xref: /linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c (revision fd7d598270724cc787982ea48bbe17ad383a8b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Allocation in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* list of entries for the schemata file */
43 LIST_HEAD(resctrl_schema_all);
44 
45 /* Kernel fs node for "info" directory under root */
46 static struct kernfs_node *kn_info;
47 
48 /* Kernel fs node for "mon_groups" directory under root */
49 static struct kernfs_node *kn_mongrp;
50 
51 /* Kernel fs node for "mon_data" directory under root */
52 static struct kernfs_node *kn_mondata;
53 
54 static struct seq_buf last_cmd_status;
55 static char last_cmd_status_buf[512];
56 
57 struct dentry *debugfs_resctrl;
58 
59 void rdt_last_cmd_clear(void)
60 {
61 	lockdep_assert_held(&rdtgroup_mutex);
62 	seq_buf_clear(&last_cmd_status);
63 }
64 
65 void rdt_last_cmd_puts(const char *s)
66 {
67 	lockdep_assert_held(&rdtgroup_mutex);
68 	seq_buf_puts(&last_cmd_status, s);
69 }
70 
71 void rdt_last_cmd_printf(const char *fmt, ...)
72 {
73 	va_list ap;
74 
75 	va_start(ap, fmt);
76 	lockdep_assert_held(&rdtgroup_mutex);
77 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
78 	va_end(ap);
79 }
80 
81 void rdt_staged_configs_clear(void)
82 {
83 	struct rdt_resource *r;
84 	struct rdt_domain *dom;
85 
86 	lockdep_assert_held(&rdtgroup_mutex);
87 
88 	for_each_alloc_capable_rdt_resource(r) {
89 		list_for_each_entry(dom, &r->domains, list)
90 			memset(dom->staged_config, 0, sizeof(dom->staged_config));
91 	}
92 }
93 
94 /*
95  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
96  * we can keep a bitmap of free CLOSIDs in a single integer.
97  *
98  * Using a global CLOSID across all resources has some advantages and
99  * some drawbacks:
100  * + We can simply set "current->closid" to assign a task to a resource
101  *   group.
102  * + Context switch code can avoid extra memory references deciding which
103  *   CLOSID to load into the PQR_ASSOC MSR
104  * - We give up some options in configuring resource groups across multi-socket
105  *   systems.
106  * - Our choices on how to configure each resource become progressively more
107  *   limited as the number of resources grows.
108  */
109 static int closid_free_map;
110 static int closid_free_map_len;
111 
112 int closids_supported(void)
113 {
114 	return closid_free_map_len;
115 }
116 
117 static void closid_init(void)
118 {
119 	struct resctrl_schema *s;
120 	u32 rdt_min_closid = 32;
121 
122 	/* Compute rdt_min_closid across all resources */
123 	list_for_each_entry(s, &resctrl_schema_all, list)
124 		rdt_min_closid = min(rdt_min_closid, s->num_closid);
125 
126 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
127 
128 	/* CLOSID 0 is always reserved for the default group */
129 	closid_free_map &= ~1;
130 	closid_free_map_len = rdt_min_closid;
131 }
132 
133 static int closid_alloc(void)
134 {
135 	u32 closid = ffs(closid_free_map);
136 
137 	if (closid == 0)
138 		return -ENOSPC;
139 	closid--;
140 	closid_free_map &= ~(1 << closid);
141 
142 	return closid;
143 }
144 
145 void closid_free(int closid)
146 {
147 	closid_free_map |= 1 << closid;
148 }
149 
150 /**
151  * closid_allocated - test if provided closid is in use
152  * @closid: closid to be tested
153  *
154  * Return: true if @closid is currently associated with a resource group,
155  * false if @closid is free
156  */
157 static bool closid_allocated(unsigned int closid)
158 {
159 	return (closid_free_map & (1 << closid)) == 0;
160 }
161 
162 /**
163  * rdtgroup_mode_by_closid - Return mode of resource group with closid
164  * @closid: closid if the resource group
165  *
166  * Each resource group is associated with a @closid. Here the mode
167  * of a resource group can be queried by searching for it using its closid.
168  *
169  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
170  */
171 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
172 {
173 	struct rdtgroup *rdtgrp;
174 
175 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
176 		if (rdtgrp->closid == closid)
177 			return rdtgrp->mode;
178 	}
179 
180 	return RDT_NUM_MODES;
181 }
182 
183 static const char * const rdt_mode_str[] = {
184 	[RDT_MODE_SHAREABLE]		= "shareable",
185 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
186 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
187 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
188 };
189 
190 /**
191  * rdtgroup_mode_str - Return the string representation of mode
192  * @mode: the resource group mode as &enum rdtgroup_mode
193  *
194  * Return: string representation of valid mode, "unknown" otherwise
195  */
196 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
197 {
198 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
199 		return "unknown";
200 
201 	return rdt_mode_str[mode];
202 }
203 
204 /* set uid and gid of rdtgroup dirs and files to that of the creator */
205 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
206 {
207 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
208 				.ia_uid = current_fsuid(),
209 				.ia_gid = current_fsgid(), };
210 
211 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
212 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
213 		return 0;
214 
215 	return kernfs_setattr(kn, &iattr);
216 }
217 
218 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
219 {
220 	struct kernfs_node *kn;
221 	int ret;
222 
223 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
224 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
225 				  0, rft->kf_ops, rft, NULL, NULL);
226 	if (IS_ERR(kn))
227 		return PTR_ERR(kn);
228 
229 	ret = rdtgroup_kn_set_ugid(kn);
230 	if (ret) {
231 		kernfs_remove(kn);
232 		return ret;
233 	}
234 
235 	return 0;
236 }
237 
238 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
239 {
240 	struct kernfs_open_file *of = m->private;
241 	struct rftype *rft = of->kn->priv;
242 
243 	if (rft->seq_show)
244 		return rft->seq_show(of, m, arg);
245 	return 0;
246 }
247 
248 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
249 				   size_t nbytes, loff_t off)
250 {
251 	struct rftype *rft = of->kn->priv;
252 
253 	if (rft->write)
254 		return rft->write(of, buf, nbytes, off);
255 
256 	return -EINVAL;
257 }
258 
259 static const struct kernfs_ops rdtgroup_kf_single_ops = {
260 	.atomic_write_len	= PAGE_SIZE,
261 	.write			= rdtgroup_file_write,
262 	.seq_show		= rdtgroup_seqfile_show,
263 };
264 
265 static const struct kernfs_ops kf_mondata_ops = {
266 	.atomic_write_len	= PAGE_SIZE,
267 	.seq_show		= rdtgroup_mondata_show,
268 };
269 
270 static bool is_cpu_list(struct kernfs_open_file *of)
271 {
272 	struct rftype *rft = of->kn->priv;
273 
274 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
275 }
276 
277 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
278 			      struct seq_file *s, void *v)
279 {
280 	struct rdtgroup *rdtgrp;
281 	struct cpumask *mask;
282 	int ret = 0;
283 
284 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
285 
286 	if (rdtgrp) {
287 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
288 			if (!rdtgrp->plr->d) {
289 				rdt_last_cmd_clear();
290 				rdt_last_cmd_puts("Cache domain offline\n");
291 				ret = -ENODEV;
292 			} else {
293 				mask = &rdtgrp->plr->d->cpu_mask;
294 				seq_printf(s, is_cpu_list(of) ?
295 					   "%*pbl\n" : "%*pb\n",
296 					   cpumask_pr_args(mask));
297 			}
298 		} else {
299 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
300 				   cpumask_pr_args(&rdtgrp->cpu_mask));
301 		}
302 	} else {
303 		ret = -ENOENT;
304 	}
305 	rdtgroup_kn_unlock(of->kn);
306 
307 	return ret;
308 }
309 
310 /*
311  * This is safe against resctrl_sched_in() called from __switch_to()
312  * because __switch_to() is executed with interrupts disabled. A local call
313  * from update_closid_rmid() is protected against __switch_to() because
314  * preemption is disabled.
315  */
316 static void update_cpu_closid_rmid(void *info)
317 {
318 	struct rdtgroup *r = info;
319 
320 	if (r) {
321 		this_cpu_write(pqr_state.default_closid, r->closid);
322 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
323 	}
324 
325 	/*
326 	 * We cannot unconditionally write the MSR because the current
327 	 * executing task might have its own closid selected. Just reuse
328 	 * the context switch code.
329 	 */
330 	resctrl_sched_in(current);
331 }
332 
333 /*
334  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
335  *
336  * Per task closids/rmids must have been set up before calling this function.
337  */
338 static void
339 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
340 {
341 	on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
342 }
343 
344 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
345 			  cpumask_var_t tmpmask)
346 {
347 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
348 	struct list_head *head;
349 
350 	/* Check whether cpus belong to parent ctrl group */
351 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
352 	if (!cpumask_empty(tmpmask)) {
353 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
354 		return -EINVAL;
355 	}
356 
357 	/* Check whether cpus are dropped from this group */
358 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
359 	if (!cpumask_empty(tmpmask)) {
360 		/* Give any dropped cpus to parent rdtgroup */
361 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
362 		update_closid_rmid(tmpmask, prgrp);
363 	}
364 
365 	/*
366 	 * If we added cpus, remove them from previous group that owned them
367 	 * and update per-cpu rmid
368 	 */
369 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
370 	if (!cpumask_empty(tmpmask)) {
371 		head = &prgrp->mon.crdtgrp_list;
372 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
373 			if (crgrp == rdtgrp)
374 				continue;
375 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
376 				       tmpmask);
377 		}
378 		update_closid_rmid(tmpmask, rdtgrp);
379 	}
380 
381 	/* Done pushing/pulling - update this group with new mask */
382 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
383 
384 	return 0;
385 }
386 
387 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
388 {
389 	struct rdtgroup *crgrp;
390 
391 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
392 	/* update the child mon group masks as well*/
393 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
394 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
395 }
396 
397 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
398 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
399 {
400 	struct rdtgroup *r, *crgrp;
401 	struct list_head *head;
402 
403 	/* Check whether cpus are dropped from this group */
404 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
405 	if (!cpumask_empty(tmpmask)) {
406 		/* Can't drop from default group */
407 		if (rdtgrp == &rdtgroup_default) {
408 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
409 			return -EINVAL;
410 		}
411 
412 		/* Give any dropped cpus to rdtgroup_default */
413 		cpumask_or(&rdtgroup_default.cpu_mask,
414 			   &rdtgroup_default.cpu_mask, tmpmask);
415 		update_closid_rmid(tmpmask, &rdtgroup_default);
416 	}
417 
418 	/*
419 	 * If we added cpus, remove them from previous group and
420 	 * the prev group's child groups that owned them
421 	 * and update per-cpu closid/rmid.
422 	 */
423 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
424 	if (!cpumask_empty(tmpmask)) {
425 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
426 			if (r == rdtgrp)
427 				continue;
428 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
429 			if (!cpumask_empty(tmpmask1))
430 				cpumask_rdtgrp_clear(r, tmpmask1);
431 		}
432 		update_closid_rmid(tmpmask, rdtgrp);
433 	}
434 
435 	/* Done pushing/pulling - update this group with new mask */
436 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
437 
438 	/*
439 	 * Clear child mon group masks since there is a new parent mask
440 	 * now and update the rmid for the cpus the child lost.
441 	 */
442 	head = &rdtgrp->mon.crdtgrp_list;
443 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
444 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
445 		update_closid_rmid(tmpmask, rdtgrp);
446 		cpumask_clear(&crgrp->cpu_mask);
447 	}
448 
449 	return 0;
450 }
451 
452 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
453 				   char *buf, size_t nbytes, loff_t off)
454 {
455 	cpumask_var_t tmpmask, newmask, tmpmask1;
456 	struct rdtgroup *rdtgrp;
457 	int ret;
458 
459 	if (!buf)
460 		return -EINVAL;
461 
462 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
463 		return -ENOMEM;
464 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
465 		free_cpumask_var(tmpmask);
466 		return -ENOMEM;
467 	}
468 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
469 		free_cpumask_var(tmpmask);
470 		free_cpumask_var(newmask);
471 		return -ENOMEM;
472 	}
473 
474 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
475 	if (!rdtgrp) {
476 		ret = -ENOENT;
477 		goto unlock;
478 	}
479 
480 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
481 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
482 		ret = -EINVAL;
483 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
484 		goto unlock;
485 	}
486 
487 	if (is_cpu_list(of))
488 		ret = cpulist_parse(buf, newmask);
489 	else
490 		ret = cpumask_parse(buf, newmask);
491 
492 	if (ret) {
493 		rdt_last_cmd_puts("Bad CPU list/mask\n");
494 		goto unlock;
495 	}
496 
497 	/* check that user didn't specify any offline cpus */
498 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
499 	if (!cpumask_empty(tmpmask)) {
500 		ret = -EINVAL;
501 		rdt_last_cmd_puts("Can only assign online CPUs\n");
502 		goto unlock;
503 	}
504 
505 	if (rdtgrp->type == RDTCTRL_GROUP)
506 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
507 	else if (rdtgrp->type == RDTMON_GROUP)
508 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
509 	else
510 		ret = -EINVAL;
511 
512 unlock:
513 	rdtgroup_kn_unlock(of->kn);
514 	free_cpumask_var(tmpmask);
515 	free_cpumask_var(newmask);
516 	free_cpumask_var(tmpmask1);
517 
518 	return ret ?: nbytes;
519 }
520 
521 /**
522  * rdtgroup_remove - the helper to remove resource group safely
523  * @rdtgrp: resource group to remove
524  *
525  * On resource group creation via a mkdir, an extra kernfs_node reference is
526  * taken to ensure that the rdtgroup structure remains accessible for the
527  * rdtgroup_kn_unlock() calls where it is removed.
528  *
529  * Drop the extra reference here, then free the rdtgroup structure.
530  *
531  * Return: void
532  */
533 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
534 {
535 	kernfs_put(rdtgrp->kn);
536 	kfree(rdtgrp);
537 }
538 
539 static void _update_task_closid_rmid(void *task)
540 {
541 	/*
542 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
543 	 * Otherwise, the MSR is updated when the task is scheduled in.
