1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2016-20 Intel Corporation. */ 3 4 #include <linux/lockdep.h> 5 #include <linux/mm.h> 6 #include <linux/mman.h> 7 #include <linux/shmem_fs.h> 8 #include <linux/suspend.h> 9 #include <linux/sched/mm.h> 10 #include <asm/sgx.h> 11 #include "encl.h" 12 #include "encls.h" 13 #include "sgx.h" 14 15 static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index, 16 struct sgx_backing *backing); 17 18 #define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd)) 19 /* 20 * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to 21 * determine the page index associated with the first PCMD entry 22 * within a PCMD page. 23 */ 24 #define PCMD_FIRST_MASK GENMASK(4, 0) 25 26 /** 27 * reclaimer_writing_to_pcmd() - Query if any enclave page associated with 28 * a PCMD page is in process of being reclaimed. 29 * @encl: Enclave to which PCMD page belongs 30 * @start_addr: Address of enclave page using first entry within the PCMD page 31 * 32 * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is 33 * stored. The PCMD data of a reclaimed enclave page contains enough 34 * information for the processor to verify the page at the time 35 * it is loaded back into the Enclave Page Cache (EPC). 36 * 37 * The backing storage to which enclave pages are reclaimed is laid out as 38 * follows: 39 * Encrypted enclave pages:SECS page:PCMD pages 40 * 41 * Each PCMD page contains the PCMD metadata of 42 * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages. 43 * 44 * A PCMD page can only be truncated if it is (a) empty, and (b) not in the 45 * process of getting data (and thus soon being non-empty). (b) is tested with 46 * a check if an enclave page sharing the PCMD page is in the process of being 47 * reclaimed. 48 * 49 * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it 50 * intends to reclaim that enclave page - it means that the PCMD page 51 * associated with that enclave page is about to get some data and thus 52 * even if the PCMD page is empty, it should not be truncated. 53 * 54 * Context: Enclave mutex (&sgx_encl->lock) must be held. 55 * Return: 1 if the reclaimer is about to write to the PCMD page 56 * 0 if the reclaimer has no intention to write to the PCMD page 57 */ 58 static int reclaimer_writing_to_pcmd(struct sgx_encl *encl, 59 unsigned long start_addr) 60 { 61 int reclaimed = 0; 62 int i; 63 64 /* 65 * PCMD_FIRST_MASK is based on number of PCMD entries within 66 * PCMD page being 32. 67 */ 68 BUILD_BUG_ON(PCMDS_PER_PAGE != 32); 69 70 for (i = 0; i < PCMDS_PER_PAGE; i++) { 71 struct sgx_encl_page *entry; 72 unsigned long addr; 73 74 addr = start_addr + i * PAGE_SIZE; 75 76 /* 77 * Stop when reaching the SECS page - it does not 78 * have a page_array entry and its reclaim is 79 * started and completed with enclave mutex held so 80 * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED 81 * flag. 82 */ 83 if (addr == encl->base + encl->size) 84 break; 85 86 entry = xa_load(&encl->page_array, PFN_DOWN(addr)); 87 if (!entry) 88 continue; 89 90 /* 91 * VA page slot ID uses same bit as the flag so it is important 92 * to ensure that the page is not already in backing store. 93 */ 94 if (entry->epc_page && 95 (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) { 96 reclaimed = 1; 97 break; 98 } 99 } 100 101 return reclaimed; 102 } 103 104 /* 105 * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's 106 * follow right after the EPC data in the backing storage. In addition to the 107 * visible enclave pages, there's one extra page slot for SECS, before PCMD 108 * structs. 109 */ 110 static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl, 111 unsigned long page_index) 112 { 113 pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs); 114 115 return epc_end_off + page_index * sizeof(struct sgx_pcmd); 116 } 117 118 /* 119 * Free a page from the backing storage in the given page index. 120 */ 121 static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index) 122 { 123 struct inode *inode = file_inode(encl->backing); 124 125 shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1); 126 } 127 128 /* 129 * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC 130 * Pages" in the SDM. 131 */ 132 static int __sgx_encl_eldu(struct sgx_encl_page *encl_page, 133 struct sgx_epc_page *epc_page, 134 struct sgx_epc_page *secs_page) 135 { 136 unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK; 137 struct sgx_encl *encl = encl_page->encl; 138 pgoff_t page_index, page_pcmd_off; 139 unsigned long pcmd_first_page; 140 struct sgx_pageinfo pginfo; 141 struct sgx_backing b; 142 bool pcmd_page_empty; 143 u8 *pcmd_page; 144 int ret; 145 146 if (secs_page) 147 page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); 148 else 149 page_index = PFN_DOWN(encl->size); 150 151 /* 152 * Address of enclave page using the first entry within the PCMD page. 153 */ 