1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Alloction in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl_sched.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* Kernel fs node for "info" directory under root */ 43 static struct kernfs_node *kn_info; 44 45 /* Kernel fs node for "mon_groups" directory under root */ 46 static struct kernfs_node *kn_mongrp; 47 48 /* Kernel fs node for "mon_data" directory under root */ 49 static struct kernfs_node *kn_mondata; 50 51 static struct seq_buf last_cmd_status; 52 static char last_cmd_status_buf[512]; 53 54 struct dentry *debugfs_resctrl; 55 56 void rdt_last_cmd_clear(void) 57 { 58 lockdep_assert_held(&rdtgroup_mutex); 59 seq_buf_clear(&last_cmd_status); 60 } 61 62 void rdt_last_cmd_puts(const char *s) 63 { 64 lockdep_assert_held(&rdtgroup_mutex); 65 seq_buf_puts(&last_cmd_status, s); 66 } 67 68 void rdt_last_cmd_printf(const char *fmt, ...) 69 { 70 va_list ap; 71 72 va_start(ap, fmt); 73 lockdep_assert_held(&rdtgroup_mutex); 74 seq_buf_vprintf(&last_cmd_status, fmt, ap); 75 va_end(ap); 76 } 77 78 /* 79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 80 * we can keep a bitmap of free CLOSIDs in a single integer. 81 * 82 * Using a global CLOSID across all resources has some advantages and 83 * some drawbacks: 84 * + We can simply set "current->closid" to assign a task to a resource 85 * group. 86 * + Context switch code can avoid extra memory references deciding which 87 * CLOSID to load into the PQR_ASSOC MSR 88 * - We give up some options in configuring resource groups across multi-socket 89 * systems. 90 * - Our choices on how to configure each resource become progressively more 91 * limited as the number of resources grows. 92 */ 93 static int closid_free_map; 94 static int closid_free_map_len; 95 96 int closids_supported(void) 97 { 98 return closid_free_map_len; 99 } 100 101 static void closid_init(void) 102 { 103 struct rdt_resource *r; 104 int rdt_min_closid = 32; 105 106 /* Compute rdt_min_closid across all resources */ 107 for_each_alloc_enabled_rdt_resource(r) 108 rdt_min_closid = min(rdt_min_closid, r->num_closid); 109 110 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 111 112 /* CLOSID 0 is always reserved for the default group */ 113 closid_free_map &= ~1; 114 closid_free_map_len = rdt_min_closid; 115 } 116 117 static int closid_alloc(void) 118 { 119 u32 closid = ffs(closid_free_map); 120 121 if (closid == 0) 122 return -ENOSPC; 123 closid--; 124 closid_free_map &= ~(1 << closid); 125 126 return closid; 127 } 128 129 void closid_free(int closid) 130 { 131 closid_free_map |= 1 << closid; 132 } 133 134 /** 135 * closid_allocated - test if provided closid is in use 136 * @closid: closid to be tested 137 * 138 * Return: true if @closid is currently associated with a resource group, 139 * false if @closid is free 140 */ 141 static bool closid_allocated(unsigned int closid) 142 { 143 return (closid_free_map & (1 << closid)) == 0; 144 } 145 146 /** 147 * rdtgroup_mode_by_closid - Return mode of resource group with closid 148 * @closid: closid if the resource group 149 * 150 * Each resource group is associated with a @closid. Here the mode 151 * of a resource group can be queried by searching for it using its closid. 152 * 153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 154 */ 155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 156 { 157 struct rdtgroup *rdtgrp; 158 159 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 160 if (rdtgrp->closid == closid) 161 return rdtgrp->mode; 162 } 163 164 return RDT_NUM_MODES; 165 } 166 167 static const char * const rdt_mode_str[] = { 168 [RDT_MODE_SHAREABLE] = "shareable", 169 [RDT_MODE_EXCLUSIVE] = "exclusive", 170 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 171 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 172 }; 173 174 /** 175 * rdtgroup_mode_str - Return the string representation of mode 176 * @mode: the resource group mode as &enum rdtgroup_mode 177 * 178 * Return: string representation of valid mode, "unknown" otherwise 179 */ 180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 181 { 182 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 183 return "unknown"; 184 185 return rdt_mode_str[mode]; 186 } 187 188 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 190 { 191 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 192 .ia_uid = current_fsuid(), 193 .ia_gid = current_fsgid(), }; 194 195 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 196 