544 	 */
545 	if (task == current)
546 		resctrl_sched_in(task);
547 }
548 
549 static void update_task_closid_rmid(struct task_struct *t)
550 {
551 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
552 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
553 	else
554 		_update_task_closid_rmid(t);
555 }
556 
557 static int __rdtgroup_move_task(struct task_struct *tsk,
558 				struct rdtgroup *rdtgrp)
559 {
560 	/* If the task is already in rdtgrp, no need to move the task. */
561 	if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
562 	     tsk->rmid == rdtgrp->mon.rmid) ||
563 	    (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
564 	     tsk->closid == rdtgrp->mon.parent->closid))
565 		return 0;
566 
567 	/*
568 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
569 	 * updated by them.
570 	 *
571 	 * For ctrl_mon groups, move both closid and rmid.
572 	 * For monitor groups, can move the tasks only from
573 	 * their parent CTRL group.
574 	 */
575 
576 	if (rdtgrp->type == RDTCTRL_GROUP) {
577 		WRITE_ONCE(tsk->closid, rdtgrp->closid);
578 		WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
579 	} else if (rdtgrp->type == RDTMON_GROUP) {
580 		if (rdtgrp->mon.parent->closid == tsk->closid) {
581 			WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
582 		} else {
583 			rdt_last_cmd_puts("Can't move task to different control group\n");
584 			return -EINVAL;
585 		}
586 	}
587 
588 	/*
589 	 * Ensure the task's closid and rmid are written before determining if
590 	 * the task is current that will decide if it will be interrupted.
591 	 * This pairs with the full barrier between the rq->curr update and
592 	 * resctrl_sched_in() during context switch.
593 	 */
594 	smp_mb();
595 
596 	/*
597 	 * By now, the task's closid and rmid are set. If the task is current
598 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
599 	 * group go into effect. If the task is not current, the MSR will be
600 	 * updated when the task is scheduled in.
601 	 */
602 	update_task_closid_rmid(tsk);
603 
604 	return 0;
605 }
606 
607 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
608 {
609 	return (rdt_alloc_capable &&
610 	       (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
611 }
612 
613 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
614 {
615 	return (rdt_mon_capable &&
616 	       (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
617 }
618 
619 /**
620  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
621  * @r: Resource group
622  *
623  * Return: 1 if tasks have been assigned to @r, 0 otherwise
624  */
625 int rdtgroup_tasks_assigned(struct rdtgroup *r)
626 {
627 	struct task_struct *p, *t;
628 	int ret = 0;
629 
630 	lockdep_assert_held(&rdtgroup_mutex);
631 
632 	rcu_read_lock();
633 	for_each_process_thread(p, t) {
634 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
635 			ret = 1;
636 			break;
637 		}
638 	}
639 	rcu_read_unlock();
640 
641 	return ret;
642 }
643 
644 static int rdtgroup_task_write_permission(struct task_struct *task,
645 					  struct kernfs_open_file *of)
646 {
647 	const struct cred *tcred = get_task_cred(task);
648 	const struct cred *cred = current_cred();
649 	int ret = 0;
650 
651 	/*
652 	 * Even if we're attaching all tasks in the thread group, we only
653 	 * need to check permissions on one of them.
654 	 */
655 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
656 	    !uid_eq(cred->euid, tcred->uid) &&
657 	    !uid_eq(cred->euid, tcred->suid)) {
658 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
659 		ret = -EPERM;
660 	}
661 
662 	put_cred(tcred);
663 	return ret;
664 }
665 
666 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
667 			      struct kernfs_open_file *of)
668 {
669 	struct task_struct *tsk;
670 	int ret;
671 
672 	rcu_read_lock();
673 	if (pid) {
674 		tsk = find_task_by_vpid(pid);
675 		if (!tsk) {
676 			rcu_read_unlock();
677 			rdt_last_cmd_printf("No task %d\n", pid);
678 			return -ESRCH;
679 		}
680 	} else {
681 		tsk = current;
682 	}
683 
684 	get_task_struct(tsk);
685 	rcu_read_unlock();
686 
687 	ret = rdtgroup_task_write_permission(tsk, of);
688 	if (!ret)
689 		ret = __rdtgroup_move_task(tsk, rdtgrp);
690 
691 	put_task_struct(tsk);
692 	return ret;
693 }
694 
695 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
696 				    char *buf, size_t nbytes, loff_t off)
697 {
698 	struct rdtgroup *rdtgrp;
699 	int ret = 0;
700 	pid_t pid;
701 
702 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
703 		return -EINVAL;
704 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
705 	if (!rdtgrp) {
706 		rdtgroup_kn_unlock(of->kn);
707 		return -ENOENT;
708 	}
709 	rdt_last_cmd_clear();
710 
711 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
712 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
713 		ret = -EINVAL;
714 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
715 		goto unlock;
716 	}
717 
718 	ret = rdtgroup_move_task(pid, rdtgrp, of);
719 
720 unlock:
721 	rdtgroup_kn_unlock(of->kn);
722 
723 	return ret ?: nbytes;
724 }
725 
726 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
727 {
728 	struct task_struct *p, *t;
729 	pid_t pid;
730 
731 	rcu_read_lock();
732 	for_each_process_thread(p, t) {
733 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
734 			pid = task_pid_vnr(t);
735 			if (pid)
736 				seq_printf(s, "%d\n", pid);
737 		}
738 	}
739 	rcu_read_unlock();
740 }
741 
742 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
743 			       struct seq_file *s, void *v)
744 {
745 	struct rdtgroup *rdtgrp;
746 	int ret = 0;
747 
748 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
749 	if (rdtgrp)
750 		show_rdt_tasks(rdtgrp, s);
751 	else
752 		ret = -ENOENT;
753 	rdtgroup_kn_unlock(of->kn);
754 
755 	return ret;
756 }
757 
758 #ifdef CONFIG_PROC_CPU_RESCTRL
759 
760 /*
761  * A task can only be part of one resctrl control group and of one monitor
762  * group which is associated to that control group.
763  *
764  * 1)   res:
765  *      mon:
766  *
767  *    resctrl is not available.
768  *
769  * 2)   res:/
770  *      mon:
771  *
772  *    Task is part of the root resctrl control group, and it is not associated
773  *    to any monitor group.
774  *
775  * 3)  res:/
776  *     mon:mon0
777  *
778  *    Task is part of the root resctrl control group and monitor group mon0.
779  *
780  * 4)  res:group0
781  *     mon:
782  *
783  *    Task is part of resctrl control group group0, and it is not associated
784  *    to any monitor group.
785  *
786  * 5) res:group0
787  *    mon:mon1
788  *
789  *    Task is part of resctrl control group group0 and monitor group mon1.
790  */
791 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
792 		      struct pid *pid, struct task_struct *tsk)
793 {
794 	struct rdtgroup *rdtg;
795 	int ret = 0;
796 
797 	mutex_lock(&rdtgroup_mutex);
798 
799 	/* Return empty if resctrl has not been mounted. */
800 	if (!static_branch_unlikely(&rdt_enable_key)) {
801 		seq_puts(s, "res:\nmon:\n");
802 		goto unlock;
803 	}
804 
805 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
806 		struct rdtgroup *crg;
807 
808 		/*
809 		 * Task information is only relevant for shareable
810 		 * and exclusive groups.
811 		 */
812 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
813 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
814 			continue;
815 
816 		if (rdtg->closid != tsk->closid)
817 			continue;
818 
819 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
820 			   rdtg->kn->name);
821 		seq_puts(s, "mon:");
822 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
823 				    mon.crdtgrp_list) {
824 			if (tsk->rmid != crg->mon.rmid)
825 				continue;
826 			seq_printf(s, "%s", crg->kn->name);
827 			break;
828 		}
829 		seq_putc(s, '\n');
830 		goto unlock;
831 	}
832 	/*
833 	 * The above search should succeed. Otherwise return
834 	 * with an error.
835 	 */
836 	ret = -ENOENT;
837 unlock:
838 	mutex_unlock(&rdtgroup_mutex);
839 
840 	return ret;
841 }
842 #endif
843 
844 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
845 				    struct seq_file *seq, void *v)
846 {
847 	int len;
848 
849 	mutex_lock(&rdtgroup_mutex);
850 	len = seq_buf_used(&last_cmd_status);
851 	if (len)
852 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
853 	else
854 		seq_puts(seq, "ok\n");
855 	mutex_unlock(&rdtgroup_mutex);
856 	return 0;
857 }
858 
859 static int rdt_num_closids_show(struct kernfs_open_file *of,
860 				struct seq_file *seq, void *v)
861 {
862 	struct resctrl_schema *s = of->kn->parent->priv;
863 
864 	seq_printf(seq, "%u\n", s->num_closid);
865 	return 0;
866 }
867 
868 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
869 			     struct seq_file *seq, void *v)
870 {
871 	struct resctrl_schema *s = of->kn->parent->priv;
872 	struct rdt_resource *r = s->res;
873 
874 	seq_printf(seq, "%x\n", r->default_ctrl);
875 	return 0;
876 }
877 
878 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
879 			     struct seq_file *seq, void *v)
880 {
881 	struct resctrl_schema *s = of->kn->parent->priv;
882 	struct rdt_resource *r = s->res;
883 
884 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
885 	return 0;
886 }
887 
888 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
889 				   struct seq_file *seq, void *v)
890 {
891 	struct resctrl_schema *s = of->kn->parent->priv;
892 	struct rdt_resource *r = s->res;
893 
894 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
895 	return 0;
896 }
897 
898 /**
899  * rdt_bit_usage_show - Display current usage of resources
900  *
901  * A domain is a shared resource that can now be allocated differently. Here
902  * we display the current regions of the domain as an annotated bitmask.
903  * For each domain of this resource its allocation bitmask
904  * is annotated as below to indicate the current usage of the corresponding bit:
905  *   0 - currently unused
906  *   X - currently available for sharing and used by software and hardware
907  *   H - currently used by hardware only but available for software use
908  *   S - currently used and shareable by software only
909  *   E - currently used exclusively by one resource group
910  *   P - currently pseudo-locked by one resource group
911  */
912 static int rdt_bit_usage_show(struct kernfs_open_file *of,
913 			      struct seq_file *seq, void *v)
914 {
915 	struct resctrl_schema *s = of->kn->parent->priv;
916 	/*
917 	 * Use unsigned long even though only 32 bits are used to ensure
918 	 * test_bit() is used safely.
919 	 */
920 	unsigned long sw_shareable = 0, hw_shareable = 0;
921 	unsigned long exclusive = 0, pseudo_locked = 0;
922 	struct rdt_resource *r = s->res;
923 	struct rdt_domain *dom;
924 	int i, hwb, swb, excl, psl;
925 	enum rdtgrp_mode mode;
926 	bool sep = false;
927 	u32 ctrl_val;
928 
929 	mutex_lock(&rdtgroup_mutex);
930 	hw_shareable = r->cache.shareable_bits;
931 	list_for_each_entry(dom, &r->domains, list) {
932 		if (sep)
933 			seq_putc(seq, ';');
934 		sw_shareable = 0;
935 		exclusive = 0;
936 		seq_printf(seq, "%d=", dom->id);
937 		for (i = 0; i < closids_supported(); i++) {
938 			if (!closid_allocated(i))
939 				continue;
940 			ctrl_val = resctrl_arch_get_config(r, dom, i,
941 							   s->conf_type);
942 			mode = rdtgroup_mode_by_closid(i);
943 			switch (mode) {
944 			case RDT_MODE_SHAREABLE:
945 				sw_shareable |= ctrl_val;
946 				break;
947 			case RDT_MODE_EXCLUSIVE:
948 				exclusive |= ctrl_val;
949 				break;
950 			case RDT_MODE_PSEUDO_LOCKSETUP:
951 			/*
952 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
953 			 * here but not included since the CBM
954 			 * associated with this CLOSID in this mode
955 			 * is not initialized and no task or cpu can be
956 			 * assigned this CLOSID.
957 			 */
958 				break;
959 			case RDT_MODE_PSEUDO_LOCKED:
960 			case RDT_NUM_MODES:
961 				WARN(1,
962 				     "invalid mode for closid %d\n", i);
963 				break;
964 			}
965 		}
966 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
967 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
968 			hwb = test_bit(i, &hw_shareable);
969 			swb = test_bit(i, &sw_shareable);
970 			excl = test_bit(i, &exclusive);
971 			psl = test_bit(i, &pseudo_locked);
972 			if (hwb && swb)
973 				seq_putc(seq, 'X');
974 			else if (hwb && !swb)
975 				seq_putc(seq, 'H');
976 			else if (!hwb && swb)
977 				seq_putc(seq, 'S');
978 			else if (excl)
979 				seq_putc(seq, 'E');
980 			else if (psl)
981 				seq_putc(seq, 'P');
982 			else /* Unused bits remain */
983 				seq_putc(seq, '0');
984 		}
985 		sep = true;
986 	}
987 	seq_putc(seq, '\n');
988 	mutex_unlock(&rdtgroup_mutex);
989 	return 0;
990 }
991 
992 static int rdt_min_bw_show(struct kernfs_open_file *of,
993 			     struct seq_file *seq, void *v)
994 {
995 	struct resctrl_schema *s = of->kn->parent->priv;
996 	struct rdt_resource *r = s->res;
997 
998 	seq_printf(seq, "%u\n", r->membw.min_bw);
999 	return 0;
1000 }
1001 
1002 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1003 			      struct seq_file *seq, void *v)
1004 {
1005 	struct rdt_resource *r = of->kn->parent->priv;
1006 
1007 	seq_printf(seq, "%d\n", r->num_rmid);
1008 
1009 	return 0;
1010 }
1011 
1012 static int rdt_mon_features_show(struct kernfs_open_file *of,
1013 				 struct seq_file *seq, void *v)
1014 {
1015 	struct rdt_resource *r = of->kn->parent->priv;
1016 	struct mon_evt *mevt;
1017 
1018 	list_for_each_entry(mevt, &r->evt_list, list) {
1019 		seq_printf(seq, "%s\n", mevt->name);
1020 		if (mevt->configurable)
1021 			seq_printf(seq, "%s_config\n", mevt->name);
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1028 			     struct seq_file *seq, void *v)
1029 {
1030 	struct resctrl_schema *s = of->kn->parent->priv;
1031 	struct rdt_resource *r = s->res;
1032 
1033 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1034 	return 0;
1035 }
1036 
1037 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1038 			     struct seq_file *seq, void *v)
1039 {
1040 	struct resctrl_schema *s = of->kn->parent->priv;
1041 	struct rdt_resource *r = s->res;
1042 
1043 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1044 	return 0;
1045 }
1046 
1047 static int max_threshold_occ_show(struct kernfs_open_file *of,
1048 				  struct seq_file *seq, void *v)
1049 {
1050 	seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1051 
1052 	return 0;
1053 }
1054 
1055 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1056 					 struct seq_file *seq, void *v)
1057 {
1058 	struct resctrl_schema *s = of->kn->parent->priv;
1059 	struct rdt_resource *r = s->res;
1060 
1061 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1062 		seq_puts(seq, "per-thread\n");
1063 	else
1064 		seq_puts(seq, "max\n");
1065 
1066 	return 0;
1067 }
1068 
1069 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1070 				       char *buf, size_t nbytes, loff_t off)
1071 {
1072 	unsigned int bytes;
1073 	int ret;
1074 
1075 	ret = kstrtouint(buf, 0, &bytes);
1076 	if (ret)
1077 		return ret;
1078 
1079 	if (bytes > resctrl_rmid_realloc_limit)
1080 		return -EINVAL;
1081 
1082 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1083 
1084 	return nbytes;
1085 }
1086 
1087 /*
1088  * rdtgroup_mode_show - Display mode of this resource group
1089  */
1090 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1091 			      struct seq_file *s, void *v)
1092 {
1093 	struct rdtgroup *rdtgrp;
1094 
1095 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1096 	if (!rdtgrp) {
1097 		rdtgroup_kn_unlock(of->kn);
1098 		return -ENOENT;
1099 	}
1100 
1101 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1102 
1103 	rdtgroup_kn_unlock(of->kn);
1104 	return 0;
1105 }
1106 
1107 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1108 {
1109 	switch (my_type) {
1110 	case CDP_CODE:
1111 		return CDP_DATA;
1112 	case CDP_DATA:
1113 		return CDP_CODE;
1114 	default:
1115 	case CDP_NONE:
1116 		return CDP_NONE;
1117 	}
1118 }
1119 
1120 /**
1121  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1122  * @r: Resource to which domain instance @d belongs.