154 pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base; 155 156 page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index); 157 158 ret = sgx_encl_lookup_backing(encl, page_index, &b); 159 if (ret) 160 return ret; 161 162 pginfo.addr = encl_page->desc & PAGE_MASK; 163 pginfo.contents = (unsigned long)kmap_local_page(b.contents); 164 pcmd_page = kmap_local_page(b.pcmd); 165 pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset; 166 167 if (secs_page) 168 pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page); 169 else 170 pginfo.secs = 0; 171 172 ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page), 173 sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset); 174 if (ret) { 175 if (encls_failed(ret)) 176 ENCLS_WARN(ret, "ELDU"); 177 178 ret = -EFAULT; 179 } 180 181 memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd)); 182 set_page_dirty(b.pcmd); 183 184 /* 185 * The area for the PCMD in the page was zeroed above. Check if the 186 * whole page is now empty meaning that all PCMD's have been zeroed: 187 */ 188 pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE); 189 190 kunmap_local(pcmd_page); 191 kunmap_local((void *)(unsigned long)pginfo.contents); 192 193 get_page(b.pcmd); 194 sgx_encl_put_backing(&b); 195 196 sgx_encl_truncate_backing_page(encl, page_index); 197 198 if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) { 199 sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off)); 200 pcmd_page = kmap_local_page(b.pcmd); 201 if (memchr_inv(pcmd_page, 0, PAGE_SIZE)) 202 pr_warn("PCMD page not empty after truncate.\n"); 203 kunmap_local(pcmd_page); 204 } 205 206 put_page(b.pcmd); 207 208 return ret; 209 } 210 211 static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page, 212 struct sgx_epc_page *secs_page) 213 { 214 215 unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK; 216 struct sgx_encl *encl = encl_page->encl; 217 struct sgx_epc_page *epc_page; 218 int ret; 219 220 epc_page = sgx_alloc_epc_page(encl_page, false); 221 if (IS_ERR(epc_page)) 222 return epc_page; 223 224 ret = __sgx_encl_eldu(encl_page, epc_page, secs_page); 225 if (ret) { 226 sgx_encl_free_epc_page(epc_page); 227 return ERR_PTR(ret); 228 } 229 230 sgx_free_va_slot(encl_page->va_page, va_offset); 231 list_move(&encl_page->va_page->list, &encl->va_pages); 232 encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK; 233 encl_page->epc_page = epc_page; 234 235 return epc_page; 236 } 237 238 /* 239 * Ensure the SECS page is not swapped out. Must be called with encl->lock 240 * to protect the enclave states including SECS and ensure the SECS page is 241 * not swapped out again while being used. 242 */ 243 static struct sgx_epc_page *sgx_encl_load_secs(struct sgx_encl *encl) 244 { 245 struct sgx_epc_page *epc_page = encl->secs.epc_page; 246 247 if (!epc_page) 248 epc_page = sgx_encl_eldu(&encl->secs, NULL); 249 250 return epc_page; 251 } 252 253 static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl, 254 struct sgx_encl_page *entry) 255 { 256 struct sgx_epc_page *epc_page; 257 258 /* Entry successfully located. */ 259 if (entry->epc_page) { 260 if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED) 261 return ERR_PTR(-EBUSY); 262 263 return entry; 264 } 265 266 epc_page = sgx_encl_load_secs(encl); 267 if (IS_ERR(epc_page)) 268 return ERR_CAST(epc_page); 269 270 epc_page = sgx_encl_eldu(entry, encl->secs.epc_page); 271 if (IS_ERR(epc_page)) 272 return ERR_CAST(epc_page); 273 274 encl->secs_child_cnt++; 275 sgx_mark_page_reclaimable(entry->epc_page); 276 277 return entry; 278 } 279 280 static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl, 281 unsigned long addr, 282 unsigned long vm_flags) 283 { 284 unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS; 285 struct sgx_encl_page *entry; 286 287 entry = xa_load(&encl->page_array, PFN_DOWN(addr)); 288 if (!entry) 289 return ERR_PTR(-EFAULT); 290 291 /* 292 * Verify that the page has equal or higher build time 293 * permissions than the VMA permissions (i.e. the subset of {VM_READ, 294 * VM_WRITE, VM_EXECUTE} in vma->vm_flags). 295 */ 296 if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits) 297 return ERR_PTR(-EFAULT); 298 299 return __sgx_encl_load_page(encl, entry); 300 } 301 302 struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl, 303 unsigned long addr) 304 { 305 struct sgx_encl_page *entry; 306 307 entry = xa_load(&encl->page_array, PFN_DOWN(addr)); 308 if (!entry) 309 return ERR_PTR(-EFAULT); 310 311 return __sgx_encl_load_page(encl, entry); 312 } 313 314 /** 315 * sgx_encl_eaug_page() - Dynamically add page to initialized enclave 316 * @vma: VMA obtained from fault info from where page is accessed 317 * @encl: enclave accessing the page 318 * @addr: address that triggered the page fault 319 * 320 * When an initialized enclave accesses a page with no backing EPC page 321 * on a SGX2 system then the EPC can be added dynamically via the SGX2 322 * ENCLS[EAUG] instruction. 