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 197 return 0; 198 199 return kernfs_setattr(kn, &iattr); 200 } 201 202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 203 { 204 struct kernfs_node *kn; 205 int ret; 206 207 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 208 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 209 0, rft->kf_ops, rft, NULL, NULL); 210 if (IS_ERR(kn)) 211 return PTR_ERR(kn); 212 213 ret = rdtgroup_kn_set_ugid(kn); 214 if (ret) { 215 kernfs_remove(kn); 216 return ret; 217 } 218 219 return 0; 220 } 221 222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 223 { 224 struct kernfs_open_file *of = m->private; 225 struct rftype *rft = of->kn->priv; 226 227 if (rft->seq_show) 228 return rft->seq_show(of, m, arg); 229 return 0; 230 } 231 232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 233 size_t nbytes, loff_t off) 234 { 235 struct rftype *rft = of->kn->priv; 236 237 if (rft->write) 238 return rft->write(of, buf, nbytes, off); 239 240 return -EINVAL; 241 } 242 243 static struct kernfs_ops rdtgroup_kf_single_ops = { 244 .atomic_write_len = PAGE_SIZE, 245 .write = rdtgroup_file_write, 246 .seq_show = rdtgroup_seqfile_show, 247 }; 248 249 static struct kernfs_ops kf_mondata_ops = { 250 .atomic_write_len = PAGE_SIZE, 251 .seq_show = rdtgroup_mondata_show, 252 }; 253 254 static bool is_cpu_list(struct kernfs_open_file *of) 255 { 256 struct rftype *rft = of->kn->priv; 257 258 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 259 } 260 261 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 262 struct seq_file *s, void *v) 263 { 264 struct rdtgroup *rdtgrp; 265 struct cpumask *mask; 266 int ret = 0; 267 268 rdtgrp = rdtgroup_kn_lock_live(of->kn); 269 270 if (rdtgrp) { 271 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 272 if (!rdtgrp->plr->d) { 273 rdt_last_cmd_clear(); 274 rdt_last_cmd_puts("Cache domain offline\n"); 275 ret = -ENODEV; 276 } else { 277 mask = &rdtgrp->plr->d->cpu_mask; 278 seq_printf(s, is_cpu_list(of) ? 279 "%*pbl\n" : "%*pb\n", 280 cpumask_pr_args(mask)); 281 } 282 } else { 283 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 284 cpumask_pr_args(&rdtgrp->cpu_mask)); 285 } 286 } else { 287 ret = -ENOENT; 288 } 289 rdtgroup_kn_unlock(of->kn); 290 291 return ret; 292 } 293 294 /* 295 * This is safe against resctrl_sched_in() called from __switch_to() 296 * because __switch_to() is executed with interrupts disabled. A local call 297 * from update_closid_rmid() is proteced against __switch_to() because 298 * preemption is disabled. 299 */ 300 static void update_cpu_closid_rmid(void *info) 301 { 302 struct rdtgroup *r = info; 303 304 if (r) { 305 this_cpu_write(pqr_state.default_closid, r->closid); 306 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 307 } 308 309 /* 310 * We cannot unconditionally write the MSR because the current 311 * executing task might have its own closid selected. Just reuse 312 * the context switch code. 313 */ 314 resctrl_sched_in(); 315 } 316 317 /* 318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 319 * 320 * Per task closids/rmids must have been set up before calling this function. 321 */ 322 static void 323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 324 { 325 int cpu = get_cpu(); 326 327 if (cpumask_test_cpu(cpu, cpu_mask)) 328 update_cpu_closid_rmid(r); 329 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1); 330 put_cpu(); 331 } 332 333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 334 cpumask_var_t tmpmask) 335 { 336 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 337 struct list_head *head; 338 339 /* Check whether cpus belong to parent ctrl group */ 340 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 341 if (cpumask_weight(tmpmask)) { 342 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 343 return -EINVAL; 344 } 345 346 /* Check whether cpus are dropped from this group */ 347 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 348 if (cpumask_weight(tmpmask)) { 349 /* Give any dropped cpus to parent rdtgroup */ 350 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 351 update_closid_rmid(tmpmask, prgrp); 352 } 353 354 /* 355 * If we added cpus, remove them from previous group that owned them 356 * and update per-cpu rmid 357 */ 358 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 359 if (cpumask_weight(tmpmask)) { 360 head = &prgrp->mon.crdtgrp_list; 361 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 362 if (crgrp == rdtgrp) 363 continue; 364 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 