1123  * @d: The domain instance for which @closid is being tested.
1124  * @cbm: Capacity bitmask being tested.
1125  * @closid: Intended closid for @cbm.
1126  * @exclusive: Only check if overlaps with exclusive resource groups
1127  *
1128  * Checks if provided @cbm intended to be used for @closid on domain
1129  * @d overlaps with any other closids or other hardware usage associated
1130  * with this domain. If @exclusive is true then only overlaps with
1131  * resource groups in exclusive mode will be considered. If @exclusive
1132  * is false then overlaps with any resource group or hardware entities
1133  * will be considered.
1134  *
1135  * @cbm is unsigned long, even if only 32 bits are used, to make the
1136  * bitmap functions work correctly.
1137  *
1138  * Return: false if CBM does not overlap, true if it does.
1139  */
1140 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1141 				    unsigned long cbm, int closid,
1142 				    enum resctrl_conf_type type, bool exclusive)
1143 {
1144 	enum rdtgrp_mode mode;
1145 	unsigned long ctrl_b;
1146 	int i;
1147 
1148 	/* Check for any overlap with regions used by hardware directly */
1149 	if (!exclusive) {
1150 		ctrl_b = r->cache.shareable_bits;
1151 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1152 			return true;
1153 	}
1154 
1155 	/* Check for overlap with other resource groups */
1156 	for (i = 0; i < closids_supported(); i++) {
1157 		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1158 		mode = rdtgroup_mode_by_closid(i);
1159 		if (closid_allocated(i) && i != closid &&
1160 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1161 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1162 				if (exclusive) {
1163 					if (mode == RDT_MODE_EXCLUSIVE)
1164 						return true;
1165 					continue;
1166 				}
1167 				return true;
1168 			}
1169 		}
1170 	}
1171 
1172 	return false;
1173 }
1174 
1175 /**
1176  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1177  * @s: Schema for the resource to which domain instance @d belongs.
1178  * @d: The domain instance for which @closid is being tested.
1179  * @cbm: Capacity bitmask being tested.
1180  * @closid: Intended closid for @cbm.
1181  * @exclusive: Only check if overlaps with exclusive resource groups
1182  *
1183  * Resources that can be allocated using a CBM can use the CBM to control
1184  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1185  * for overlap. Overlap test is not limited to the specific resource for
1186  * which the CBM is intended though - when dealing with CDP resources that
1187  * share the underlying hardware the overlap check should be performed on
1188  * the CDP resource sharing the hardware also.
1189  *
1190  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1191  * overlap test.
1192  *
1193  * Return: true if CBM overlap detected, false if there is no overlap
1194  */
1195 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1196 			   unsigned long cbm, int closid, bool exclusive)
1197 {
1198 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1199 	struct rdt_resource *r = s->res;
1200 
1201 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1202 				    exclusive))
1203 		return true;
1204 
1205 	if (!resctrl_arch_get_cdp_enabled(r->rid))
1206 		return false;
1207 	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1208 }
1209 
1210 /**
1211  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1212  *
1213  * An exclusive resource group implies that there should be no sharing of
1214  * its allocated resources. At the time this group is considered to be
1215  * exclusive this test can determine if its current schemata supports this
1216  * setting by testing for overlap with all other resource groups.
1217  *
1218  * Return: true if resource group can be exclusive, false if there is overlap
1219  * with allocations of other resource groups and thus this resource group
1220  * cannot be exclusive.
1221  */
1222 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1223 {
1224 	int closid = rdtgrp->closid;
1225 	struct resctrl_schema *s;
1226 	struct rdt_resource *r;
1227 	bool has_cache = false;
1228 	struct rdt_domain *d;
1229 	u32 ctrl;
1230 
1231 	list_for_each_entry(s, &resctrl_schema_all, list) {
1232 		r = s->res;
1233 		if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1234 			continue;
1235 		has_cache = true;
1236 		list_for_each_entry(d, &r->domains, list) {
1237 			ctrl = resctrl_arch_get_config(r, d, closid,
1238 						       s->conf_type);
1239 			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1240 				rdt_last_cmd_puts("Schemata overlaps\n");
1241 				return false;
1242 			}
1243 		}
1244 	}
1245 
1246 	if (!has_cache) {
1247 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1248 		return false;
1249 	}
1250 
1251 	return true;
1252 }
1253 
1254 /**
1255  * rdtgroup_mode_write - Modify the resource group's mode
1256  *
1257  */
1258 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1259 				   char *buf, size_t nbytes, loff_t off)
1260 {
1261 	struct rdtgroup *rdtgrp;
1262 	enum rdtgrp_mode mode;
1263 	int ret = 0;
1264 
1265 	/* Valid input requires a trailing newline */
1266 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1267 		return -EINVAL;
1268 	buf[nbytes - 1] = '\0';
1269 
1270 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1271 	if (!rdtgrp) {
1272 		rdtgroup_kn_unlock(of->kn);
1273 		return -ENOENT;
1274 	}
1275 
1276 	rdt_last_cmd_clear();
1277 
1278 	mode = rdtgrp->mode;
1279 
1280 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1281 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1282 	    (!strcmp(buf, "pseudo-locksetup") &&
1283 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1284 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1285 		goto out;
1286 
1287 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1288 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1289 		ret = -EINVAL;
1290 		goto out;
1291 	}
1292 
1293 	if (!strcmp(buf, "shareable")) {
1294 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1295 			ret = rdtgroup_locksetup_exit(rdtgrp);
1296 			if (ret)
1297 				goto out;
1298 		}
1299 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1300 	} else if (!strcmp(buf, "exclusive")) {
1301 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1302 			ret = -EINVAL;
1303 			goto out;
1304 		}
1305 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1306 			ret = rdtgroup_locksetup_exit(rdtgrp);
1307 			if (ret)
1308 				goto out;
1309 		}
1310 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1311 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1312 		ret = rdtgroup_locksetup_enter(rdtgrp);
1313 		if (ret)
1314 			goto out;
1315 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1316 	} else {
1317 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1318 		ret = -EINVAL;
1319 	}
1320 
1321 out:
1322 	rdtgroup_kn_unlock(of->kn);
1323 	return ret ?: nbytes;
1324 }
1325 
1326 /**
1327  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1328  * @r: RDT resource to which @d belongs.
1329  * @d: RDT domain instance.
1330  * @cbm: bitmask for which the size should be computed.
1331  *
1332  * The bitmask provided associated with the RDT domain instance @d will be
1333  * translated into how many bytes it represents. The size in bytes is
1334  * computed by first dividing the total cache size by the CBM length to
1335  * determine how many bytes each bit in the bitmask represents. The result
1336  * is multiplied with the number of bits set in the bitmask.
1337  *
1338  * @cbm is unsigned long, even if only 32 bits are used to make the
1339  * bitmap functions work correctly.
1340  */
1341 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1342 				  struct rdt_domain *d, unsigned long cbm)
1343 {
1344 	struct cpu_cacheinfo *ci;
1345 	unsigned int size = 0;
1346 	int num_b, i;
1347 
1348 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1349 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1350 	for (i = 0; i < ci->num_leaves; i++) {
1351 		if (ci->info_list[i].level == r->cache_level) {
1352 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1353 			break;
1354 		}
1355 	}
1356 
1357 	return size;
1358 }
1359 
1360 /**
1361  * rdtgroup_size_show - Display size in bytes of allocated regions
1362  *
1363  * The "size" file mirrors the layout of the "schemata" file, printing the
1364  * size in bytes of each region instead of the capacity bitmask.
1365  *
1366  */
1367 static int rdtgroup_size_show(struct kernfs_open_file *of,
1368 			      struct seq_file *s, void *v)
1369 {
1370 	struct resctrl_schema *schema;
1371 	enum resctrl_conf_type type;
1372 	struct rdtgroup *rdtgrp;
1373 	struct rdt_resource *r;
1374 	struct rdt_domain *d;
1375 	unsigned int size;
1376 	int ret = 0;
1377 	u32 closid;
1378 	bool sep;
1379 	u32 ctrl;
1380 
1381 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1382 	if (!rdtgrp) {
1383 		rdtgroup_kn_unlock(of->kn);
1384 		return -ENOENT;
1385 	}
1386 
1387 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1388 		if (!rdtgrp->plr->d) {
1389 			rdt_last_cmd_clear();
1390 			rdt_last_cmd_puts("Cache domain offline\n");
1391 			ret = -ENODEV;
1392 		} else {
1393 			seq_printf(s, "%*s:", max_name_width,
1394 				   rdtgrp->plr->s->name);
1395 			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1396 						    rdtgrp->plr->d,
1397 						    rdtgrp->plr->cbm);
1398 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1399 		}
1400 		goto out;
1401 	}
1402 
1403 	closid = rdtgrp->closid;
1404 
1405 	list_for_each_entry(schema, &resctrl_schema_all, list) {
1406 		r = schema->res;
1407 		type = schema->conf_type;
1408 		sep = false;
1409 		seq_printf(s, "%*s:", max_name_width, schema->name);
1410 		list_for_each_entry(d, &r->domains, list) {
1411 			if (sep)
1412 				seq_putc(s, ';');
1413 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1414 				size = 0;
1415 			} else {
1416 				if (is_mba_sc(r))
1417 					ctrl = d->mbps_val[closid];
1418 				else
1419 					ctrl = resctrl_arch_get_config(r, d,
1420 								       closid,
1421 								       type);
1422 				if (r->rid == RDT_RESOURCE_MBA ||
1423 				    r->rid == RDT_RESOURCE_SMBA)
1424 					size = ctrl;
1425 				else
1426 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1427 			}
1428 			seq_printf(s, "%d=%u", d->id, size);
1429 			sep = true;
1430 		}
1431 		seq_putc(s, '\n');
1432 	}
1433 
1434 out:
1435 	rdtgroup_kn_unlock(of->kn);
1436 
1437 	return ret;
1438 }
1439 
1440 struct mon_config_info {
1441 	u32 evtid;
1442 	u32 mon_config;
1443 };
1444 
1445 #define INVALID_CONFIG_INDEX   UINT_MAX
1446 
1447 /**
1448  * mon_event_config_index_get - get the hardware index for the
1449  *                              configurable event
1450  * @evtid: event id.
1451  *
1452  * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1453  *         1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1454  *         INVALID_CONFIG_INDEX for invalid evtid
1455  */
1456 static inline unsigned int mon_event_config_index_get(u32 evtid)
1457 {
1458 	switch (evtid) {
1459 	case QOS_L3_MBM_TOTAL_EVENT_ID:
1460 		return 0;
1461 	case QOS_L3_MBM_LOCAL_EVENT_ID:
1462 		return 1;
1463 	default:
1464 		/* Should never reach here */
1465 		return INVALID_CONFIG_INDEX;
1466 	}
1467 }
1468 
1469 static void mon_event_config_read(void *info)
1470 {
1471 	struct mon_config_info *mon_info = info;
1472 	unsigned int index;
1473 	u64 msrval;
1474 
1475 	index = mon_event_config_index_get(mon_info->evtid);
1476 	if (index == INVALID_CONFIG_INDEX) {
1477 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1478 		return;
1479 	}
1480 	rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1481 
1482 	/* Report only the valid event configuration bits */
1483 	mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1484 }
1485 
1486 static void mondata_config_read(struct rdt_domain *d, struct mon_config_info *mon_info)
1487 {
1488 	smp_call_function_any(&d->cpu_mask, mon_event_config_read, mon_info, 1);
1489 }
1490 
1491 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1492 {
1493 	struct mon_config_info mon_info = {0};
1494 	struct rdt_domain *dom;
1495 	bool sep = false;
1496 
1497 	mutex_lock(&rdtgroup_mutex);
1498 
1499 	list_for_each_entry(dom, &r->domains, list) {
1500 		if (sep)
1501 			seq_puts(s, ";");
1502 
1503 		memset(&mon_info, 0, sizeof(struct mon_config_info));
1504 		mon_info.evtid = evtid;
1505 		mondata_config_read(dom, &mon_info);
1506 
1507 		seq_printf(s, "%d=0x%02x", dom->id, mon_info.mon_config);
1508 		sep = true;
1509 	}
1510 	seq_puts(s, "\n");
1511 
1512 	mutex_unlock(&rdtgroup_mutex);
1513 
1514 	return 0;
1515 }
1516 
1517 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1518 				       struct seq_file *seq, void *v)
1519 {
1520 	struct rdt_resource *r = of->kn->parent->priv;
1521 
1522 	mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1523 
1524 	return 0;
1525 }
1526 
1527 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1528 				       struct seq_file *seq, void *v)
1529 {
1530 	struct rdt_resource *r = of->kn->parent->priv;
1531 
1532 	mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1533 
1534 	return 0;
1535 }
1536 
1537 static void mon_event_config_write(void *info)
1538 {
1539 	struct mon_config_info *mon_info = info;
1540 	unsigned int index;
1541 
1542 	index = mon_event_config_index_get(mon_info->evtid);
1543 	if (index == INVALID_CONFIG_INDEX) {
1544 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1545 		return;
1546 	}
1547 	wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1548 }
1549 
1550 static int mbm_config_write_domain(struct rdt_resource *r,
1551 				   struct rdt_domain *d, u32 evtid, u32 val)
1552 {
1553 	struct mon_config_info mon_info = {0};
1554 	int ret = 0;
1555 
1556 	/* mon_config cannot be more than the supported set of events */
1557 	if (val > MAX_EVT_CONFIG_BITS) {
1558 		rdt_last_cmd_puts("Invalid event configuration\n");
1559 		return -EINVAL;
1560 	}
1561 
1562 	/*
1563 	 * Read the current config value first. If both are the same then
1564 	 * no need to write it again.