323 * 324 * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed 325 * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise. 326 */ 327 static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma, 328 struct sgx_encl *encl, unsigned long addr) 329 { 330 vm_fault_t vmret = VM_FAULT_SIGBUS; 331 struct sgx_pageinfo pginfo = {0}; 332 struct sgx_encl_page *encl_page; 333 struct sgx_epc_page *epc_page; 334 struct sgx_va_page *va_page; 335 unsigned long phys_addr; 336 u64 secinfo_flags; 337 int ret; 338 339 if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) 340 return VM_FAULT_SIGBUS; 341 342 /* 343 * Ignore internal permission checking for dynamically added pages. 344 * They matter only for data added during the pre-initialization 345 * phase. The enclave decides the permissions by the means of 346 * EACCEPT, EACCEPTCOPY and EMODPE. 347 */ 348 secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X; 349 encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags); 350 if (IS_ERR(encl_page)) 351 return VM_FAULT_OOM; 352 353 mutex_lock(&encl->lock); 354 355 epc_page = sgx_encl_load_secs(encl); 356 if (IS_ERR(epc_page)) { 357 if (PTR_ERR(epc_page) == -EBUSY) 358 vmret = VM_FAULT_NOPAGE; 359 goto err_out_unlock; 360 } 361 362 epc_page = sgx_alloc_epc_page(encl_page, false); 363 if (IS_ERR(epc_page)) { 364 if (PTR_ERR(epc_page) == -EBUSY) 365 vmret = VM_FAULT_NOPAGE; 366 goto err_out_unlock; 367 } 368 369 va_page = sgx_encl_grow(encl, false); 370 if (IS_ERR(va_page)) { 371 if (PTR_ERR(va_page) == -EBUSY) 372 vmret = VM_FAULT_NOPAGE; 373 goto err_out_epc; 374 } 375 376 if (va_page) 377 list_add(&va_page->list, &encl->va_pages); 378 379 ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc), 380 encl_page, GFP_KERNEL); 381 /* 382 * If ret == -EBUSY then page was created in another flow while 383 * running without encl->lock 384 */ 385 if (ret) 386 goto err_out_shrink; 387 388 pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page); 389 pginfo.addr = encl_page->desc & PAGE_MASK; 390 pginfo.metadata = 0; 391 392 ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page)); 393 if (ret) 394 goto err_out; 395 396 encl_page->encl = encl; 397 encl_page->epc_page = epc_page; 398 encl_page->type = SGX_PAGE_TYPE_REG; 399 encl->secs_child_cnt++; 400 401 sgx_mark_page_reclaimable(encl_page->epc_page); 402 403 phys_addr = sgx_get_epc_phys_addr(epc_page); 404 /* 405 * Do not undo everything when creating PTE entry fails - next #PF 406 * would find page ready for a PTE. 407 */ 408 vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr)); 409 if (vmret != VM_FAULT_NOPAGE) { 410 mutex_unlock(&encl->lock); 411 return VM_FAULT_SIGBUS; 412 } 413 mutex_unlock(&encl->lock); 414 return VM_FAULT_NOPAGE; 415 416 err_out: 417 xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc)); 418 419 err_out_shrink: 420 sgx_encl_shrink(encl, va_page); 421 err_out_epc: 422 sgx_encl_free_epc_page(epc_page); 423 err_out_unlock: 424 mutex_unlock(&encl->lock); 425 kfree(encl_page); 426 427 return vmret; 428 } 429 430 static vm_fault_t sgx_vma_fault(struct vm_fault *vmf) 431 { 432 unsigned long addr = (unsigned long)vmf->address; 433 struct vm_area_struct *vma = vmf->vma; 434 struct sgx_encl_page *entry; 435 unsigned long phys_addr; 436 struct sgx_encl *encl; 437 vm_fault_t ret; 438 439 encl = vma->vm_private_data; 440 441 /* 442 * It's very unlikely but possible that allocating memory for the 443 * mm_list entry of a forked process failed in sgx_vma_open(). When 444 * this happens, vm_private_data is set to NULL. 445 */ 446 if (unlikely(!encl)) 447 return VM_FAULT_SIGBUS; 448 449 /* 450 * The page_array keeps track of all enclave pages, whether they 451 * are swapped out or not. If there is no entry for this page and 452 * the system supports SGX2 then it is possible to dynamically add 453 * a new enclave page. This is only possible for an initialized 454 * enclave that will be checked for right away. 455 */ 456 if (cpu_feature_enabled(X86_FEATURE_SGX2) && 457 (!xa_load(&encl->page_array, PFN_DOWN(addr)))) 458 return sgx_encl_eaug_page(vma, encl, addr); 459 460 mutex_lock(&encl->lock); 461 462 entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags); 463 if (IS_ERR(entry)) { 464 mutex_unlock(&encl->lock); 465 466 if (PTR_ERR(entry) == -EBUSY) 467 return VM_FAULT_NOPAGE; 468 469 return VM_FAULT_SIGBUS; 470 } 471 472 phys_addr = sgx_get_epc_phys_addr(entry->epc_page); 473 474 ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr)); 475 if (ret != VM_FAULT_NOPAGE) { 476 mutex_unlock(&encl->lock); 477 478 return VM_FAULT_SIGBUS; 479 } 480 481 sgx_encl_test_and_clear_young(vma->vm_mm, entry); 482 mutex_unlock(&encl->lock); 483 484 return VM_FAULT_NOPAGE; 485 } 486 487 static void sgx_vma_open(struct vm_area_struct *vma) 488 { 489 struct sgx_encl *encl = vma->vm_private_data; 490 491 /* 492 * It's possible but unlikely that vm_private_data is NULL. This can 493 * happen in a grandchild of a process, when sgx_encl_mm_add() had 494 * failed to allocate memory in this callback. 