365 tmpmask); 366 } 367 update_closid_rmid(tmpmask, rdtgrp); 368 } 369 370 /* Done pushing/pulling - update this group with new mask */ 371 cpumask_copy(&rdtgrp->cpu_mask, newmask); 372 373 return 0; 374 } 375 376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 377 { 378 struct rdtgroup *crgrp; 379 380 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 381 /* update the child mon group masks as well*/ 382 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 383 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 384 } 385 386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 387 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 388 { 389 struct rdtgroup *r, *crgrp; 390 struct list_head *head; 391 392 /* Check whether cpus are dropped from this group */ 393 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 394 if (cpumask_weight(tmpmask)) { 395 /* Can't drop from default group */ 396 if (rdtgrp == &rdtgroup_default) { 397 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 398 return -EINVAL; 399 } 400 401 /* Give any dropped cpus to rdtgroup_default */ 402 cpumask_or(&rdtgroup_default.cpu_mask, 403 &rdtgroup_default.cpu_mask, tmpmask); 404 update_closid_rmid(tmpmask, &rdtgroup_default); 405 } 406 407 /* 408 * If we added cpus, remove them from previous group and 409 * the prev group's child groups that owned them 410 * and update per-cpu closid/rmid. 411 */ 412 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 413 if (cpumask_weight(tmpmask)) { 414 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 415 if (r == rdtgrp) 416 continue; 417 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 418 if (cpumask_weight(tmpmask1)) 419 cpumask_rdtgrp_clear(r, tmpmask1); 420 } 421 update_closid_rmid(tmpmask, rdtgrp); 422 } 423 424 /* Done pushing/pulling - update this group with new mask */ 425 cpumask_copy(&rdtgrp->cpu_mask, newmask); 426 427 /* 428 * Clear child mon group masks since there is a new parent mask 429 * now and update the rmid for the cpus the child lost. 430 */ 431 head = &rdtgrp->mon.crdtgrp_list; 432 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 433 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 434 update_closid_rmid(tmpmask, rdtgrp); 435 cpumask_clear(&crgrp->cpu_mask); 436 } 437 438 return 0; 439 } 440 441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 442 char *buf, size_t nbytes, loff_t off) 443 { 444 cpumask_var_t tmpmask, newmask, tmpmask1; 445 struct rdtgroup *rdtgrp; 446 int ret; 447 448 if (!buf) 449 return -EINVAL; 450 451 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 452 return -ENOMEM; 453 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 454 free_cpumask_var(tmpmask); 455 return -ENOMEM; 456 } 457 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 458 free_cpumask_var(tmpmask); 459 free_cpumask_var(newmask); 460 return -ENOMEM; 461 } 462 463 rdtgrp = rdtgroup_kn_lock_live(of->kn); 464 rdt_last_cmd_clear(); 465 if (!rdtgrp) { 466 ret = -ENOENT; 467 rdt_last_cmd_puts("Directory was removed\n"); 468 goto unlock; 469 } 470 471 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 472 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 473 ret = -EINVAL; 474 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 475 goto unlock; 476 } 477 478 if (is_cpu_list(of)) 479 ret = cpulist_parse(buf, newmask); 480 else 481 ret = cpumask_parse(buf, newmask); 482 483 if (ret) { 484 rdt_last_cmd_puts("Bad CPU list/mask\n"); 485 goto unlock; 486 } 487 488 /* check that user didn't specify any offline cpus */ 489 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 490 if (cpumask_weight(tmpmask)) { 491 ret = -EINVAL; 492 rdt_last_cmd_puts("Can only assign online CPUs\n"); 493 goto unlock; 494 } 495 496 if (rdtgrp->type == RDTCTRL_GROUP) 497 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 498 else if (rdtgrp->type == RDTMON_GROUP) 499 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 500 else 501 ret = -EINVAL; 502 503 unlock: 504 rdtgroup_kn_unlock(of->kn); 505 free_cpumask_var(tmpmask); 506 free_cpumask_var(newmask); 507 free_cpumask_var(tmpmask1); 508 509 return ret ?: nbytes; 510 } 511 512 struct task_move_callback { 513 struct callback_head work; 514 struct rdtgroup *rdtgrp; 515 }; 516 517 static void move_myself(struct callback_head *head) 518 { 519 struct task_move_callback *callback; 520 struct rdtgroup *rdtgrp; 521 522 callback = container_of(head, struct task_move_callback, work); 523 rdtgrp = callback->rdtgrp; 524 525 /* 526 * If resource group was deleted before this task work callback 527 * was invoked, then assign the task to root group and free the 528 * resource group. 