1565 	 */
1566 	mon_info.evtid = evtid;
1567 	mondata_config_read(d, &mon_info);
1568 	if (mon_info.mon_config == val)
1569 		goto out;
1570 
1571 	mon_info.mon_config = val;
1572 
1573 	/*
1574 	 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1575 	 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1576 	 * are scoped at the domain level. Writing any of these MSRs
1577 	 * on one CPU is observed by all the CPUs in the domain.
1578 	 */
1579 	smp_call_function_any(&d->cpu_mask, mon_event_config_write,
1580 			      &mon_info, 1);
1581 
1582 	/*
1583 	 * When an Event Configuration is changed, the bandwidth counters
1584 	 * for all RMIDs and Events will be cleared by the hardware. The
1585 	 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1586 	 * every RMID on the next read to any event for every RMID.
1587 	 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1588 	 * cleared while it is tracked by the hardware. Clear the
1589 	 * mbm_local and mbm_total counts for all the RMIDs.
1590 	 */
1591 	resctrl_arch_reset_rmid_all(r, d);
1592 
1593 out:
1594 	return ret;
1595 }
1596 
1597 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1598 {
1599 	char *dom_str = NULL, *id_str;
1600 	unsigned long dom_id, val;
1601 	struct rdt_domain *d;
1602 	int ret = 0;
1603 
1604 next:
1605 	if (!tok || tok[0] == '\0')
1606 		return 0;
1607 
1608 	/* Start processing the strings for each domain */
1609 	dom_str = strim(strsep(&tok, ";"));
1610 	id_str = strsep(&dom_str, "=");
1611 
1612 	if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1613 		rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1614 		return -EINVAL;
1615 	}
1616 
1617 	if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1618 		rdt_last_cmd_puts("Non-numeric event configuration value\n");
1619 		return -EINVAL;
1620 	}
1621 
1622 	list_for_each_entry(d, &r->domains, list) {
1623 		if (d->id == dom_id) {
1624 			ret = mbm_config_write_domain(r, d, evtid, val);
1625 			if (ret)
1626 				return -EINVAL;
1627 			goto next;
1628 		}
1629 	}
1630 
1631 	return -EINVAL;
1632 }
1633 
1634 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1635 					    char *buf, size_t nbytes,
1636 					    loff_t off)
1637 {
1638 	struct rdt_resource *r = of->kn->parent->priv;
1639 	int ret;
1640 
1641 	/* Valid input requires a trailing newline */
1642 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1643 		return -EINVAL;
1644 
1645 	mutex_lock(&rdtgroup_mutex);
1646 
1647 	rdt_last_cmd_clear();
1648 
1649 	buf[nbytes - 1] = '\0';
1650 
1651 	ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1652 
1653 	mutex_unlock(&rdtgroup_mutex);
1654 
1655 	return ret ?: nbytes;
1656 }
1657 
1658 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1659 					    char *buf, size_t nbytes,
1660 					    loff_t off)
1661 {
1662 	struct rdt_resource *r = of->kn->parent->priv;
1663 	int ret;
1664 
1665 	/* Valid input requires a trailing newline */
1666 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1667 		return -EINVAL;
1668 
1669 	mutex_lock(&rdtgroup_mutex);
1670 
1671 	rdt_last_cmd_clear();
1672 
1673 	buf[nbytes - 1] = '\0';
1674 
1675 	ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1676 
1677 	mutex_unlock(&rdtgroup_mutex);
1678 
1679 	return ret ?: nbytes;
1680 }
1681 
1682 /* rdtgroup information files for one cache resource. */
1683 static struct rftype res_common_files[] = {
1684 	{
1685 		.name		= "last_cmd_status",
1686 		.mode		= 0444,
1687 		.kf_ops		= &rdtgroup_kf_single_ops,
1688 		.seq_show	= rdt_last_cmd_status_show,
1689 		.fflags		= RF_TOP_INFO,
1690 	},
1691 	{
1692 		.name		= "num_closids",
1693 		.mode		= 0444,
1694 		.kf_ops		= &rdtgroup_kf_single_ops,
1695 		.seq_show	= rdt_num_closids_show,
1696 		.fflags		= RF_CTRL_INFO,
1697 	},
1698 	{
1699 		.name		= "mon_features",
1700 		.mode		= 0444,
1701 		.kf_ops		= &rdtgroup_kf_single_ops,
1702 		.seq_show	= rdt_mon_features_show,
1703 		.fflags		= RF_MON_INFO,
1704 	},
1705 	{
1706 		.name		= "num_rmids",
1707 		.mode		= 0444,
1708 		.kf_ops		= &rdtgroup_kf_single_ops,
1709 		.seq_show	= rdt_num_rmids_show,
1710 		.fflags		= RF_MON_INFO,
1711 	},
1712 	{
1713 		.name		= "cbm_mask",
1714 		.mode		= 0444,
1715 		.kf_ops		= &rdtgroup_kf_single_ops,
1716 		.seq_show	= rdt_default_ctrl_show,
1717 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1718 	},
1719 	{
1720 		.name		= "min_cbm_bits",
1721 		.mode		= 0444,
1722 		.kf_ops		= &rdtgroup_kf_single_ops,
1723 		.seq_show	= rdt_min_cbm_bits_show,
1724 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1725 	},
1726 	{
1727 		.name		= "shareable_bits",
1728 		.mode		= 0444,
1729 		.kf_ops		= &rdtgroup_kf_single_ops,
1730 		.seq_show	= rdt_shareable_bits_show,
1731 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1732 	},
1733 	{
1734 		.name		= "bit_usage",
1735 		.mode		= 0444,
1736 		.kf_ops		= &rdtgroup_kf_single_ops,
1737 		.seq_show	= rdt_bit_usage_show,
1738 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1739 	},
1740 	{
1741 		.name		= "min_bandwidth",
1742 		.mode		= 0444,
1743 		.kf_ops		= &rdtgroup_kf_single_ops,
1744 		.seq_show	= rdt_min_bw_show,
1745 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1746 	},
1747 	{
1748 		.name		= "bandwidth_gran",
1749 		.mode		= 0444,
1750 		.kf_ops		= &rdtgroup_kf_single_ops,
1751 		.seq_show	= rdt_bw_gran_show,
1752 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1753 	},
1754 	{
1755 		.name		= "delay_linear",
1756 		.mode		= 0444,
1757 		.kf_ops		= &rdtgroup_kf_single_ops,
1758 		.seq_show	= rdt_delay_linear_show,
1759 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1760 	},
1761 	/*
1762 	 * Platform specific which (if any) capabilities are provided by
1763 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1764 	 * discovery.
1765 	 */
1766 	{
1767 		.name		= "thread_throttle_mode",
1768 		.mode		= 0444,
1769 		.kf_ops		= &rdtgroup_kf_single_ops,
1770 		.seq_show	= rdt_thread_throttle_mode_show,
1771 	},
1772 	{
1773 		.name		= "max_threshold_occupancy",
1774 		.mode		= 0644,
1775 		.kf_ops		= &rdtgroup_kf_single_ops,
1776 		.write		= max_threshold_occ_write,
1777 		.seq_show	= max_threshold_occ_show,
1778 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1779 	},
1780 	{
1781 		.name		= "mbm_total_bytes_config",
1782 		.mode		= 0644,
1783 		.kf_ops		= &rdtgroup_kf_single_ops,
1784 		.seq_show	= mbm_total_bytes_config_show,
1785 		.write		= mbm_total_bytes_config_write,
1786 	},
1787 	{
1788 		.name		= "mbm_local_bytes_config",
1789 		.mode		= 0644,
1790 		.kf_ops		= &rdtgroup_kf_single_ops,
1791 		.seq_show	= mbm_local_bytes_config_show,
1792 		.write		= mbm_local_bytes_config_write,
1793 	},
1794 	{
1795 		.name		= "cpus",
1796 		.mode		= 0644,
1797 		.kf_ops		= &rdtgroup_kf_single_ops,
1798 		.write		= rdtgroup_cpus_write,
1799 		.seq_show	= rdtgroup_cpus_show,
1800 		.fflags		= RFTYPE_BASE,
1801 	},
1802 	{
1803 		.name		= "cpus_list",
1804 		.mode		= 0644,
1805 		.kf_ops		= &rdtgroup_kf_single_ops,
1806 		.write		= rdtgroup_cpus_write,
1807 		.seq_show	= rdtgroup_cpus_show,
1808 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1809 		.fflags		= RFTYPE_BASE,
1810 	},
1811 	{
1812 		.name		= "tasks",
1813 		.mode		= 0644,
1814 		.kf_ops		= &rdtgroup_kf_single_ops,
1815 		.write		= rdtgroup_tasks_write,
1816 		.seq_show	= rdtgroup_tasks_show,
1817 		.fflags		= RFTYPE_BASE,
1818 	},
1819 	{
1820 		.name		= "schemata",
1821 		.mode		= 0644,
1822 		.kf_ops		= &rdtgroup_kf_single_ops,
1823 		.write		= rdtgroup_schemata_write,
1824 		.seq_show	= rdtgroup_schemata_show,
1825 		.fflags		= RF_CTRL_BASE,
1826 	},
1827 	{
1828 		.name		= "mode",
1829 		.mode		= 0644,
1830 		.kf_ops		= &rdtgroup_kf_single_ops,
1831 		.write		= rdtgroup_mode_write,
1832 		.seq_show	= rdtgroup_mode_show,
1833 		.fflags		= RF_CTRL_BASE,
1834 	},
1835 	{
1836 		.name		= "size",
1837 		.mode		= 0444,
1838 		.kf_ops		= &rdtgroup_kf_single_ops,
1839 		.seq_show	= rdtgroup_size_show,
1840 		.fflags		= RF_CTRL_BASE,
1841 	},
1842 
1843 };
1844 
1845 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1846 {
1847 	struct rftype *rfts, *rft;
1848 	int ret, len;
1849 
1850 	rfts = res_common_files;
1851 	len = ARRAY_SIZE(res_common_files);
1852 
1853 	lockdep_assert_held(&rdtgroup_mutex);
1854 
1855 	for (rft = rfts; rft < rfts + len; rft++) {
1856 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1857 			ret = rdtgroup_add_file(kn, rft);
1858 			if (ret)
1859 				goto error;
1860 		}
1861 	}
1862 
1863 	return 0;
1864 error:
1865 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1866 	while (--rft >= rfts) {
1867 		if ((fflags & rft->fflags) == rft->fflags)
1868 			kernfs_remove_by_name(kn, rft->name);
1869 	}
1870 	return ret;
1871 }
1872 
1873 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1874 {
1875 	struct rftype *rfts, *rft;
1876 	int len;
1877 
1878 	rfts = res_common_files;
1879 	len = ARRAY_SIZE(res_common_files);
1880 
1881 	for (rft = rfts; rft < rfts + len; rft++) {
1882 		if (!strcmp(rft->name, name))
1883 			return rft;
1884 	}
1885 
1886 	return NULL;
1887 }
1888 
1889 void __init thread_throttle_mode_init(void)
1890 {
1891 	struct rftype *rft;
1892 
1893 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1894 	if (!rft)
1895 		return;
1896 
1897 	rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1898 }
1899 
1900 void __init mbm_config_rftype_init(const char *config)
1901 {
1902 	struct rftype *rft;
1903 
1904 	rft = rdtgroup_get_rftype_by_name(config);
1905 	if (rft)
1906 		rft->fflags = RF_MON_INFO | RFTYPE_RES_CACHE;
1907 }
1908 
1909 /**
1910  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1911  * @r: The resource group with which the file is associated.
1912  * @name: Name of the file
1913  *
1914  * The permissions of named resctrl file, directory, or link are modified
1915  * to not allow read, write, or execute by any user.
1916  *
1917  * WARNING: This function is intended to communicate to the user that the
1918  * resctrl file has been locked down - that it is not relevant to the
1919  * particular state the system finds itself in. It should not be relied
1920  * on to protect from user access because after the file's permissions
1921  * are restricted the user can still change the permissions using chmod
1922  * from the command line.
1923  *
1924  * Return: 0 on success, <0 on failure.
1925  */
1926 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1927 {
1928 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1929 	struct kernfs_node *kn;
1930 	int ret = 0;
1931 
1932 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1933 	if (!kn)
1934 		return -ENOENT;
1935 
1936 	switch (kernfs_type(kn)) {
1937 	case KERNFS_DIR:
1938 		iattr.ia_mode = S_IFDIR;
1939 		break;
1940 	case KERNFS_FILE:
1941 		iattr.ia_mode = S_IFREG;
1942 		break;
1943 	case KERNFS_LINK:
1944 		iattr.ia_mode = S_IFLNK;
1945 		break;
1946 	}
1947 
1948 	ret = kernfs_setattr(kn, &iattr);
1949 	kernfs_put(kn);
1950 	return ret;
1951 }
1952 
1953 /**
1954  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1955  * @r: The resource group with which the file is associated.
1956  * @name: Name of the file
1957  * @mask: Mask of permissions that should be restored
1958  *
1959  * Restore the permissions of the named file. If @name is a directory the
1960  * permissions of its parent will be used.
1961  *
1962  * Return: 0 on success, <0 on failure.