495 */ 496 if (unlikely(!encl)) 497 return; 498 499 if (sgx_encl_mm_add(encl, vma->vm_mm)) 500 vma->vm_private_data = NULL; 501 } 502 503 504 /** 505 * sgx_encl_may_map() - Check if a requested VMA mapping is allowed 506 * @encl: an enclave pointer 507 * @start: lower bound of the address range, inclusive 508 * @end: upper bound of the address range, exclusive 509 * @vm_flags: VMA flags 510 * 511 * Iterate through the enclave pages contained within [@start, @end) to verify 512 * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC} 513 * do not contain any permissions that are not contained in the build time 514 * permissions of any of the enclave pages within the given address range. 515 * 516 * An enclave creator must declare the strongest permissions that will be 517 * needed for each enclave page. This ensures that mappings have the identical 518 * or weaker permissions than the earlier declared permissions. 519 * 520 * Return: 0 on success, -EACCES otherwise 521 */ 522 int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start, 523 unsigned long end, unsigned long vm_flags) 524 { 525 unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS; 526 struct sgx_encl_page *page; 527 unsigned long count = 0; 528 int ret = 0; 529 530 XA_STATE(xas, &encl->page_array, PFN_DOWN(start)); 531 532 /* Disallow mapping outside enclave's address range. */ 533 if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) && 534 (start < encl->base || end > encl->base + encl->size)) 535 return -EACCES; 536 537 /* 538 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might 539 * conflict with the enclave page permissions. 540 */ 541 if (current->personality & READ_IMPLIES_EXEC) 542 return -EACCES; 543 544 mutex_lock(&encl->lock); 545 xas_lock(&xas); 546 xas_for_each(&xas, page, PFN_DOWN(end - 1)) { 547 if (~page->vm_max_prot_bits & vm_prot_bits) { 548 ret = -EACCES; 549 break; 550 } 551 552 /* Reschedule on every XA_CHECK_SCHED iteration. */ 553 if (!(++count % XA_CHECK_SCHED)) { 554 xas_pause(&xas); 555 xas_unlock(&xas); 556 mutex_unlock(&encl->lock); 557 558 cond_resched(); 559 560 mutex_lock(&encl->lock); 561 xas_lock(&xas); 562 } 563 } 564 xas_unlock(&xas); 565 mutex_unlock(&encl->lock); 566 567 return ret; 568 } 569 570 static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start, 571 unsigned long end, unsigned long newflags) 572 { 573 return sgx_encl_may_map(vma->vm_private_data, start, end, newflags); 574 } 575 576 static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page, 577 unsigned long addr, void *data) 578 { 579 unsigned long offset = addr & ~PAGE_MASK; 580 int ret; 581 582 583 ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data); 584 if (ret) 585 return -EIO; 586 587 return 0; 588 } 589 590 static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page, 591 unsigned long addr, void *data) 592 { 593 unsigned long offset = addr & ~PAGE_MASK; 594 int ret; 595 596 ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data); 597 if (ret) 598 return -EIO; 599 600 return 0; 601 } 602 603 /* 604 * Load an enclave page to EPC if required, and take encl->lock. 605 */ 606 static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl, 607 unsigned long addr, 608 unsigned long vm_flags) 609 { 610 struct sgx_encl_page *entry; 611 612 for ( ; ; ) { 613 mutex_lock(&encl->lock); 614 615 entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags); 616 if (PTR_ERR(entry) != -EBUSY) 617 break; 618 619 mutex_unlock(&encl->lock); 620 } 621 622 if (IS_ERR(entry)) 623 mutex_unlock(&encl->lock); 624 625 return entry; 626 } 627 628 static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr, 629 void *buf, int len, int write) 630 { 631 struct sgx_encl *encl = vma->vm_private_data; 632 struct sgx_encl_page *entry = NULL; 633 char data[sizeof(unsigned long)]; 634 unsigned long align; 635 int offset; 636 int cnt; 637 int ret = 0; 638 int i; 639 640 /* 641 * If process was forked, VMA is still there but vm_private_data is set 642 * to NULL. 643 */ 644 if (!encl) 645 return -EFAULT; 646 647 if (!test_bit(SGX_ENCL_DEBUG, &encl->flags)) 648 return -EFAULT; 649 650 for (i = 0; i < len; i += cnt) { 651 entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK, 652 vma->vm_flags); 653 if (IS_ERR(entry)) { 654 ret = PTR_ERR(entry); 655 break; 656 } 657 658 align = ALIGN_DOWN(addr + i, sizeof(unsigned long)); 659 offset = (addr + i) & (sizeof(unsigned long) - 1); 660 cnt = sizeof(unsigned long) - offset; 661 cnt = min(cnt, len - i); 662 663 ret = sgx_encl_debug_read(encl, entry, align, data); 664 if (ret) 665 goto out; 666 667 if (write) { 668 memcpy(data + offset, buf + i, cnt); 669 ret = sgx_encl_debug_write(encl, entry, align, data); 670 if (ret) 671 goto out; 672 } else { 673 memcpy(buf + i, data + offset, cnt); 674 } 675 676 out: 677 mutex_unlock(&encl->lock); 678 679 if (ret) 680 break; 681 } 682 683 return ret < 0 ? ret : i; 684 } 685 686 const struct vm_operations_struct sgx_vm_ops = { 687 .fault = sgx_vma_fault, 688 .mprotect = sgx_vma_mprotect, 689 .open = sgx_vma_open, 690 .access = sgx_vma_access, 691 }; 692 693 /** 694 * sgx_encl_release - Destroy an enclave instance 695 * @ref: address of a kref inside &sgx_encl 696 * 697 * Used together with kref_put(). Frees all the resources associated with the 698 * enclave and the instance itself. 