529 */ 530 if (atomic_dec_and_test(&rdtgrp->waitcount) && 531 (rdtgrp->flags & RDT_DELETED)) { 532 current->closid = 0; 533 current->rmid = 0; 534 kfree(rdtgrp); 535 } 536 537 preempt_disable(); 538 /* update PQR_ASSOC MSR to make resource group go into effect */ 539 resctrl_sched_in(); 540 preempt_enable(); 541 542 kfree(callback); 543 } 544 545 static int __rdtgroup_move_task(struct task_struct *tsk, 546 struct rdtgroup *rdtgrp) 547 { 548 struct task_move_callback *callback; 549 int ret; 550 551 callback = kzalloc(sizeof(*callback), GFP_KERNEL); 552 if (!callback) 553 return -ENOMEM; 554 callback->work.func = move_myself; 555 callback->rdtgrp = rdtgrp; 556 557 /* 558 * Take a refcount, so rdtgrp cannot be freed before the 559 * callback has been invoked. 560 */ 561 atomic_inc(&rdtgrp->waitcount); 562 ret = task_work_add(tsk, &callback->work, true); 563 if (ret) { 564 /* 565 * Task is exiting. Drop the refcount and free the callback. 566 * No need to check the refcount as the group cannot be 567 * deleted before the write function unlocks rdtgroup_mutex. 568 */ 569 atomic_dec(&rdtgrp->waitcount); 570 kfree(callback); 571 rdt_last_cmd_puts("Task exited\n"); 572 } else { 573 /* 574 * For ctrl_mon groups move both closid and rmid. 575 * For monitor groups, can move the tasks only from 576 * their parent CTRL group. 577 */ 578 if (rdtgrp->type == RDTCTRL_GROUP) { 579 tsk->closid = rdtgrp->closid; 580 tsk->rmid = rdtgrp->mon.rmid; 581 } else if (rdtgrp->type == RDTMON_GROUP) { 582 if (rdtgrp->mon.parent->closid == tsk->closid) { 583 tsk->rmid = rdtgrp->mon.rmid; 584 } else { 585 rdt_last_cmd_puts("Can't move task to different control group\n"); 586 ret = -EINVAL; 587 } 588 } 589 } 590 return ret; 591 } 592 593 /** 594 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 595 * @r: Resource group 596 * 597 * Return: 1 if tasks have been assigned to @r, 0 otherwise 598 */ 599 int rdtgroup_tasks_assigned(struct rdtgroup *r) 600 { 601 struct task_struct *p, *t; 602 int ret = 0; 603 604 lockdep_assert_held(&rdtgroup_mutex); 605 606 rcu_read_lock(); 607 for_each_process_thread(p, t) { 608 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) || 609 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) { 610 ret = 1; 611 break; 612 } 613 } 614 rcu_read_unlock(); 615 616 return ret; 617 } 618 619 static int rdtgroup_task_write_permission(struct task_struct *task, 620 struct kernfs_open_file *of) 621 { 622 const struct cred *tcred = get_task_cred(task); 623 const struct cred *cred = current_cred(); 624 int ret = 0; 625 626 /* 627 * Even if we're attaching all tasks in the thread group, we only 628 * need to check permissions on one of them. 629 */ 630 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 631 !uid_eq(cred->euid, tcred->uid) && 632 !uid_eq(cred->euid, tcred->suid)) { 633 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 634 ret = -EPERM; 635 } 636 637 put_cred(tcred); 638 return ret; 639 } 640 641 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 642 struct kernfs_open_file *of) 643 { 644 struct task_struct *tsk; 645 int ret; 646 647 rcu_read_lock(); 648 if (pid) { 649 tsk = find_task_by_vpid(pid); 650 if (!tsk) { 651 rcu_read_unlock(); 652 rdt_last_cmd_printf("No task %d\n", pid); 653 return -ESRCH; 654 } 655 } else { 656 tsk = current; 657 } 658 659 get_task_struct(tsk); 660 rcu_read_unlock(); 661 662 ret = rdtgroup_task_write_permission(tsk, of); 663 if (!ret) 664 ret = __rdtgroup_move_task(tsk, rdtgrp); 665 666 put_task_struct(tsk); 667 return ret; 668 } 669 670 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 671 char *buf, size_t nbytes, loff_t off) 672 { 673 struct rdtgroup *rdtgrp; 674 int ret = 0; 675 pid_t pid; 676 677 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 678 return -EINVAL; 679 rdtgrp = rdtgroup_kn_lock_live(of->kn); 680 if (!rdtgrp) { 681 rdtgroup_kn_unlock(of->kn); 682 return -ENOENT; 683 } 684 rdt_last_cmd_clear(); 685 686 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 687 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 688 ret = -EINVAL; 689 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 690 goto unlock; 691 } 692 693 ret = rdtgroup_move_task(pid, rdtgrp, of); 694 695 unlock: 696 rdtgroup_kn_unlock(of->kn); 697 698 return ret ?: nbytes; 699 } 700 701 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 702 { 