1963  */
1964 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1965 			     umode_t mask)
1966 {
1967 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1968 	struct kernfs_node *kn, *parent;
1969 	struct rftype *rfts, *rft;
1970 	int ret, len;
1971 
1972 	rfts = res_common_files;
1973 	len = ARRAY_SIZE(res_common_files);
1974 
1975 	for (rft = rfts; rft < rfts + len; rft++) {
1976 		if (!strcmp(rft->name, name))
1977 			iattr.ia_mode = rft->mode & mask;
1978 	}
1979 
1980 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1981 	if (!kn)
1982 		return -ENOENT;
1983 
1984 	switch (kernfs_type(kn)) {
1985 	case KERNFS_DIR:
1986 		parent = kernfs_get_parent(kn);
1987 		if (parent) {
1988 			iattr.ia_mode |= parent->mode;
1989 			kernfs_put(parent);
1990 		}
1991 		iattr.ia_mode |= S_IFDIR;
1992 		break;
1993 	case KERNFS_FILE:
1994 		iattr.ia_mode |= S_IFREG;
1995 		break;
1996 	case KERNFS_LINK:
1997 		iattr.ia_mode |= S_IFLNK;
1998 		break;
1999 	}
2000 
2001 	ret = kernfs_setattr(kn, &iattr);
2002 	kernfs_put(kn);
2003 	return ret;
2004 }
2005 
2006 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2007 				      unsigned long fflags)
2008 {
2009 	struct kernfs_node *kn_subdir;
2010 	int ret;
2011 
2012 	kn_subdir = kernfs_create_dir(kn_info, name,
2013 				      kn_info->mode, priv);
2014 	if (IS_ERR(kn_subdir))
2015 		return PTR_ERR(kn_subdir);
2016 
2017 	ret = rdtgroup_kn_set_ugid(kn_subdir);
2018 	if (ret)
2019 		return ret;
2020 
2021 	ret = rdtgroup_add_files(kn_subdir, fflags);
2022 	if (!ret)
2023 		kernfs_activate(kn_subdir);
2024 
2025 	return ret;
2026 }
2027 
2028 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2029 {
2030 	struct resctrl_schema *s;
2031 	struct rdt_resource *r;
2032 	unsigned long fflags;
2033 	char name[32];
2034 	int ret;
2035 
2036 	/* create the directory */
2037 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2038 	if (IS_ERR(kn_info))
2039 		return PTR_ERR(kn_info);
2040 
2041 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
2042 	if (ret)
2043 		goto out_destroy;
2044 
2045 	/* loop over enabled controls, these are all alloc_capable */
2046 	list_for_each_entry(s, &resctrl_schema_all, list) {
2047 		r = s->res;
2048 		fflags =  r->fflags | RF_CTRL_INFO;
2049 		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2050 		if (ret)
2051 			goto out_destroy;
2052 	}
2053 
2054 	for_each_mon_capable_rdt_resource(r) {
2055 		fflags =  r->fflags | RF_MON_INFO;
2056 		sprintf(name, "%s_MON", r->name);
2057 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2058 		if (ret)
2059 			goto out_destroy;
2060 	}
2061 
2062 	ret = rdtgroup_kn_set_ugid(kn_info);
2063 	if (ret)
2064 		goto out_destroy;
2065 
2066 	kernfs_activate(kn_info);
2067 
2068 	return 0;
2069 
2070 out_destroy:
2071 	kernfs_remove(kn_info);
2072 	return ret;
2073 }
2074 
2075 static int
2076 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2077 		    char *name, struct kernfs_node **dest_kn)
2078 {
2079 	struct kernfs_node *kn;
2080 	int ret;
2081 
2082 	/* create the directory */
2083 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2084 	if (IS_ERR(kn))
2085 		return PTR_ERR(kn);
2086 
2087 	if (dest_kn)
2088 		*dest_kn = kn;
2089 
2090 	ret = rdtgroup_kn_set_ugid(kn);
2091 	if (ret)
2092 		goto out_destroy;
2093 
2094 	kernfs_activate(kn);
2095 
2096 	return 0;
2097 
2098 out_destroy:
2099 	kernfs_remove(kn);
2100 	return ret;
2101 }
2102 
2103 static void l3_qos_cfg_update(void *arg)
2104 {
2105 	bool *enable = arg;
2106 
2107 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2108 }
2109 
2110 static void l2_qos_cfg_update(void *arg)
2111 {
2112 	bool *enable = arg;
2113 
2114 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2115 }
2116 
2117 static inline bool is_mba_linear(void)
2118 {
2119 	return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2120 }
2121 
2122 static int set_cache_qos_cfg(int level, bool enable)
2123 {
2124 	void (*update)(void *arg);
2125 	struct rdt_resource *r_l;
2126 	cpumask_var_t cpu_mask;
2127 	struct rdt_domain *d;
2128 	int cpu;
2129 
2130 	if (level == RDT_RESOURCE_L3)
2131 		update = l3_qos_cfg_update;
2132 	else if (level == RDT_RESOURCE_L2)
2133 		update = l2_qos_cfg_update;
2134 	else
2135 		return -EINVAL;
2136 
2137 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2138 		return -ENOMEM;
2139 
2140 	r_l = &rdt_resources_all[level].r_resctrl;
2141 	list_for_each_entry(d, &r_l->domains, list) {
2142 		if (r_l->cache.arch_has_per_cpu_cfg)
2143 			/* Pick all the CPUs in the domain instance */
2144 			for_each_cpu(cpu, &d->cpu_mask)
2145 				cpumask_set_cpu(cpu, cpu_mask);
2146 		else
2147 			/* Pick one CPU from each domain instance to update MSR */
2148 			cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2149 	}
2150 
2151 	/* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2152 	on_each_cpu_mask(cpu_mask, update, &enable, 1);
2153 
2154 	free_cpumask_var(cpu_mask);
2155 
2156 	return 0;
2157 }
2158 
2159 /* Restore the qos cfg state when a domain comes online */
2160 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2161 {
2162 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2163 
2164 	if (!r->cdp_capable)
2165 		return;
2166 
2167 	if (r->rid == RDT_RESOURCE_L2)
2168 		l2_qos_cfg_update(&hw_res->cdp_enabled);
2169 
2170 	if (r->rid == RDT_RESOURCE_L3)
2171 		l3_qos_cfg_update(&hw_res->cdp_enabled);
2172 }
2173 
2174 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
2175 {
2176 	u32 num_closid = resctrl_arch_get_num_closid(r);
2177 	int cpu = cpumask_any(&d->cpu_mask);
2178 	int i;
2179 
2180 	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2181 				   GFP_KERNEL, cpu_to_node(cpu));
2182 	if (!d->mbps_val)
2183 		return -ENOMEM;
2184 
2185 	for (i = 0; i < num_closid; i++)
2186 		d->mbps_val[i] = MBA_MAX_MBPS;
2187 
2188 	return 0;
2189 }
2190 
2191 static void mba_sc_domain_destroy(struct rdt_resource *r,
2192 				  struct rdt_domain *d)
2193 {
2194 	kfree(d->mbps_val);
2195 	d->mbps_val = NULL;
2196 }
2197 
2198 /*
2199  * MBA software controller is supported only if
2200  * MBM is supported and MBA is in linear scale.
2201  */
2202 static bool supports_mba_mbps(void)
2203 {
2204 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2205 
2206 	return (is_mbm_local_enabled() &&
2207 		r->alloc_capable && is_mba_linear());
2208 }
2209 
2210 /*
2211  * Enable or disable the MBA software controller
2212  * which helps user specify bandwidth in MBps.
2213  */
2214 static int set_mba_sc(bool mba_sc)
2215 {
2216 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2217 	u32 num_closid = resctrl_arch_get_num_closid(r);
2218 	struct rdt_domain *d;
2219 	int i;
2220 
2221 	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2222 		return -EINVAL;
2223 
2224 	r->membw.mba_sc = mba_sc;
2225 
2226 	list_for_each_entry(d, &r->domains, list) {
2227 		for (i = 0; i < num_closid; i++)
2228 			d->mbps_val[i] = MBA_MAX_MBPS;
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 static int cdp_enable(int level)
2235 {
2236 	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2237 	int ret;
2238 
2239 	if (!r_l->alloc_capable)
2240 		return -EINVAL;
2241 
2242 	ret = set_cache_qos_cfg(level, true);
2243 	if (!ret)
2244 		rdt_resources_all[level].cdp_enabled = true;
2245 
2246 	return ret;
2247 }
2248 
2249 static void cdp_disable(int level)
2250 {
2251 	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2252 
2253 	if (r_hw->cdp_enabled) {
2254 		set_cache_qos_cfg(level, false);
2255 		r_hw->cdp_enabled = false;
2256 	}
2257 }
2258 
2259 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2260 {
2261 	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2262 
2263 	if (!hw_res->r_resctrl.cdp_capable)
2264 		return -EINVAL;
2265 
2266 	if (enable)
2267 		return cdp_enable(l);
2268 
2269 	cdp_disable(l);
2270 
2271 	return 0;
2272 }
2273 
2274 static void cdp_disable_all(void)
2275 {
2276 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
2277 		resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2278 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
2279 		resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2280 }
2281 
2282 /*
2283  * We don't allow rdtgroup directories to be created anywhere
2284  * except the root directory. Thus when looking for the rdtgroup
2285  * structure for a kernfs node we are either looking at a directory,
2286  * in which case the rdtgroup structure is pointed at by the "priv"
2287  * field, otherwise we have a file, and need only look to the parent
2288  * to find the rdtgroup.
2289  */
2290 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2291 {
2292 	if (kernfs_type(kn) == KERNFS_DIR) {
2293 		/*
2294 		 * All the resource directories use "kn->priv"
2295 		 * to point to the "struct rdtgroup" for the
2296 		 * resource. "info" and its subdirectories don't
2297 		 * have rdtgroup structures, so return NULL here.
2298 		 */
2299 		if (kn == kn_info || kn->parent == kn_info)
2300 			return NULL;
2301 		else
2302 			return kn->priv;
2303 	} else {
2304 		return kn->parent->priv;
2305 	}
2306 }
2307 
2308 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2309 {
2310 	atomic_inc(&rdtgrp->waitcount);
2311 	kernfs_break_active_protection(kn);
2312 }
2313 
2314 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2315 {
2316 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2317 	    (rdtgrp->flags & RDT_DELETED)) {
2318 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2319 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2320 			rdtgroup_pseudo_lock_remove(rdtgrp);
2321 		kernfs_unbreak_active_protection(kn);
2322 		rdtgroup_remove(rdtgrp);
2323 	} else {
2324 		kernfs_unbreak_active_protection(kn);
2325 	}
2326 }
2327 
2328 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2329 {
2330 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2331 
2332 	if (!rdtgrp)
2333 		return NULL;
2334 
2335 	rdtgroup_kn_get(rdtgrp, kn);
2336 
2337 	mutex_lock(&rdtgroup_mutex);
2338 
2339 	/* Was this group deleted while we waited? */
2340 	if (rdtgrp->flags & RDT_DELETED)
2341 		return NULL;
2342 
2343 	return rdtgrp;
2344 }
2345 
2346 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2347 {
2348 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2349 
2350 	if (!rdtgrp)
2351 		return;
2352 
2353 	mutex_unlock(&rdtgroup_mutex);
2354 	rdtgroup_kn_put(rdtgrp, kn);
2355 }
2356 
2357 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2358 			     struct rdtgroup *prgrp,
2359 			     struct kernfs_node **mon_data_kn);
2360 
2361 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2362 {
2363 	int ret = 0;
2364 
2365 	if (ctx->enable_cdpl2)
2366 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2367 
2368 	if (!ret && ctx->enable_cdpl3)
2369 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2370 
2371 	if (!ret && ctx->enable_mba_mbps)
2372 		ret = set_mba_sc(true);
2373 
2374 	return ret;
2375 }
2376 
2377 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2378 {
2379 	struct resctrl_schema *s;
2380 	const char *suffix = "";
2381 	int ret, cl;
2382 
2383 	s = kzalloc(sizeof(*s), GFP_KERNEL);
2384 	if (!s)
2385 		return -ENOMEM;
2386 
2387 	s->res = r;
2388 	s->num_closid = resctrl_arch_get_num_closid(r);
2389 	if (resctrl_arch_get_cdp_enabled(r->rid))
2390 		s->num_closid /= 2;
2391 
2392 	s->conf_type = type;
2393 	switch (type) {
2394 	case CDP_CODE:
2395 		suffix = "CODE";
2396 		break;
2397 	case CDP_DATA:
2398 		suffix = "DATA";
2399 		break;
2400 	case CDP_NONE:
2401 		suffix = "";
2402 		break;
2403 	}
2404 
2405 	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2406 	if (ret >= sizeof(s->name)) {
2407 		kfree(s);
2408 		return -EINVAL;
2409 	}
2410 
2411 	cl = strlen(s->name);
2412 
2413 	/*
2414 	 * If CDP is supported by this resource, but not enabled,
2415 	 * include the suffix. This ensures the tabular format of the
2416 	 * schemata file does not change between mounts of the filesystem.
2417 	 */
2418 	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2419 		cl += 4;
2420 
2421 	if (cl > max_name_width)
2422 		max_name_width = cl;
2423 
2424 	INIT_LIST_HEAD(&s->list);
2425 	list_add(&s->list, &resctrl_schema_all);
2426 
2427 	return 0;
2428 }
2429 
2430 static int schemata_list_create(void)
2431 {
2432 	struct rdt_resource *r;
2433 	int ret = 0;
2434 
2435 	for_each_alloc_capable_rdt_resource(r) {
2436 		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2437 			ret = schemata_list_add(r, CDP_CODE);
2438 			if (ret)
2439 				break;
2440 
2441 			ret = schemata_list_add(r, CDP_DATA);
2442 		} else {
2443 			ret = schemata_list_add(r, CDP_NONE);
2444 		}
2445 
2446 		if (ret)
2447 			break;
2448 	}
2449 
2450 	return ret;
2451 }
2452 
2453 static void schemata_list_destroy(void)
2454 {
2455 	struct resctrl_schema *s, *tmp;
2456 
2457 	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2458 		list_del(&s->list);
2459 		kfree(s);
2460 	}
2461 }
2462 
2463 static int rdt_get_tree(struct fs_context *fc)
2464 {
2465 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2466 	struct rdt_domain *dom;
2467 	struct rdt_resource *r;
2468 	int ret;
2469 
2470 	cpus_read_lock();
2471 	mutex_lock(&rdtgroup_mutex);
2472 	/*
2473 	 * resctrl file system can only be mounted once.
