 	 *    when the user gives it back
768 	 * b) results in a recoverable machine check rather than
769 	 *    a fatal one
770 	 */
771 out:
772 	spin_unlock(&node->lock);
773 	return 0;
774 }
775 
776 /**
777  * A section metric is concatenated in a way that @low bits 12-31 define the
778  * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
779  * metric.
780  */
781 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
782 {
783 	return (low & GENMASK_ULL(31, 12)) +
784 	       ((high & GENMASK_ULL(19, 0)) << 32);
785 }
786 
787 #ifdef CONFIG_NUMA
788 static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
789 {
790 	return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
791 }
792 static DEVICE_ATTR_RO(sgx_total_bytes);
793 
794 static umode_t arch_node_attr_is_visible(struct kobject *kobj,
795 		struct attribute *attr, int idx)
796 {
797 	/* Make all x86/ attributes invisible when SGX is not initialized: */
798 	if (nodes_empty(sgx_numa_mask))
799 		return 0;
800 
801 	return attr->mode;
802 }
803 
804 static struct attribute *arch_node_dev_attrs[] = {
805 	&dev_attr_sgx_total_bytes.attr,
806 	NULL,
807 };
808 
809 const struct attribute_group arch_node_dev_group = {
810 	.name = "x86",
811 	.attrs = arch_node_dev_attrs,
812 	.is_visible = arch_node_attr_is_visible,
813 };
814 
815 static void __init arch_update_sysfs_visibility(int nid)
816 {
817 	struct node *node = node_devices[nid];
818 	int ret;
819 
820 	ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);
821 
822 	if (ret)
823 		pr_err("sysfs update failed (%d), files may be invisible", ret);
824 }
825 #else /* !CONFIG_NUMA */
826 static void __init arch_update_sysfs_visibility(int nid) {}
827 #endif
828 
829 static bool __init sgx_page_cache_init(void)
830 {
831 	u32 eax, ebx, ecx, edx, type;
832 	u64 pa, size;
833 	int nid;
834 	int i;
835 
836 	sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
837 	if (!sgx_numa_nodes)
838 		return false;
839 
840 	for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
841 		cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
842 
843 		type = eax & SGX_CPUID_EPC_MASK;
844 		if (type == SGX_CPUID_EPC_INVALID)
845 			break;
846 
847 		if (type != SGX_CPUID_EPC_SECTION) {
848 			pr_err_once("Unknown EPC section type: %u\n", type);
849 			break;
850 		}
851 
852 		pa   = sgx_calc_section_metric(eax, ebx);
853 		size = sgx_calc_section_metric(ecx, edx);
854 
855 		pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
856 
857 		if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
858 			pr_err("No free memory for an EPC section\n");
859 			break;
860 		}
861 
862 		nid = numa_map_to_online_node(phys_to_target_node(pa));
863 		if (nid == NUMA_NO_NODE) {
864 			/* The physical address is already printed above. */
865 			pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
866 			nid = 0;
867 		}
868 
869 		if (!node_isset(nid, sgx_numa_mask)) {
870 			spin_lock_init(&sgx_numa_nodes[nid].lock);
871 			INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
872 			INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
873 			node_set(nid, sgx_numa_mask);
874 			sgx_numa_nodes[nid].size = 0;
875 
876 			/* Make SGX-specific node sysfs files visible: */
877 			arch_update_sysfs_visibility(nid);
878 		}
879 
880 		sgx_epc_sections[i].node =  &sgx_numa_nodes[nid];
881 		sgx_numa_nodes[nid].size += size;
882 
883 		sgx_nr_epc_sections++;
884 	}
885 
886 	if (!sgx_nr_epc_sections) {
887 		pr_err("There are zero EPC sections.\n");
888 		return false;
889 	}
890 
891 	return true;
892 }
893 
894 /*
895  * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
896  * Bare-metal driver requires to update them to hash of enclave's signer
897  * before EINIT. KVM needs to update them to guest's virtual MSR values
898  * before doing EINIT from guest.
899  */
900 void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
901 {
902 	int i;
903 
904 	WARN_ON_ONCE(preemptible());
905 
906 	for (i = 0; i < 4; i++)
907 		wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
908 }
909 
910 const struct file_operations sgx_provision_fops = {
911 	.owner			= THIS_MODULE,
912 };
913 
914 static struct miscdevice sgx_dev_provision = {
915 	.minor = MISC_DYNAMIC_MINOR,
916 	.name = "sgx_provision",
917 	.nodename = "sgx_provision",
918 	.fops = &sgx_provision_fops,
919 };
920 
921 /**
922  * sgx_set_attribute() - Update allowed attributes given file descriptor
923  * @allowed_attributes:		Pointer to allowed enclave attributes
924  * @attribute_fd:		File descriptor for specific attribute
925  *
926  * Append enclave attribute indicated by file descriptor to allowed
927  * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
928  * /dev/sgx_provision is supported.
929  *
930  * Return:
931  * -0:		SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
932  * -EINVAL:	Invalid, or not supported file descriptor
933  */
934 int sgx_set_attribute(unsigned long *allowed_attributes,
935 		      unsigned int attribute_fd)
936 {
937 	struct file *file;
938 
939 	file = fget(attribute_fd);
940 	if (!file)
941 		return -EINVAL;
942 
943 	if (file->f_op != &sgx_provision_fops) {
944 		fput(file);
945 		return -EINVAL;
946 	}
947 
948 	*allowed_attributes |= SGX_ATTR_PROVISIONKEY;
949 
950 	fput(file);
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(sgx_set_attribute);
954 
955 static int __init sgx_init(void)
956 {
957 	int ret;
958 	int i;
959 
960 	if (!cpu_feature_enabled(X86_FEATURE_SGX))
961 		return -ENODEV;
962 
963 	if (!sgx_page_cache_init())
964 		return -ENOMEM;
965 
966 	if (!sgx_page_reclaimer_init()) {
967 		ret = -ENOMEM;
968 		goto err_page_cache;
969 	}
970 
971 	ret = misc_register(&sgx_dev_provision);
972 	if (ret)
973 		goto err_kthread;
974 
975 	/*
976 	 * Always try to initialize the native *and* KVM drivers.
977 	 * The KVM driver is less picky than the native one and
978 	 * can function if the native one is not supported on the
979 	 * current system or fails to initialize.
980 	 *
981 	 * Error out only if both fail to initialize.
982 	 */
983 	ret = sgx_drv_init();
984 
985 	if (sgx_vepc_init() && ret)
986 		goto err_provision;
987 
988 	return 0;
989 
990 err_provision:
991 	misc_deregister(&sgx_dev_provision);
992 
993 err_kthread:
994 	kthread_stop(ksgxd_tsk);
995 
996 err_page_cache:
997 	for (i = 0; i < sgx_nr_epc_sections; i++) {
998 		vfree(sgx_epc_sections[i].pages);
999 		memunmap(sgx_epc_sections[i].virt_addr);
1000 	}
1001 
1002 	return ret;
1003 }
1004 
1005 device_initcall(sgx_init);
1006