703 struct task_struct *p, *t; 704 705 rcu_read_lock(); 706 for_each_process_thread(p, t) { 707 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) || 708 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) 709 seq_printf(s, "%d\n", t->pid); 710 } 711 rcu_read_unlock(); 712 } 713 714 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 715 struct seq_file *s, void *v) 716 { 717 struct rdtgroup *rdtgrp; 718 int ret = 0; 719 720 rdtgrp = rdtgroup_kn_lock_live(of->kn); 721 if (rdtgrp) 722 show_rdt_tasks(rdtgrp, s); 723 else 724 ret = -ENOENT; 725 rdtgroup_kn_unlock(of->kn); 726 727 return ret; 728 } 729 730 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 731 struct seq_file *seq, void *v) 732 { 733 int len; 734 735 mutex_lock(&rdtgroup_mutex); 736 len = seq_buf_used(&last_cmd_status); 737 if (len) 738 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 739 else 740 seq_puts(seq, "ok\n"); 741 mutex_unlock(&rdtgroup_mutex); 742 return 0; 743 } 744 745 static int rdt_num_closids_show(struct kernfs_open_file *of, 746 struct seq_file *seq, void *v) 747 { 748 struct rdt_resource *r = of->kn->parent->priv; 749 750 seq_printf(seq, "%d\n", r->num_closid); 751 return 0; 752 } 753 754 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 755 struct seq_file *seq, void *v) 756 { 757 struct rdt_resource *r = of->kn->parent->priv; 758 759 seq_printf(seq, "%x\n", r->default_ctrl); 760 return 0; 761 } 762 763 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 764 struct seq_file *seq, void *v) 765 { 766 struct rdt_resource *r = of->kn->parent->priv; 767 768 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 769 return 0; 770 } 771 772 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 773 struct seq_file *seq, void *v) 774 { 775 struct rdt_resource *r = of->kn->parent->priv; 776 777 seq_printf(seq, "%x\n", r->cache.shareable_bits); 778 return 0; 779 } 780 781 /** 782 * rdt_bit_usage_show - Display current usage of resources 783 * 784 * A domain is a shared resource that can now be allocated differently. Here 785 * we display the current regions of the domain as an annotated bitmask. 786 * For each domain of this resource its allocation bitmask 787 * is annotated as below to indicate the current usage of the corresponding bit: 788 * 0 - currently unused 789 * X - currently available for sharing and used by software and hardware 790 * H - currently used by hardware only but available for software use 791 * S - currently used and shareable by software only 792 * E - currently used exclusively by one resource group 793 * P - currently pseudo-locked by one resource group 794 */ 795 static int rdt_bit_usage_show(struct kernfs_open_file *of, 796 struct seq_file *seq, void *v) 797 { 798 struct rdt_resource *r = of->kn->parent->priv; 799 u32 sw_shareable = 0, hw_shareable = 0; 800 u32 exclusive = 0, pseudo_locked = 0; 801 struct rdt_domain *dom; 802 int i, hwb, swb, excl, psl; 803 enum rdtgrp_mode mode; 804 bool sep = false; 805 u32 *ctrl; 806 807 mutex_lock(&rdtgroup_mutex); 808 hw_shareable = r->cache.shareable_bits; 809 list_for_each_entry(dom, &r->domains, list) { 810 if (sep) 811 seq_putc(seq, ';'); 812 ctrl = dom->ctrl_val; 813 sw_shareable = 0; 814 exclusive = 0; 815 seq_printf(seq, "%d=", dom->id); 816 for (i = 0; i < closids_supported(); i++, ctrl++) { 817 if (!closid_allocated(i)) 818 continue; 819 mode = rdtgroup_mode_by_closid(i); 820 switch (mode) { 821 case RDT_MODE_SHAREABLE: 822 sw_shareable |= *ctrl; 823 break; 824 case RDT_MODE_EXCLUSIVE: 825 exclusive |= *ctrl; 826 break; 827 case RDT_MODE_PSEUDO_LOCKSETUP: 828 /* 829 * RDT_MODE_PSEUDO_LOCKSETUP is possible 830 * here but not included since the CBM 831 * associated with this CLOSID in this mode 832 * is not initialized and no task or cpu can be 833 * assigned this CLOSID. 834 */ 835 break; 836 case RDT_MODE_PSEUDO_LOCKED: 837 case RDT_NUM_MODES: 838 WARN(1, 839 "invalid mode for closid %d\n", i); 840 break; 841 } 842 } 843 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 844 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 845 hwb = test_bit(i, (unsigned long *)&hw_shareable); 846 swb = test_bit(i, (unsigned long *)&sw_shareable); 847 excl = test_bit(i, (unsigned long *)&exclusive); 848 psl = test_bit(i, (unsigned long *)&pseudo_locked); 849 if (hwb && swb) 850 seq_putc(seq, 'X'); 851 else if (hwb && !swb) 852 seq_putc(seq, 'H'); 853 else if (!hwb && swb) 854 seq_putc(seq, 'S'); 855 else if (excl) 856 seq_putc(seq, 'E'); 857 else if (psl) 858 seq_putc(seq, 