2474 	 */
2475 	if (static_branch_unlikely(&rdt_enable_key)) {
2476 		ret = -EBUSY;
2477 		goto out;
2478 	}
2479 
2480 	ret = rdt_enable_ctx(ctx);
2481 	if (ret < 0)
2482 		goto out_cdp;
2483 
2484 	ret = schemata_list_create();
2485 	if (ret) {
2486 		schemata_list_destroy();
2487 		goto out_mba;
2488 	}
2489 
2490 	closid_init();
2491 
2492 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2493 	if (ret < 0)
2494 		goto out_schemata_free;
2495 
2496 	if (rdt_mon_capable) {
2497 		ret = mongroup_create_dir(rdtgroup_default.kn,
2498 					  &rdtgroup_default, "mon_groups",
2499 					  &kn_mongrp);
2500 		if (ret < 0)
2501 			goto out_info;
2502 
2503 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2504 					&rdtgroup_default, &kn_mondata);
2505 		if (ret < 0)
2506 			goto out_mongrp;
2507 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2508 	}
2509 
2510 	ret = rdt_pseudo_lock_init();
2511 	if (ret)
2512 		goto out_mondata;
2513 
2514 	ret = kernfs_get_tree(fc);
2515 	if (ret < 0)
2516 		goto out_psl;
2517 
2518 	if (rdt_alloc_capable)
2519 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2520 	if (rdt_mon_capable)
2521 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2522 
2523 	if (rdt_alloc_capable || rdt_mon_capable)
2524 		static_branch_enable_cpuslocked(&rdt_enable_key);
2525 
2526 	if (is_mbm_enabled()) {
2527 		r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2528 		list_for_each_entry(dom, &r->domains, list)
2529 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2530 	}
2531 
2532 	goto out;
2533 
2534 out_psl:
2535 	rdt_pseudo_lock_release();
2536 out_mondata:
2537 	if (rdt_mon_capable)
2538 		kernfs_remove(kn_mondata);
2539 out_mongrp:
2540 	if (rdt_mon_capable)
2541 		kernfs_remove(kn_mongrp);
2542 out_info:
2543 	kernfs_remove(kn_info);
2544 out_schemata_free:
2545 	schemata_list_destroy();
2546 out_mba:
2547 	if (ctx->enable_mba_mbps)
2548 		set_mba_sc(false);
2549 out_cdp:
2550 	cdp_disable_all();
2551 out:
2552 	rdt_last_cmd_clear();
2553 	mutex_unlock(&rdtgroup_mutex);
2554 	cpus_read_unlock();
2555 	return ret;
2556 }
2557 
2558 enum rdt_param {
2559 	Opt_cdp,
2560 	Opt_cdpl2,
2561 	Opt_mba_mbps,
2562 	nr__rdt_params
2563 };
2564 
2565 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2566 	fsparam_flag("cdp",		Opt_cdp),
2567 	fsparam_flag("cdpl2",		Opt_cdpl2),
2568 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2569 	{}
2570 };
2571 
2572 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2573 {
2574 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2575 	struct fs_parse_result result;
2576 	int opt;
2577 
2578 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2579 	if (opt < 0)
2580 		return opt;
2581 
2582 	switch (opt) {
2583 	case Opt_cdp:
2584 		ctx->enable_cdpl3 = true;
2585 		return 0;
2586 	case Opt_cdpl2:
2587 		ctx->enable_cdpl2 = true;
2588 		return 0;
2589 	case Opt_mba_mbps:
2590 		if (!supports_mba_mbps())
2591 			return -EINVAL;
2592 		ctx->enable_mba_mbps = true;
2593 		return 0;
2594 	}
2595 
2596 	return -EINVAL;
2597 }
2598 
2599 static void rdt_fs_context_free(struct fs_context *fc)
2600 {
2601 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2602 
2603 	kernfs_free_fs_context(fc);
2604 	kfree(ctx);
2605 }
2606 
2607 static const struct fs_context_operations rdt_fs_context_ops = {
2608 	.free		= rdt_fs_context_free,
2609 	.parse_param	= rdt_parse_param,
2610 	.get_tree	= rdt_get_tree,
2611 };
2612 
2613 static int rdt_init_fs_context(struct fs_context *fc)
2614 {
2615 	struct rdt_fs_context *ctx;
2616 
2617 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2618 	if (!ctx)
2619 		return -ENOMEM;
2620 
2621 	ctx->kfc.root = rdt_root;
2622 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2623 	fc->fs_private = &ctx->kfc;
2624 	fc->ops = &rdt_fs_context_ops;
2625 	put_user_ns(fc->user_ns);
2626 	fc->user_ns = get_user_ns(&init_user_ns);
2627 	fc->global = true;
2628 	return 0;
2629 }
2630 
2631 static int reset_all_ctrls(struct rdt_resource *r)
2632 {
2633 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2634 	struct rdt_hw_domain *hw_dom;
2635 	struct msr_param msr_param;
2636 	cpumask_var_t cpu_mask;
2637 	struct rdt_domain *d;
2638 	int i;
2639 
2640 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2641 		return -ENOMEM;
2642 
2643 	msr_param.res = r;
2644 	msr_param.low = 0;
2645 	msr_param.high = hw_res->num_closid;
2646 
2647 	/*
2648 	 * Disable resource control for this resource by setting all
2649 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2650 	 * from each domain to update the MSRs below.
2651 	 */
2652 	list_for_each_entry(d, &r->domains, list) {
2653 		hw_dom = resctrl_to_arch_dom(d);
2654 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2655 
2656 		for (i = 0; i < hw_res->num_closid; i++)
2657 			hw_dom->ctrl_val[i] = r->default_ctrl;
2658 	}
2659 
2660 	/* Update CBM on all the CPUs in cpu_mask */
2661 	on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2662 
2663 	free_cpumask_var(cpu_mask);
2664 
2665 	return 0;
2666 }
2667 
2668 /*
2669  * Move tasks from one to the other group. If @from is NULL, then all tasks
2670  * in the systems are moved unconditionally (used for teardown).
2671  *
2672  * If @mask is not NULL the cpus on which moved tasks are running are set
2673  * in that mask so the update smp function call is restricted to affected
2674  * cpus.
2675  */
2676 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2677 				 struct cpumask *mask)
2678 {
2679 	struct task_struct *p, *t;
2680 
2681 	read_lock(&tasklist_lock);
2682 	for_each_process_thread(p, t) {
2683 		if (!from || is_closid_match(t, from) ||
2684 		    is_rmid_match(t, from)) {
2685 			WRITE_ONCE(t->closid, to->closid);
2686 			WRITE_ONCE(t->rmid, to->mon.rmid);
2687 
2688 			/*
2689 			 * Order the closid/rmid stores above before the loads
2690 			 * in task_curr(). This pairs with the full barrier
2691 			 * between the rq->curr update and resctrl_sched_in()
2692 			 * during context switch.
2693 			 */
2694 			smp_mb();
2695 
2696 			/*
2697 			 * If the task is on a CPU, set the CPU in the mask.
2698 			 * The detection is inaccurate as tasks might move or
2699 			 * schedule before the smp function call takes place.
2700 			 * In such a case the function call is pointless, but
2701 			 * there is no other side effect.
2702 			 */
2703 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2704 				cpumask_set_cpu(task_cpu(t), mask);
2705 		}
2706 	}
2707 	read_unlock(&tasklist_lock);
2708 }
2709 
2710 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2711 {
2712 	struct rdtgroup *sentry, *stmp;
2713 	struct list_head *head;
2714 
2715 	head = &rdtgrp->mon.crdtgrp_list;
2716 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2717 		free_rmid(sentry->mon.rmid);
2718 		list_del(&sentry->mon.crdtgrp_list);
2719 
2720 		if (atomic_read(&sentry->waitcount) != 0)
2721 			sentry->flags = RDT_DELETED;
2722 		else
2723 			rdtgroup_remove(sentry);
2724 	}
2725 }
2726 
2727 /*
2728  * Forcibly remove all of subdirectories under root.
2729  */
2730 static void rmdir_all_sub(void)
2731 {
2732 	struct rdtgroup *rdtgrp, *tmp;
2733 
2734 	/* Move all tasks to the default resource group */
2735 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2736 
2737 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2738 		/* Free any child rmids */
2739 		free_all_child_rdtgrp(rdtgrp);
2740 
2741 		/* Remove each rdtgroup other than root */
2742 		if (rdtgrp == &rdtgroup_default)
2743 			continue;
2744 
2745 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2746 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2747 			rdtgroup_pseudo_lock_remove(rdtgrp);
2748 
2749 		/*
2750 		 * Give any CPUs back to the default group. We cannot copy
2751 		 * cpu_online_mask because a CPU might have executed the
2752 		 * offline callback already, but is still marked online.
2753 		 */
2754 		cpumask_or(&rdtgroup_default.cpu_mask,
2755 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2756 
2757 		free_rmid(rdtgrp->mon.rmid);
2758 
2759 		kernfs_remove(rdtgrp->kn);
2760 		list_del(&rdtgrp->rdtgroup_list);
2761 
2762 		if (atomic_read(&rdtgrp->waitcount) != 0)
2763 			rdtgrp->flags = RDT_DELETED;
2764 		else
2765 			rdtgroup_remove(rdtgrp);
2766 	}
2767 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2768 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2769 
2770 	kernfs_remove(kn_info);
2771 	kernfs_remove(kn_mongrp);
2772 	kernfs_remove(kn_mondata);
2773 }
2774 
2775 static void rdt_kill_sb(struct super_block *sb)
2776 {
2777 	struct rdt_resource *r;
2778 
2779 	cpus_read_lock();
2780 	mutex_lock(&rdtgroup_mutex);
2781 
2782 	set_mba_sc(false);
2783 
2784 	/*Put everything back to default values. */
2785 	for_each_alloc_capable_rdt_resource(r)
2786 		reset_all_ctrls(r);
2787 	cdp_disable_all();
2788 	rmdir_all_sub();
2789 	rdt_pseudo_lock_release();
2790 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2791 	schemata_list_destroy();
2792 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2793 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2794 	static_branch_disable_cpuslocked(&rdt_enable_key);
2795 	kernfs_kill_sb(sb);
2796 	mutex_unlock(&rdtgroup_mutex);
2797 	cpus_read_unlock();
2798 }
2799 
2800 static struct file_system_type rdt_fs_type = {
2801 	.name			= "resctrl",
2802 	.init_fs_context	= rdt_init_fs_context,
2803 	.parameters		= rdt_fs_parameters,
2804 	.kill_sb		= rdt_kill_sb,
2805 };
2806 
2807 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2808 		       void *priv)
2809 {
2810 	struct kernfs_node *kn;
2811 	int ret = 0;
2812 
2813 	kn = __kernfs_create_file(parent_kn, name, 0444,
2814 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2815 				  &kf_mondata_ops, priv, NULL, NULL);
2816 	if (IS_ERR(kn))
2817 		return PTR_ERR(kn);
2818 
2819 	ret = rdtgroup_kn_set_ugid(kn);
2820 	if (ret) {
2821 		kernfs_remove(kn);
2822 		return ret;
2823 	}
2824 
2825 	return ret;
2826 }
2827 
2828 /*
2829  * Remove all subdirectories of mon_data of ctrl_mon groups
2830  * and monitor groups with given domain id.
2831  */
2832 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2833 					   unsigned int dom_id)
2834 {
2835 	struct rdtgroup *prgrp, *crgrp;
2836 	char name[32];
2837 
2838 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2839 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2840 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2841 
2842 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2843 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2844 	}
2845 }
2846 
2847 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2848 				struct rdt_domain *d,
2849 				struct rdt_resource *r, struct rdtgroup *prgrp)
2850 {
2851 	union mon_data_bits priv;
2852 	struct kernfs_node *kn;
2853 	struct mon_evt *mevt;
2854 	struct rmid_read rr;
2855 	char name[32];
2856 	int ret;
2857 
2858 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2859 	/* create the directory */
2860 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2861 	if (IS_ERR(kn))
2862 		return PTR_ERR(kn);
2863 
2864 	ret = rdtgroup_kn_set_ugid(kn);
2865 	if (ret)
2866 		goto out_destroy;
2867 
2868 	if (WARN_ON(list_empty(&r->evt_list))) {
2869 		ret = -EPERM;
2870 		goto out_destroy;
2871 	}
2872 
2873 	priv.u.rid = r->rid;
2874 	priv.u.domid = d->id;
2875 	list_for_each_entry(mevt, &r->evt_list, list) {
2876 		priv.u.evtid = mevt->evtid;
2877 		ret = mon_addfile(kn, mevt->name, priv.priv);
2878 		if (ret)
2879 			goto out_destroy;
2880 
2881 		if (is_mbm_event(mevt->evtid))
2882 			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2883 	}
2884 	kernfs_activate(kn);
2885 	return 0;
2886 
2887 out_destroy:
2888 	kernfs_remove(kn);
2889 	return ret;
2890 }
2891 
2892 /*
2893  * Add all subdirectories of mon_data for "ctrl_mon" groups
2894  * and "monitor" groups with given domain id.
2895  */
2896 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2897 					   struct rdt_domain *d)
2898 {
2899 	struct kernfs_node *parent_kn;
2900 	struct rdtgroup *prgrp, *crgrp;
2901 	struct list_head *head;
2902 
2903 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2904 		parent_kn = prgrp->mon.mon_data_kn;
2905 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2906 
2907 		head = &prgrp->mon.crdtgrp_list;
2908 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2909 			parent_kn = crgrp->mon.mon_data_kn;
2910 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2911 		}
2912 	}
2913 }
2914 
2915 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2916 				       struct rdt_resource *r,
2917 				       struct rdtgroup *prgrp)
2918 {
2919 	struct rdt_domain *dom;
2920 	int ret;
2921 
2922 	list_for_each_entry(dom, &r->domains, list) {
2923 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2924 		if (ret)
2925 			return ret;
2926 	}
2927 
2928 	return 0;
2929 }
2930 
2931 /*
2932  * This creates a directory mon_data which contains the monitored data.
2933  *
2934  * mon_data has one directory for each domain which are named
2935  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2936  * with L3 domain looks as below:
2937  * ./mon_data:
2938  * mon_L3_00
2939  * mon_L3_01
2940  * mon_L3_02
2941  * ...
2942  *
2943  * Each domain directory has one file per event:
2944  * ./mon_L3_00/:
2945  * llc_occupancy
2946  *
2947  */
2948 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2949 			     struct rdtgroup *prgrp,
2950 			     struct kernfs_node **dest_kn)
2951 {
2952 	struct rdt_resource *r;
2953 	struct kernfs_node *kn;
2954 	int ret;
2955 
2956 	/*
2957 	 * Create the mon_data directory first.