699 */ 700 void sgx_encl_release(struct kref *ref) 701 { 702 struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount); 703 unsigned long max_page_index = PFN_DOWN(encl->base + encl->size - 1); 704 struct sgx_va_page *va_page; 705 struct sgx_encl_page *entry; 706 unsigned long count = 0; 707 708 XA_STATE(xas, &encl->page_array, PFN_DOWN(encl->base)); 709 710 xas_lock(&xas); 711 xas_for_each(&xas, entry, max_page_index) { 712 if (entry->epc_page) { 713 /* 714 * The page and its radix tree entry cannot be freed 715 * if the page is being held by the reclaimer. 716 */ 717 if (sgx_unmark_page_reclaimable(entry->epc_page)) 718 continue; 719 720 sgx_encl_free_epc_page(entry->epc_page); 721 encl->secs_child_cnt--; 722 entry->epc_page = NULL; 723 } 724 725 kfree(entry); 726 /* 727 * Invoke scheduler on every XA_CHECK_SCHED iteration 728 * to prevent soft lockups. 729 */ 730 if (!(++count % XA_CHECK_SCHED)) { 731 xas_pause(&xas); 732 xas_unlock(&xas); 733 734 cond_resched(); 735 736 xas_lock(&xas); 737 } 738 } 739 xas_unlock(&xas); 740 741 xa_destroy(&encl->page_array); 742 743 if (!encl->secs_child_cnt && encl->secs.epc_page) { 744 sgx_encl_free_epc_page(encl->secs.epc_page); 745 encl->secs.epc_page = NULL; 746 } 747 748 while (!list_empty(&encl->va_pages)) { 749 va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, 750 list); 751 list_del(&va_page->list); 752 sgx_encl_free_epc_page(va_page->epc_page); 753 kfree(va_page); 754 } 755 756 if (encl->backing) 757 fput(encl->backing); 758 759 cleanup_srcu_struct(&encl->srcu); 760 761 WARN_ON_ONCE(!list_empty(&encl->mm_list)); 762 763 /* Detect EPC page leak's. */ 764 WARN_ON_ONCE(encl->secs_child_cnt); 765 WARN_ON_ONCE(encl->secs.epc_page); 766 767 kfree(encl); 768 } 769 770 /* 771 * 'mm' is exiting and no longer needs mmu notifications. 772 */ 773 static void sgx_mmu_notifier_release(struct mmu_notifier *mn, 774 struct mm_struct *mm) 775 { 776 struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier); 777 struct sgx_encl_mm *tmp = NULL; 778 bool found = false; 779 780 /* 781 * The enclave itself can remove encl_mm. Note, objects can't be moved 782 * off an RCU protected list, but deletion is ok. 783 */ 784 spin_lock(&encl_mm->encl->mm_lock); 785 list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) { 786 if (tmp == encl_mm) { 787 list_del_rcu(&encl_mm->list); 788 found = true; 789 break; 790 } 791 } 792 spin_unlock(&encl_mm->encl->mm_lock); 793 794 if (found) { 795 synchronize_srcu(&encl_mm->encl->srcu); 796 mmu_notifier_put(mn); 797 } 798 } 799 800 static void sgx_mmu_notifier_free(struct mmu_notifier *mn) 801 { 802 struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier); 803 804 /* 'encl_mm' is going away, put encl_mm->encl reference: */ 805 kref_put(&encl_mm->encl->refcount, sgx_encl_release); 806 807 kfree(encl_mm); 808 } 809 810 static const struct mmu_notifier_ops sgx_mmu_notifier_ops = { 811 .release = sgx_mmu_notifier_release, 812 .free_notifier = sgx_mmu_notifier_free, 813 }; 814 815 static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl, 816 struct mm_struct *mm) 817 { 818 struct sgx_encl_mm *encl_mm = NULL; 819 struct sgx_encl_mm *tmp; 820 int idx; 821 822 idx = srcu_read_lock(&encl->srcu); 823 824 list_for_each_entry_rcu(tmp, &encl->mm_list, list) { 825 if (tmp->mm == mm) { 826 encl_mm = tmp; 827 break; 828 } 829 } 830 831 srcu_read_unlock(&encl->srcu, idx); 832 833 return encl_mm; 834 } 835 836 int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm) 837 { 838 struct sgx_encl_mm *encl_mm; 839 int ret; 840 841 /* 842 * Even though a single enclave may be mapped into an mm more than once, 843 * each 'mm' only appears once on encl->mm_list. This is guaranteed by 844 * holding the mm's mmap lock for write before an mm can be added or 845 * remove to an encl->mm_list. 846 */ 847 mmap_assert_write_locked(mm); 848 849 /* 850 * It's possible that an entry already exists in the mm_list, because it 851 * is removed only on VFS release or process exit. 852 */ 853 if (sgx_encl_find_mm(encl, mm)) 854 return 0; 855 856 encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL); 857 if (!encl_mm) 858 return -ENOMEM; 859 860 /* Grab a refcount for the encl_mm->encl