'P'); 859 else /* Unused bits remain */ 860 seq_putc(seq, '0'); 861 } 862 sep = true; 863 } 864 seq_putc(seq, '\n'); 865 mutex_unlock(&rdtgroup_mutex); 866 return 0; 867 } 868 869 static int rdt_min_bw_show(struct kernfs_open_file *of, 870 struct seq_file *seq, void *v) 871 { 872 struct rdt_resource *r = of->kn->parent->priv; 873 874 seq_printf(seq, "%u\n", r->membw.min_bw); 875 return 0; 876 } 877 878 static int rdt_num_rmids_show(struct kernfs_open_file *of, 879 struct seq_file *seq, void *v) 880 { 881 struct rdt_resource *r = of->kn->parent->priv; 882 883 seq_printf(seq, "%d\n", r->num_rmid); 884 885 return 0; 886 } 887 888 static int rdt_mon_features_show(struct kernfs_open_file *of, 889 struct seq_file *seq, void *v) 890 { 891 struct rdt_resource *r = of->kn->parent->priv; 892 struct mon_evt *mevt; 893 894 list_for_each_entry(mevt, &r->evt_list, list) 895 seq_printf(seq, "%s\n", mevt->name); 896 897 return 0; 898 } 899 900 static int rdt_bw_gran_show(struct kernfs_open_file *of, 901 struct seq_file *seq, void *v) 902 { 903 struct rdt_resource *r = of->kn->parent->priv; 904 905 seq_printf(seq, "%u\n", r->membw.bw_gran); 906 return 0; 907 } 908 909 static int rdt_delay_linear_show(struct kernfs_open_file *of, 910 struct seq_file *seq, void *v) 911 { 912 struct rdt_resource *r = of->kn->parent->priv; 913 914 seq_printf(seq, "%u\n", r->membw.delay_linear); 915 return 0; 916 } 917 918 static int max_threshold_occ_show(struct kernfs_open_file *of, 919 struct seq_file *seq, void *v) 920 { 921 struct rdt_resource *r = of->kn->parent->priv; 922 923 seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale); 924 925 return 0; 926 } 927 928 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 929 char *buf, size_t nbytes, loff_t off) 930 { 931 struct rdt_resource *r = of->kn->parent->priv; 932 unsigned int bytes; 933 int ret; 934 935 ret = kstrtouint(buf, 0, &bytes); 936 if (ret) 937 return ret; 938 939 if (bytes > (boot_cpu_data.x86_cache_size * 1024)) 940 return -EINVAL; 941 942 resctrl_cqm_threshold = bytes / r->mon_scale; 943 944 return nbytes; 945 } 946 947 /* 948 * rdtgroup_mode_show - Display mode of this resource group 949 */ 950 static int rdtgroup_mode_show(struct kernfs_open_file *of, 951 struct seq_file *s, void *v) 952 { 953 struct rdtgroup *rdtgrp; 954 955 rdtgrp = rdtgroup_kn_lock_live(of->kn); 956 if (!rdtgrp) { 957 rdtgroup_kn_unlock(of->kn); 958 return -ENOENT; 959 } 960 961 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 962 963 rdtgroup_kn_unlock(of->kn); 964 return 0; 965 } 966 967 /** 968 * rdt_cdp_peer_get - Retrieve CDP peer if it exists 969 * @r: RDT resource to which RDT domain @d belongs 970 * @d: Cache instance for which a CDP peer is requested 971 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer) 972 * Used to return the result. 973 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer) 974 * Used to return the result. 975 * 976 * RDT resources are managed independently and by extension the RDT domains 977 * (RDT resource instances) are managed independently also. The Code and 978 * Data Prioritization (CDP) RDT resources, while managed independently, 979 * could refer to the same underlying hardware. For example, 980 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache. 981 * 982 * When provided with an RDT resource @r and an instance of that RDT 983 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT 984 * resource and the exact instance that shares the same hardware. 985 * 986 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists. 987 * If a CDP peer was found, @r_cdp will point to the peer RDT resource 988 * and @d_cdp will point to the peer RDT domain. 989 */ 990 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d, 991 struct rdt_resource **r_cdp, 992 struct rdt_domain **d_cdp) 993 { 994 struct rdt_resource *_r_cdp = NULL; 995 struct rdt_domain *_d_cdp = NULL; 996 int ret = 0; 997 998 switch (r->rid) { 999 case RDT_RESOURCE_L3DATA: 1000 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE]; 1001 break; 1002 case RDT_RESOURCE_L3CODE: 1003 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA]; 1004 break; 1005 case RDT_RESOURCE_L2DATA: 1006 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE]; 1007 break; 1008 case RDT_RESOURCE_L2CODE: 1009 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA]; 1010 break; 1011 default: 1012 ret = -ENOENT; 1013 goto out; 1014 } 1015 1016 /* 1017 * When a new CPU comes online and CDP is enabled then the new 1018 * RDT domains (if