2958 	 */
2959 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2960 	if (ret)
2961 		return ret;
2962 
2963 	if (dest_kn)
2964 		*dest_kn = kn;
2965 
2966 	/*
2967 	 * Create the subdirectories for each domain. Note that all events
2968 	 * in a domain like L3 are grouped into a resource whose domain is L3
2969 	 */
2970 	for_each_mon_capable_rdt_resource(r) {
2971 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2972 		if (ret)
2973 			goto out_destroy;
2974 	}
2975 
2976 	return 0;
2977 
2978 out_destroy:
2979 	kernfs_remove(kn);
2980 	return ret;
2981 }
2982 
2983 /**
2984  * cbm_ensure_valid - Enforce validity on provided CBM
2985  * @_val:	Candidate CBM
2986  * @r:		RDT resource to which the CBM belongs
2987  *
2988  * The provided CBM represents all cache portions available for use. This
2989  * may be represented by a bitmap that does not consist of contiguous ones
2990  * and thus be an invalid CBM.
2991  * Here the provided CBM is forced to be a valid CBM by only considering
2992  * the first set of contiguous bits as valid and clearing all bits.
2993  * The intention here is to provide a valid default CBM with which a new
2994  * resource group is initialized. The user can follow this with a
2995  * modification to the CBM if the default does not satisfy the
2996  * requirements.
2997  */
2998 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2999 {
3000 	unsigned int cbm_len = r->cache.cbm_len;
3001 	unsigned long first_bit, zero_bit;
3002 	unsigned long val = _val;
3003 
3004 	if (!val)
3005 		return 0;
3006 
3007 	first_bit = find_first_bit(&val, cbm_len);
3008 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3009 
3010 	/* Clear any remaining bits to ensure contiguous region */
3011 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3012 	return (u32)val;
3013 }
3014 
3015 /*
3016  * Initialize cache resources per RDT domain
3017  *
3018  * Set the RDT domain up to start off with all usable allocations. That is,
3019  * all shareable and unused bits. All-zero CBM is invalid.
3020  */
3021 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
3022 				 u32 closid)
3023 {
3024 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3025 	enum resctrl_conf_type t = s->conf_type;
3026 	struct resctrl_staged_config *cfg;
3027 	struct rdt_resource *r = s->res;
3028 	u32 used_b = 0, unused_b = 0;
3029 	unsigned long tmp_cbm;
3030 	enum rdtgrp_mode mode;
3031 	u32 peer_ctl, ctrl_val;
3032 	int i;
3033 
3034 	cfg = &d->staged_config[t];
3035 	cfg->have_new_ctrl = false;
3036 	cfg->new_ctrl = r->cache.shareable_bits;
3037 	used_b = r->cache.shareable_bits;
3038 	for (i = 0; i < closids_supported(); i++) {
3039 		if (closid_allocated(i) && i != closid) {
3040 			mode = rdtgroup_mode_by_closid(i);
3041 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3042 				/*
3043 				 * ctrl values for locksetup aren't relevant
3044 				 * until the schemata is written, and the mode
3045 				 * becomes RDT_MODE_PSEUDO_LOCKED.
3046 				 */
3047 				continue;
3048 			/*
3049 			 * If CDP is active include peer domain's
3050 			 * usage to ensure there is no overlap
3051 			 * with an exclusive group.
3052 			 */
3053 			if (resctrl_arch_get_cdp_enabled(r->rid))
3054 				peer_ctl = resctrl_arch_get_config(r, d, i,
3055 								   peer_type);
3056 			else
3057 				peer_ctl = 0;
3058 			ctrl_val = resctrl_arch_get_config(r, d, i,
3059 							   s->conf_type);
3060 			used_b |= ctrl_val | peer_ctl;
3061 			if (mode == RDT_MODE_SHAREABLE)
3062 				cfg->new_ctrl |= ctrl_val | peer_ctl;
3063 		}
3064 	}
3065 	if (d->plr && d->plr->cbm > 0)
3066 		used_b |= d->plr->cbm;
3067 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3068 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3069 	cfg->new_ctrl |= unused_b;
3070 	/*
3071 	 * Force the initial CBM to be valid, user can
3072 	 * modify the CBM based on system availability.
3073 	 */
3074 	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3075 	/*
3076 	 * Assign the u32 CBM to an unsigned long to ensure that
3077 	 * bitmap_weight() does not access out-of-bound memory.
3078 	 */
3079 	tmp_cbm = cfg->new_ctrl;
3080 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3081 		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
3082 		return -ENOSPC;
3083 	}
3084 	cfg->have_new_ctrl = true;
3085 
3086 	return 0;
3087 }
3088 
3089 /*
3090  * Initialize cache resources with default values.
3091  *
3092  * A new RDT group is being created on an allocation capable (CAT)
3093  * supporting system. Set this group up to start off with all usable
3094  * allocations.
3095  *
3096  * If there are no more shareable bits available on any domain then
3097  * the entire allocation will fail.
3098  */
3099 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3100 {
3101 	struct rdt_domain *d;
3102 	int ret;
3103 
3104 	list_for_each_entry(d, &s->res->domains, list) {
3105 		ret = __init_one_rdt_domain(d, s, closid);
3106 		if (ret < 0)
3107 			return ret;
3108 	}
3109 
3110 	return 0;
3111 }
3112 
3113 /* Initialize MBA resource with default values. */
3114 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3115 {
3116 	struct resctrl_staged_config *cfg;
3117 	struct rdt_domain *d;
3118 
3119 	list_for_each_entry(d, &r->domains, list) {
3120 		if (is_mba_sc(r)) {
3121 			d->mbps_val[closid] = MBA_MAX_MBPS;
3122 			continue;
3123 		}
3124 
3125 		cfg = &d->staged_config[CDP_NONE];
3126 		cfg->new_ctrl = r->default_ctrl;
3127 		cfg->have_new_ctrl = true;
3128 	}
3129 }
3130 
3131 /* Initialize the RDT group's allocations. */
3132 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3133 {
3134 	struct resctrl_schema *s;
3135 	struct rdt_resource *r;
3136 	int ret = 0;
3137 
3138 	rdt_staged_configs_clear();
3139 
3140 	list_for_each_entry(s, &resctrl_schema_all, list) {
3141 		r = s->res;
3142 		if (r->rid == RDT_RESOURCE_MBA ||
3143 		    r->rid == RDT_RESOURCE_SMBA) {
3144 			rdtgroup_init_mba(r, rdtgrp->closid);
3145 			if (is_mba_sc(r))
3146 				continue;
3147 		} else {
3148 			ret = rdtgroup_init_cat(s, rdtgrp->closid);
3149 			if (ret < 0)
3150 				goto out;
3151 		}
3152 
3153 		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3154 		if (ret < 0) {
3155 			rdt_last_cmd_puts("Failed to initialize allocations\n");
3156 			goto out;
3157 		}
3158 
3159 	}
3160 
3161 	rdtgrp->mode = RDT_MODE_SHAREABLE;
3162 
3163 out:
3164 	rdt_staged_configs_clear();
3165 	return ret;
3166 }
3167 
3168 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3169 			     const char *name, umode_t mode,
3170 			     enum rdt_group_type rtype, struct rdtgroup **r)
3171 {
3172 	struct rdtgroup *prdtgrp, *rdtgrp;
3173 	struct kernfs_node *kn;
3174 	uint files = 0;
3175 	int ret;
3176 
3177 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3178 	if (!prdtgrp) {
3179 		ret = -ENODEV;
3180 		goto out_unlock;
3181 	}
3182 
3183 	if (rtype == RDTMON_GROUP &&
3184 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3185 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3186 		ret = -EINVAL;
3187 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
3188 		goto out_unlock;
3189 	}
3190 
3191 	/* allocate the rdtgroup. */
3192 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3193 	if (!rdtgrp) {
3194 		ret = -ENOSPC;
3195 		rdt_last_cmd_puts("Kernel out of memory\n");
3196 		goto out_unlock;
3197 	}
3198 	*r = rdtgrp;
3199 	rdtgrp->mon.parent = prdtgrp;
3200 	rdtgrp->type = rtype;
3201 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3202 
3203 	/* kernfs creates the directory for rdtgrp */
3204 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3205 	if (IS_ERR(kn)) {
3206 		ret = PTR_ERR(kn);
3207 		rdt_last_cmd_puts("kernfs create error\n");
3208 		goto out_free_rgrp;
3209 	}
3210 	rdtgrp->kn = kn;
3211 
3212 	/*
3213 	 * kernfs_remove() will drop the reference count on "kn" which
3214 	 * will free it. But we still need it to stick around for the
3215 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3216 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
3217 	 */
3218 	kernfs_get(kn);
3219 
3220 	ret = rdtgroup_kn_set_ugid(kn);
3221 	if (ret) {
3222 		rdt_last_cmd_puts("kernfs perm error\n");
3223 		goto out_destroy;
3224 	}
3225 
3226 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
3227 	ret = rdtgroup_add_files(kn, files);
3228 	if (ret) {
3229 		rdt_last_cmd_puts("kernfs fill error\n");
3230 		goto out_destroy;
3231 	}
3232 
3233 	if (rdt_mon_capable) {
3234 		ret = alloc_rmid();
3235 		if (ret < 0) {
3236 			rdt_last_cmd_puts("Out of RMIDs\n");
3237 			goto out_destroy;
3238 		}
3239 		rdtgrp->mon.rmid = ret;
3240 
3241 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3242 		if (ret) {
3243 			rdt_last_cmd_puts("kernfs subdir error\n");
3244 			goto out_idfree;
3245 		}
3246 	}
3247 	kernfs_activate(kn);
3248 
3249 	/*
3250 	 * The caller unlocks the parent_kn upon success.
3251 	 */
3252 	return 0;
3253 
3254 out_idfree:
3255 	free_rmid(rdtgrp->mon.rmid);
3256 out_destroy:
3257 	kernfs_put(rdtgrp->kn);
3258 	kernfs_remove(rdtgrp->kn);
3259 out_free_rgrp:
3260 	kfree(rdtgrp);
3261 out_unlock:
3262 	rdtgroup_kn_unlock(parent_kn);
3263 	return ret;
3264 }
3265 
3266 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3267 {
3268 	kernfs_remove(rgrp->kn);
3269 	free_rmid(rgrp->mon.rmid);
3270 	rdtgroup_remove(rgrp);
3271 }
3272 
3273 /*
3274  * Create a monitor group under "mon_groups" directory of a control
3275  * and monitor group(ctrl_mon). This is a resource group
3276  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3277  */
3278 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3279 			      const char *name, umode_t mode)
3280 {
3281 	struct rdtgroup *rdtgrp, *prgrp;
3282 	int ret;
3283 
3284 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3285 	if (ret)
3286 		return ret;
3287 
3288 	prgrp = rdtgrp->mon.parent;
3289 	rdtgrp->closid = prgrp->closid;
3290 
3291 	/*
3292 	 * Add the rdtgrp to the list of rdtgrps the parent
3293 	 * ctrl_mon group has to track.
3294 	 */
3295 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3296 
3297 	rdtgroup_kn_unlock(parent_kn);
3298 	return ret;
3299 }
3300 
3301 /*
3302  * These are rdtgroups created under the root directory. Can be used
3303  * to allocate and monitor resources.
3304  */
3305 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3306 				   const char *name, umode_t mode)
3307 {
3308 	struct rdtgroup *rdtgrp;
3309 	struct kernfs_node *kn;
3310 	u32 closid;
3311 	int ret;
3312 
3313 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3314 	if (ret)
3315 		return ret;
3316 
3317 	kn = rdtgrp->kn;
3318 	ret = closid_alloc();
3319 	if (ret < 0) {
3320 		rdt_last_cmd_puts("Out of CLOSIDs\n");
3321 		goto out_common_fail;
3322 	}
3323 	closid = ret;
3324 	ret = 0;
3325 
3326 	rdtgrp->closid = closid;
3327 	ret = rdtgroup_init_alloc(rdtgrp);
3328 	if (ret < 0)
3329 		goto out_id_free;
3330 
3331 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3332 
3333 	if (rdt_mon_capable) {
3334 		/*
3335 		 * Create an empty mon_groups directory to hold the subset
3336 		 * of tasks and cpus to monitor.
3337 		 */
3338 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3339 		if (ret) {
3340 			rdt_last_cmd_puts("kernfs subdir error\n");
3341 			goto out_del_list;
3342 		}
3343 	}
3344 
3345 	goto out_unlock;
3346 
3347 out_del_list:
3348 	list_del(&rdtgrp->rdtgroup_list);
3349 out_id_free:
3350 	closid_free(closid);
3351 out_common_fail:
3352 	mkdir_rdt_prepare_clean(rdtgrp);
3353 out_unlock:
3354 	rdtgroup_kn_unlock(parent_kn);
3355 	return ret;
3356 }
3357 
3358 /*
3359  * We allow creating mon groups only with in a directory called "mon_groups"
3360  * which is present in every ctrl_mon group. Check if this is a valid
3361  * "mon_groups" directory.
3362  *
3363  * 1. The directory should be named "mon_groups".
3364  * 2. The mon group itself should "not" be named "mon_groups".
3365  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3366  *   as parent.
3367  */
3368 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3369 {
3370 	return (!strcmp(kn->name, "mon_groups") &&
3371 		strcmp(name, "mon_groups"));
3372 }
3373 
3374 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3375 			  umode_t mode)
3376 {
3377 	/* Do not accept '\n' to avoid unparsable situation. */
3378 	if (strchr(name, '\n'))
3379 		return -EINVAL;
3380 
3381 	/*
3382 	 * If the parent directory is the root directory and RDT
3383 	 * allocation is supported, add a control and monitoring
3384 	 * subdirectory
3385 	 */
3386 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3387 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3388 
3389 	/*
3390 	 * If RDT monitoring is supported and the parent directory is a valid
3391 	 * "mon_groups" directory, add a monitoring subdirectory.
3392 	 */
3393 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3394 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3395 
3396 	return -EPERM;
3397 }
3398 
3399 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3400 {
3401 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3402 	int cpu;
3403 
3404 	/* Give any tasks back to the parent group */
3405 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3406 
3407 	/* Update per cpu rmid of the moved CPUs first */
3408 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3409 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3410 	/*
3411 	 * Update the MSR on moved CPUs and CPUs which have moved
3412 	 * task running on them.