reference: */ 861 kref_get(&encl->refcount); 862 encl_mm->encl = encl; 863 encl_mm->mm = mm; 864 encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops; 865 866 ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm); 867 if (ret) { 868 kfree(encl_mm); 869 return ret; 870 } 871 872 spin_lock(&encl->mm_lock); 873 list_add_rcu(&encl_mm->list, &encl->mm_list); 874 /* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */ 875 smp_wmb(); 876 encl->mm_list_version++; 877 spin_unlock(&encl->mm_lock); 878 879 return 0; 880 } 881 882 /** 883 * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave 884 * @encl: the enclave 885 * 886 * Some SGX functions require that no cached linear-to-physical address 887 * mappings are present before they can succeed. For example, ENCLS[EWB] 888 * copies a page from the enclave page cache to regular main memory but 889 * it fails if it cannot ensure that there are no cached 890 * linear-to-physical address mappings referring to the page. 891 * 892 * SGX hardware flushes all cached linear-to-physical mappings on a CPU 893 * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave 894 * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical 895 * address mappings are cleared but coordination with the tracking done within 896 * the SGX hardware is needed to support the SGX functions that depend on this 897 * cache clearing. 898 * 899 * When the ENCLS[ETRACK] function is issued on an enclave the hardware 900 * tracks threads operating inside the enclave at that time. The SGX 901 * hardware tracking require that all the identified threads must have 902 * exited the enclave in order to flush the mappings before a function such 903 * as ENCLS[EWB] will be permitted 904 * 905 * The following flow is used to support SGX functions that require that 906 * no cached linear-to-physical address mappings are present: 907 * 1) Execute ENCLS[ETRACK] to initiate hardware tracking. 908 * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be 909 * accessing the enclave. 910 * 3) Send IPI to identified CPUs, kicking them out of the enclave and 911 * thus flushing all locally cached linear-to-physical address mappings. 912 * 4) Execute SGX function. 913 * 914 * Context: It is required to call this function after ENCLS[ETRACK]. 915 * This will ensure that if any new mm appears (racing with 916 * sgx_encl_mm_add()) then the new mm will enter into the 917 * enclave with fresh linear-to-physical address mappings. 918 * 919 * It is required that all IPIs are completed before a new 920 * ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3 921 * of the above flow with the enclave's mutex. 922 * 923 * Return: cpumask of CPUs that might be accessing @encl 924 */ 925 const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl) 926 { 927 cpumask_t *cpumask = &encl->cpumask; 928 struct sgx_encl_mm *encl_mm; 929 int idx; 930 931 cpumask_clear(cpumask); 932 933 idx = srcu_read_lock(&encl->srcu); 934 935 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 936 if (!mmget_not_zero(encl_mm->mm)) 937 continue; 938 939 cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm)); 940 941 mmput_async(encl_mm->mm); 942 } 943 944 srcu_read_unlock(&encl->srcu, idx); 945 946 return cpumask; 947 } 948 949 static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl, 950 pgoff_t index) 951 { 952 struct address_space *mapping = encl->backing->f_mapping; 953 gfp_t gfpmask = mapping_gfp_mask(mapping); 954 955 return shmem_read_mapping_page_gfp(mapping, index, gfpmask); 956 } 957 958 /** 959 * __sgx_encl_get_backing() - Pin the backing storage 960 * @encl: an enclave pointer 961 * @page_index: enclave page index 962 * @backing: data for accessing backing storage for the page 963 * 964 * Pin the backing storage pages for storing the encrypted contents and Paging 965 * Crypto MetaData (PCMD) of an enclave page. 966 * 967 * Return: 968 * 0 on success, 969 * -errno otherwise. 970 */ 971 static int __sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index, 972 struct sgx_backing *backing) 973 { 974 pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index); 975 struct page *contents; 976 struct page *pcmd; 977 978 contents = sgx_encl_get_backing_page(encl, page_index); 979 if (IS_ERR(contents)) 980 return PTR_ERR(contents); 981 982 pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off)); 983 if (IS_ERR(pcmd)) { 984 put_page(contents); 985 return PTR_ERR(pcmd); 986 } 987 988 backing->contents = contents; 989 backing->pcmd = pcmd; 990 backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1); 991 992 return 0; 993 } 994 995 /* 996 * When called from ksgxd, returns the mem_cgroup of a struct mm stored 997 * in the enclave's mm_list. When not called from ksgxd, just returns 998 * the mem_cgroup of the current task. 999 */ 1000 static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl) 1001 { 1002 struct mem_cgroup *memcg = NULL; 1003 struct sgx_encl_mm *encl_mm; 1004 int idx; 1005 1006 /* 1007 * If called from normal task context, return the mem_cgroup 1008 * of the current task's mm. The remainder of the handling is for 1009 * ksgxd. 