any) associated with both CDP RDT resources 1019 * are added in the same CPU online routine while the 1020 * rdtgroup_mutex is held. It should thus not happen for one 1021 * RDT domain to exist and be associated with its RDT CDP 1022 * resource but there is no RDT domain associated with the 1023 * peer RDT CDP resource. Hence the WARN. 1024 */ 1025 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL); 1026 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) { 1027 _r_cdp = NULL; 1028 ret = -EINVAL; 1029 } 1030 1031 out: 1032 *r_cdp = _r_cdp; 1033 *d_cdp = _d_cdp; 1034 1035 return ret; 1036 } 1037 1038 /** 1039 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1040 * @r: Resource to which domain instance @d belongs. 1041 * @d: The domain instance for which @closid is being tested. 1042 * @cbm: Capacity bitmask being tested. 1043 * @closid: Intended closid for @cbm. 1044 * @exclusive: Only check if overlaps with exclusive resource groups 1045 * 1046 * Checks if provided @cbm intended to be used for @closid on domain 1047 * @d overlaps with any other closids or other hardware usage associated 1048 * with this domain. If @exclusive is true then only overlaps with 1049 * resource groups in exclusive mode will be considered. If @exclusive 1050 * is false then overlaps with any resource group or hardware entities 1051 * will be considered. 1052 * 1053 * @cbm is unsigned long, even if only 32 bits are used, to make the 1054 * bitmap functions work correctly. 1055 * 1056 * Return: false if CBM does not overlap, true if it does. 1057 */ 1058 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1059 unsigned long cbm, int closid, bool exclusive) 1060 { 1061 enum rdtgrp_mode mode; 1062 unsigned long ctrl_b; 1063 u32 *ctrl; 1064 int i; 1065 1066 /* Check for any overlap with regions used by hardware directly */ 1067 if (!exclusive) { 1068 ctrl_b = r->cache.shareable_bits; 1069 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1070 return true; 1071 } 1072 1073 /* Check for overlap with other resource groups */ 1074 ctrl = d->ctrl_val; 1075 for (i = 0; i < closids_supported(); i++, ctrl++) { 1076 ctrl_b = *ctrl; 1077 mode = rdtgroup_mode_by_closid(i); 1078 if (closid_allocated(i) && i != closid && 1079 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1080 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1081 if (exclusive) { 1082 if (mode == RDT_MODE_EXCLUSIVE) 1083 return true; 1084 continue; 1085 } 1086 return true; 1087 } 1088 } 1089 } 1090 1091 return false; 1092 } 1093 1094 /** 1095 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1096 * @r: Resource to which domain instance @d belongs. 1097 * @d: The domain instance for which @closid is being tested. 1098 * @cbm: Capacity bitmask being tested. 1099 * @closid: Intended closid for @cbm. 1100 * @exclusive: Only check if overlaps with exclusive resource groups 1101 * 1102 * Resources that can be allocated using a CBM can use the CBM to control 1103 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1104 * for overlap. Overlap test is not limited to the specific resource for 1105 * which the CBM is intended though - when dealing with CDP resources that 1106 * share the underlying hardware the overlap check should be performed on 1107 * the CDP resource sharing the hardware also. 1108 * 1109 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1110 * overlap test. 1111 * 1112 * Return: true if CBM overlap detected, false if there is no overlap 1113 */ 1114 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1115 unsigned long cbm, int closid, bool exclusive) 1116 { 1117 struct rdt_resource *r_cdp; 1118 struct rdt_domain *d_cdp; 1119 1120 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive)) 1121 return true; 1122 1123 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0) 1124 return false; 1125 1126 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive); 1127 } 1128 1129 /** 1130 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1131 * 1132 * An exclusive resource group implies that there should be no sharing of 1133 * its allocated resources. At the time this group is considered to be 1134 * exclusive this test can determine if its current schemata supports this 1135 * setting by testing for overlap with all other resource groups. 1136 * 1137 * Return: true if resource group can be exclusive, false if there is overlap 1138 * with allocations of other resource groups and thus this resource group 1139 * cannot be exclusive. 