3413 	 */
3414 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3415 	update_closid_rmid(tmpmask, NULL);
3416 
3417 	rdtgrp->flags = RDT_DELETED;
3418 	free_rmid(rdtgrp->mon.rmid);
3419 
3420 	/*
3421 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3422 	 */
3423 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3424 	list_del(&rdtgrp->mon.crdtgrp_list);
3425 
3426 	kernfs_remove(rdtgrp->kn);
3427 
3428 	return 0;
3429 }
3430 
3431 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3432 {
3433 	rdtgrp->flags = RDT_DELETED;
3434 	list_del(&rdtgrp->rdtgroup_list);
3435 
3436 	kernfs_remove(rdtgrp->kn);
3437 	return 0;
3438 }
3439 
3440 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3441 {
3442 	int cpu;
3443 
3444 	/* Give any tasks back to the default group */
3445 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3446 
3447 	/* Give any CPUs back to the default group */
3448 	cpumask_or(&rdtgroup_default.cpu_mask,
3449 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3450 
3451 	/* Update per cpu closid and rmid of the moved CPUs first */
3452 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3453 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3454 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3455 	}
3456 
3457 	/*
3458 	 * Update the MSR on moved CPUs and CPUs which have moved
3459 	 * task running on them.
3460 	 */
3461 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3462 	update_closid_rmid(tmpmask, NULL);
3463 
3464 	closid_free(rdtgrp->closid);
3465 	free_rmid(rdtgrp->mon.rmid);
3466 
3467 	rdtgroup_ctrl_remove(rdtgrp);
3468 
3469 	/*
3470 	 * Free all the child monitor group rmids.
3471 	 */
3472 	free_all_child_rdtgrp(rdtgrp);
3473 
3474 	return 0;
3475 }
3476 
3477 static int rdtgroup_rmdir(struct kernfs_node *kn)
3478 {
3479 	struct kernfs_node *parent_kn = kn->parent;
3480 	struct rdtgroup *rdtgrp;
3481 	cpumask_var_t tmpmask;
3482 	int ret = 0;
3483 
3484 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3485 		return -ENOMEM;
3486 
3487 	rdtgrp = rdtgroup_kn_lock_live(kn);
3488 	if (!rdtgrp) {
3489 		ret = -EPERM;
3490 		goto out;
3491 	}
3492 
3493 	/*
3494 	 * If the rdtgroup is a ctrl_mon group and parent directory
3495 	 * is the root directory, remove the ctrl_mon group.
3496 	 *
3497 	 * If the rdtgroup is a mon group and parent directory
3498 	 * is a valid "mon_groups" directory, remove the mon group.
3499 	 */
3500 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3501 	    rdtgrp != &rdtgroup_default) {
3502 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3503 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3504 			ret = rdtgroup_ctrl_remove(rdtgrp);
3505 		} else {
3506 			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3507 		}
3508 	} else if (rdtgrp->type == RDTMON_GROUP &&
3509 		 is_mon_groups(parent_kn, kn->name)) {
3510 		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3511 	} else {
3512 		ret = -EPERM;
3513 	}
3514 
3515 out:
3516 	rdtgroup_kn_unlock(kn);
3517 	free_cpumask_var(tmpmask);
3518 	return ret;
3519 }
3520 
3521 /**
3522  * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3523  * @rdtgrp:		the MON group whose parent should be replaced
3524  * @new_prdtgrp:	replacement parent CTRL_MON group for @rdtgrp
3525  * @cpus:		cpumask provided by the caller for use during this call
3526  *
3527  * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3528  * tasks' CLOSID immediately changing to that of the new parent group.
3529  * Monitoring data for the group is unaffected by this operation.
3530  */
3531 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3532 			    struct rdtgroup *new_prdtgrp,
3533 			    cpumask_var_t cpus)
3534 {
3535 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3536 
3537 	WARN_ON(rdtgrp->type != RDTMON_GROUP);
3538 	WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3539 
3540 	/* Nothing to do when simply renaming a MON group. */
3541 	if (prdtgrp == new_prdtgrp)
3542 		return;
3543 
3544 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3545 	list_move_tail(&rdtgrp->mon.crdtgrp_list,
3546 		       &new_prdtgrp->mon.crdtgrp_list);
3547 
3548 	rdtgrp->mon.parent = new_prdtgrp;
3549 	rdtgrp->closid = new_prdtgrp->closid;
3550 
3551 	/* Propagate updated closid to all tasks in this group. */
3552 	rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3553 
3554 	update_closid_rmid(cpus, NULL);
3555 }
3556 
3557 static int rdtgroup_rename(struct kernfs_node *kn,
3558 			   struct kernfs_node *new_parent, const char *new_name)
3559 {
3560 	struct rdtgroup *new_prdtgrp;
3561 	struct rdtgroup *rdtgrp;
3562 	cpumask_var_t tmpmask;
3563 	int ret;
3564 
3565 	rdtgrp = kernfs_to_rdtgroup(kn);
3566 	new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3567 	if (!rdtgrp || !new_prdtgrp)
3568 		return -ENOENT;
3569 
3570 	/* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3571 	rdtgroup_kn_get(rdtgrp, kn);
3572 	rdtgroup_kn_get(new_prdtgrp, new_parent);
3573 
3574 	mutex_lock(&rdtgroup_mutex);
3575 
3576 	rdt_last_cmd_clear();
3577 
3578 	/*
3579 	 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3580 	 * either kernfs_node is a file.
3581 	 */
3582 	if (kernfs_type(kn) != KERNFS_DIR ||
3583 	    kernfs_type(new_parent) != KERNFS_DIR) {
3584 		rdt_last_cmd_puts("Source and destination must be directories");
3585 		ret = -EPERM;
3586 		goto out;
3587 	}
3588 
3589 	if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3590 		ret = -ENOENT;
3591 		goto out;
3592 	}
3593 
3594 	if (rdtgrp->type != RDTMON_GROUP || !kn->parent ||
3595 	    !is_mon_groups(kn->parent, kn->name)) {
3596 		rdt_last_cmd_puts("Source must be a MON group\n");
3597 		ret = -EPERM;
3598 		goto out;
3599 	}
3600 
3601 	if (!is_mon_groups(new_parent, new_name)) {
3602 		rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3603 		ret = -EPERM;
3604 		goto out;
3605 	}
3606 
3607 	/*
3608 	 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3609 	 * current parent CTRL_MON group and therefore cannot be assigned to
3610 	 * the new parent, making the move illegal.
3611 	 */
3612 	if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3613 	    rdtgrp->mon.parent != new_prdtgrp) {
3614 		rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3615 		ret = -EPERM;
3616 		goto out;
3617 	}
3618 
3619 	/*
3620 	 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3621 	 * possibility of failing to allocate it after kernfs_rename() has
3622 	 * succeeded.
3623 	 */
3624 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3625 		ret = -ENOMEM;
3626 		goto out;
3627 	}
3628 
3629 	/*
3630 	 * Perform all input validation and allocations needed to ensure
3631 	 * mongrp_reparent() will succeed before calling kernfs_rename(),
3632 	 * otherwise it would be necessary to revert this call if
3633 	 * mongrp_reparent() failed.
3634 	 */
3635 	ret = kernfs_rename(kn, new_parent, new_name);
3636 	if (!ret)
3637 		mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3638 
3639 	free_cpumask_var(tmpmask);
3640 
3641 out:
3642 	mutex_unlock(&rdtgroup_mutex);
3643 	rdtgroup_kn_put(rdtgrp, kn);
3644 	rdtgroup_kn_put(new_prdtgrp, new_parent);
3645 	return ret;
3646 }
3647 
3648 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3649 {
3650 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3651 		seq_puts(seq, ",cdp");
3652 
3653 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3654 		seq_puts(seq, ",cdpl2");
3655 
3656 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3657 		seq_puts(seq, ",mba_MBps");
3658 
3659 	return 0;
3660 }
3661 
3662 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3663 	.mkdir		= rdtgroup_mkdir,
3664 	.rmdir		= rdtgroup_rmdir,
3665 	.rename		= rdtgroup_rename,
3666 	.show_options	= rdtgroup_show_options,
3667 };
3668 
3669 static int __init rdtgroup_setup_root(void)
3670 {
3671 	int ret;
3672 
3673 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3674 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3675 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3676 				      &rdtgroup_default);
3677 	if (IS_ERR(rdt_root))
3678 		return PTR_ERR(rdt_root);
3679 
3680 	mutex_lock(&rdtgroup_mutex);
3681 
3682 	rdtgroup_default.closid = 0;
3683 	rdtgroup_default.mon.rmid = 0;
3684 	rdtgroup_default.type = RDTCTRL_GROUP;
3685 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3686 
3687 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3688 
3689 	ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE);
3690 	if (ret) {
3691 		kernfs_destroy_root(rdt_root);
3692 		goto out;
3693 	}
3694 
3695 	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3696 	kernfs_activate(rdtgroup_default.kn);
3697 
3698 out:
3699 	mutex_unlock(&rdtgroup_mutex);
3700 
3701 	return ret;
3702 }
3703 
3704 static void domain_destroy_mon_state(struct rdt_domain *d)
3705 {
3706 	bitmap_free(d->rmid_busy_llc);
3707 	kfree(d->mbm_total);
3708 	kfree(d->mbm_local);
3709 }
3710 
3711 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3712 {
3713 	lockdep_assert_held(&rdtgroup_mutex);
3714 
3715 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3716 		mba_sc_domain_destroy(r, d);
3717 
3718 	if (!r->mon_capable)
3719 		return;
3720 
3721 	/*
3722 	 * If resctrl is mounted, remove all the
3723 	 * per domain monitor data directories.
3724 	 */
3725 	if (static_branch_unlikely(&rdt_mon_enable_key))
3726 		rmdir_mondata_subdir_allrdtgrp(r, d->id);
3727 
3728 	if (is_mbm_enabled())
3729 		cancel_delayed_work(&d->mbm_over);
3730 	if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
3731 		/*
3732 		 * When a package is going down, forcefully
3733 		 * decrement rmid->ebusy. There is no way to know
3734 		 * that the L3 was flushed and hence may lead to
3735 		 * incorrect counts in rare scenarios, but leaving
3736 		 * the RMID as busy creates RMID leaks if the
3737 		 * package never comes back.
3738 		 */
3739 		__check_limbo(d, true);
3740 		cancel_delayed_work(&d->cqm_limbo);
3741 	}
3742 
3743 	domain_destroy_mon_state(d);
3744 }
3745 
3746 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3747 {
3748 	size_t tsize;
3749 
3750 	if (is_llc_occupancy_enabled()) {
3751 		d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL);
3752 		if (!d->rmid_busy_llc)
3753 			return -ENOMEM;
3754 	}
3755 	if (is_mbm_total_enabled()) {
3756 		tsize = sizeof(*d->mbm_total);
3757 		d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3758 		if (!d->mbm_total) {
3759 			bitmap_free(d->rmid_busy_llc);
3760 			return -ENOMEM;
3761 		}
3762 	}
3763 	if (is_mbm_local_enabled()) {
3764 		tsize = sizeof(*d->mbm_local);
3765 		d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3766 		if (!d->mbm_local) {
3767 			bitmap_free(d->rmid_busy_llc);
3768 			kfree(d->mbm_total);
3769 			return -ENOMEM;
3770 		}
3771 	}
3772 
3773 	return 0;
3774 }
3775 
3776 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
3777 {
3778 	int err;
3779 
3780 	lockdep_assert_held(&rdtgroup_mutex);
3781 
3782 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3783 		/* RDT_RESOURCE_MBA is never mon_capable */
3784 		return mba_sc_domain_allocate(r, d);
3785 
3786 	if (!r->mon_capable)
3787 		return 0;
3788 
3789 	err = domain_setup_mon_state(r, d);
3790 	if (err)
3791 		return err;
3792 
3793 	if (is_mbm_enabled()) {
3794 		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
3795 		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
3796 	}
3797 
3798 	if (is_llc_occupancy_enabled())
3799 		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
3800 
3801 	/* If resctrl is mounted, add per domain monitor data directories. */
3802 	if (static_branch_unlikely(&rdt_mon_enable_key))
3803 		mkdir_mondata_subdir_allrdtgrp(r, d);
3804 
3805 	return 0;
3806 }
3807 
3808 /*
3809  * rdtgroup_init - rdtgroup initialization
3810  *
3811  * Setup resctrl file system including set up root, create mount point,
3812  * register rdtgroup filesystem, and initialize files under root directory.
3813  *
3814  * Return: 0 on success or -errno
3815  */
3816 int __init rdtgroup_init(void)
3817 {
3818 	int ret = 0;
3819 
3820 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3821 		     sizeof(last_cmd_status_buf));
3822 
3823 	ret = rdtgroup_setup_root();
3824 	if (ret)
3825 		return ret;
3826 
3827 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3828 	if (ret)
3829 		goto cleanup_root;
3830 
3831 	ret = register_filesystem(&rdt_fs_type);
3832 	if (ret)
3833 		goto cleanup_mountpoint;
3834 
3835 	/*
3836 	 * Adding the resctrl debugfs directory here may not be ideal since
3837 	 * it would let the resctrl debugfs directory appear on the debugfs
3838 	 * filesystem before the resctrl filesystem is mounted.
3839 	 * It may also be ok since that would enable debugging of RDT before
3840 	 * resctrl is mounted.
3841 	 * The reason why the debugfs directory is created here and not in
3842 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3843 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3844 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3845 	 * interactions (eg. SyS_getdents) have the lock ordering:
3846 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3847 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3848 	 * is taken, thus creating dependency:
3849 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3850 	 * issues considering the other two lock dependencies.
3851 	 * By creating the debugfs directory here we avoid a dependency
3852 	 * that may cause deadlock (even though file operations cannot
3853 	 * occur until the filesystem is mounted, but I do not know how to
3854 	 * tell lockdep that).
3855 	 */
3856 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3857 
3858 	return 0;
3859 
3860 cleanup_mountpoint:
3861 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3862 cleanup_root:
3863 	kernfs_destroy_root(rdt_root);
3864 
3865 	return ret;
3866 }
3867 
3868 void __exit rdtgroup_exit(void)
3869 {
3870 	debugfs_remove_recursive(debugfs_resctrl);
3871 	unregister_filesystem(&rdt_fs_type);
3872 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3873 	kernfs_destroy_root(rdt_root);
3874 }
3875