1010 */ 1011 if (!current_is_ksgxd()) 1012 return get_mem_cgroup_from_mm(current->mm); 1013 1014 /* 1015 * Search the enclave's mm_list to find an mm associated with 1016 * this enclave to charge the allocation to. 1017 */ 1018 idx = srcu_read_lock(&encl->srcu); 1019 1020 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 1021 if (!mmget_not_zero(encl_mm->mm)) 1022 continue; 1023 1024 memcg = get_mem_cgroup_from_mm(encl_mm->mm); 1025 1026 mmput_async(encl_mm->mm); 1027 1028 break; 1029 } 1030 1031 srcu_read_unlock(&encl->srcu, idx); 1032 1033 /* 1034 * In the rare case that there isn't an mm associated with 1035 * the enclave, set memcg to the current active mem_cgroup. 1036 * This will be the root mem_cgroup if there is no active 1037 * mem_cgroup. 1038 */ 1039 if (!memcg) 1040 return get_mem_cgroup_from_mm(NULL); 1041 1042 return memcg; 1043 } 1044 1045 /** 1046 * sgx_encl_alloc_backing() - create a new backing storage page 1047 * @encl: an enclave pointer 1048 * @page_index: enclave page index 1049 * @backing: data for accessing backing storage for the page 1050 * 1051 * When called from ksgxd, sets the active memcg from one of the 1052 * mms in the enclave's mm_list prior to any backing page allocation, 1053 * in order to ensure that shmem page allocations are charged to the 1054 * enclave. Create a backing page for loading data back into an EPC page with 1055 * ELDU. This function takes a reference on a new backing page which 1056 * must be dropped with a corresponding call to sgx_encl_put_backing(). 1057 * 1058 * Return: 1059 * 0 on success, 1060 * -errno otherwise. 1061 */ 1062 int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index, 1063 struct sgx_backing *backing) 1064 { 1065 struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl); 1066 struct mem_cgroup *memcg = set_active_memcg(encl_memcg); 1067 int ret; 1068 1069 ret = __sgx_encl_get_backing(encl, page_index, backing); 1070 1071 set_active_memcg(memcg); 1072 mem_cgroup_put(encl_memcg); 1073 1074 return ret; 1075 } 1076 1077 /** 1078 * sgx_encl_lookup_backing() - retrieve an existing backing storage page 1079 * @encl: an enclave pointer 1080 * @page_index: enclave page index 1081 * @backing: data for accessing backing storage for the page 1082 * 1083 * Retrieve a backing page for loading data back into an EPC page with ELDU. 1084 * It is the caller's responsibility to ensure that it is appropriate to use 1085 * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is 1086 * not used correctly, this will cause an allocation which is not accounted for. 1087 * This function takes a reference on an existing backing page which must be 1088 * dropped with a corresponding call to sgx_encl_put_backing(). 1089 * 1090 * Return: 1091 * 0 on success, 1092 * -errno otherwise. 1093 */ 1094 static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index, 1095 struct sgx_backing *backing) 1096 { 1097 return __sgx_encl_get_backing(encl, page_index, backing); 1098 } 1099 1100 /** 1101 * sgx_encl_put_backing() - Unpin the backing storage 1102 * @backing: data for accessing backing storage for the page 1103 */ 1104 void sgx_encl_put_backing(struct sgx_backing *backing) 1105 { 1106 put_page(backing->pcmd); 1107 put_page(backing->contents); 1108 } 1109 1110 static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr, 1111 void *data) 1112 { 1113 pte_t pte; 1114 int ret; 1115 1116 ret = pte_young(*ptep); 1117 if (ret) { 1118 pte = pte_mkold(*ptep); 1119 set_pte_at((struct mm_struct *)data, addr, ptep, pte); 1120 } 1121 1122 return ret; 1123 } 1124 1125 /** 1126 * sgx_encl_test_and_clear_young() - Test and reset the accessed bit 1127 * @mm: mm_struct that is checked 1128 * @page: enclave page to be tested for recent access 1129 * 1130 * Checks the Access (A) bit from the PTE corresponding to the enclave page and 1131 * clears it. 1132 * 1133 * Return: 1 if the page has been recently accessed and 0 if not. 1134 */ 1135 int sgx_encl_test_and_clear_young(struct mm_struct *mm, 1136 struct sgx_encl_page *page) 1137 { 1138 unsigned long addr = page->desc & PAGE_MASK; 1139 struct sgx_encl *encl = page->encl; 1140 struct vm_area_struct *vma; 1141 int ret; 1142 1143 ret = sgx_encl_find(mm, addr, &vma); 1144 if (ret) 1145 return 0; 1146 1147 if (encl != vma->vm_private_data) 1148 return 0; 1149 1150 ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE, 1151 sgx_encl_test_and_clear_young_cb, vma->vm_mm); 1152 if (ret < 0) 1153 return 0; 1154 1155 return ret; 1156 } 1157 1158 struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl, 1159 unsigned long offset, 1160 u64 secinfo_flags) 1161 { 1162 struct sgx_encl_page *encl_page; 1163 unsigned long prot; 1164 1165 encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL); 1166 if (!encl_page) 1167 return ERR_PTR(-ENOMEM); 1168 1169 encl_page->desc = encl->base + offset; 1170 encl_page->encl = encl; 1171 1172 prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ) | 1173 _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) | 1174 _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC); 1175 1176 /* 1177 * TCS pages must always RW set for CPU access while the SECINFO 1178 * permissions are *always* zero - the CPU ignores the user provided 1179 * values and silently overwrites them with zero permissions. 1180 */ 1181 if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS) 1182 prot |= PROT_READ | PROT_WRITE; 1183 1184 /* Calculate maximum of the VM flags for the page. */ 1185 encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0); 1186 1187 return encl_page; 1188 } 1189 1190 /** 1191 * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave 1192 * @encl: the enclave 1193 * @addr: page aligned pointer to single page for which PTEs will be removed 1194 * 1195 * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping 1196 * @addr from each VMA. Ensure that page fault handler is ready to handle 1197 * new mappings of @addr before calling this function. 1198 */ 1199 void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr) 1200 { 1201 unsigned long mm_list_version; 1202 struct sgx_encl_mm *encl_mm; 1203 struct vm_area_struct *vma; 1204 int idx, ret; 1205 1206 do { 1207 mm_list_version = encl->mm_list_version; 1208 1209 /* Pairs with smp_wmb() in sgx_encl_mm_add(). */ 1210 smp_rmb(); 1211 1212 idx = srcu_read_lock(&encl->srcu); 1213 1214 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 1215 if (!mmget_not_zero(encl_mm->mm)) 1216 continue; 1217 1218 mmap_read_lock(encl_mm->mm); 1219 1220 ret = sgx_encl_find(encl_mm->mm, addr, &vma); 1221 if (!ret && encl == vma->vm_private_data) 1222 zap_vma_ptes(vma, addr, PAGE_SIZE); 1223 1224 mmap_read_unlock(encl_mm->mm); 1225 1226 mmput_async(encl_mm->mm); 1227 } 1228 1229 srcu_read_unlock(&encl->srcu, idx); 1230 } while (unlikely(encl->mm_list_version != mm_list_version)); 1231 } 1232 1233 /** 1234 * sgx_alloc_va_page() - Allocate a Version Array (VA) page 1235 * @reclaim: Reclaim EPC pages directly if none available. Enclave 1236 * mutex should not be held if this is set. 1237 * 1238 * Allocate a free EPC page and convert it to a Version Array (VA) page. 1239 * 1240 * Return: 1241 * a VA page, 1242 * -errno otherwise 1243 */ 1244 struct sgx_epc_page *sgx_alloc_va_page(bool reclaim) 1245 { 1246 struct sgx_epc_page *epc_page; 1247 int ret; 1248 1249 epc_page = sgx_alloc_epc_page(NULL, reclaim); 1250 if (IS_ERR(epc_page)) 1251 return ERR_CAST(epc_page); 1252 1253 ret = __epa(sgx_get_epc_virt_addr(epc_page)); 1254 if (ret) { 1255 WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret); 1256 sgx_encl_free_epc_page(epc_page); 1257 return ERR_PTR(-EFAULT); 1258 } 1259 1260 return epc_page; 1261 } 1262 1263 /** 1264 * sgx_alloc_va_slot - allocate a VA slot 1265 * @va_page: a &struct sgx_va_page instance 1266 * 1267 * Allocates a slot from a &struct sgx_va_page instance. 1268 * 1269 * Return: offset of the slot inside the VA page 1270 */ 1271 unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page) 1272 { 1273 int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT); 1274 1275 if (slot < SGX_VA_SLOT_COUNT) 1276 set_bit(slot, va_page->slots); 1277 1278 return slot << 3; 1279 } 1280 1281 /** 1282 * sgx_free_va_slot - free a VA slot 1283 * @va_page: a &struct sgx_va_page instance 1284 * @offset: offset of the slot inside the VA page 1285 * 1286 * Frees a slot from a &struct sgx_va_page instance. 1287 */ 1288 void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset) 1289 { 1290 clear_bit(offset >> 3, va_page->slots); 1291 } 1292 1293 /** 1294 * sgx_va_page_full - is the VA page full? 1295 * @va_page: a &struct sgx_va_page instance 1296 * 1297 * Return: true if all slots have been taken 1298 */ 1299 bool sgx_va_page_full(struct sgx_va_page *va_page) 1300 { 1301 int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT); 1302 1303 return slot == SGX_VA_SLOT_COUNT; 1304 } 1305 1306 /** 1307 * sgx_encl_free_epc_page - free an EPC page assigned to an enclave 1308 * @page: EPC page to be freed 1309 * 1310 * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and 1311 * only upon success, it puts the page back to free page list. Otherwise, it 1312 * gives a WARNING to indicate page is leaked. 1313 */ 1314 void sgx_encl_free_epc_page(struct sgx_epc_page *page) 1315 { 1316 int ret; 1317 1318 WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED); 1319 1320 ret = __eremove(sgx_get_epc_virt_addr(page)); 1321 if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret)) 1322 return; 1323 1324 sgx_free_epc_page(page); 1325 } 1326