1140 */ 1141 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1142 { 1143 int closid = rdtgrp->closid; 1144 struct rdt_resource *r; 1145 bool has_cache = false; 1146 struct rdt_domain *d; 1147 1148 for_each_alloc_enabled_rdt_resource(r) { 1149 if (r->rid == RDT_RESOURCE_MBA) 1150 continue; 1151 has_cache = true; 1152 list_for_each_entry(d, &r->domains, list) { 1153 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid], 1154 rdtgrp->closid, false)) { 1155 rdt_last_cmd_puts("Schemata overlaps\n"); 1156 return false; 1157 } 1158 } 1159 } 1160 1161 if (!has_cache) { 1162 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1163 return false; 1164 } 1165 1166 return true; 1167 } 1168 1169 /** 1170 * rdtgroup_mode_write - Modify the resource group's mode 1171 * 1172 */ 1173 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1174 char *buf, size_t nbytes, loff_t off) 1175 { 1176 struct rdtgroup *rdtgrp; 1177 enum rdtgrp_mode mode; 1178 int ret = 0; 1179 1180 /* Valid input requires a trailing newline */ 1181 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1182 return -EINVAL; 1183 buf[nbytes - 1] = '\0'; 1184 1185 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1186 if (!rdtgrp) { 1187 rdtgroup_kn_unlock(of->kn); 1188 return -ENOENT; 1189 } 1190 1191 rdt_last_cmd_clear(); 1192 1193 mode = rdtgrp->mode; 1194 1195 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1196 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1197 (!strcmp(buf, "pseudo-locksetup") && 1198 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1199 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1200 goto out; 1201 1202 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1203 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1204 ret = -EINVAL; 1205 goto out; 1206 } 1207 1208 if (!strcmp(buf, "shareable")) { 1209 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1210 ret = rdtgroup_locksetup_exit(rdtgrp); 1211 if (ret) 1212 goto out; 1213 } 1214 rdtgrp->mode = RDT_MODE_SHAREABLE; 1215 } else if (!strcmp(buf, "exclusive")) { 1216 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1217 ret = -EINVAL; 1218 goto out; 1219 } 1220 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1221 ret = rdtgroup_locksetup_exit(rdtgrp); 1222 if (ret) 1223 goto out; 1224 } 1225 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1226 } else if (!strcmp(buf, "pseudo-locksetup")) { 1227 ret = rdtgroup_locksetup_enter(rdtgrp); 1228 if (ret) 1229 goto out; 1230 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1231 } else { 1232 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1233 ret = -EINVAL; 1234 } 1235 1236 out: 1237 rdtgroup_kn_unlock(of->kn); 1238 return ret ?: nbytes; 1239 } 1240 1241 /** 1242 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1243 * @r: RDT resource to which @d belongs. 1244 * @d: RDT domain instance. 1245 * @cbm: bitmask for which the size should be computed. 1246 * 1247 * The bitmask provided associated with the RDT domain instance @d will be 1248 * translated into how many bytes it represents. The size in bytes is 1249 * computed by first dividing the total cache size by the CBM length to 1250 * determine how many bytes each bit in the bitmask represents. The result 1251 * is multiplied with the number of bits set in the bitmask. 1252 * 1253 * @cbm is unsigned long, even if only 32 bits are used to make the 1254 * bitmap functions work correctly. 1255 */ 1256 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1257 struct rdt_domain *d, unsigned long cbm) 1258 { 1259 struct cpu_cacheinfo *ci; 1260 unsigned int size = 0; 1261 int num_b, i; 1262 1263 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1264 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1265 for (i = 0; i < ci->num_leaves; i++) { 1266 if (ci->info_list[i].level == r->cache_level) { 1267 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1268 break; 1269 } 1270 } 1271 1272 return size; 1273 } 1274 1275 /** 1276 * rdtgroup_size_show - Display size in bytes of allocated regions 1277 * 1278 * The "size" file mirrors the layout of the "schemata" file, printing the 1279 * size in bytes of each region instead of the capacity bitmask. 1280 * 1281 */ 1282 static int rdtgroup_size_show(struct kernfs_open_file *of, 1283 struct seq_file *s, void *v) 1284 { 1285 struct rdtgroup *rdtgrp; 1286 struct rdt_resource *r; 1287 struct rdt_domain *d; 1288 unsigned int size; 1289 int ret = 0; 1290 bool sep; 1291 u32 ctrl; 1292 1293 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1294 if (!rdtgrp) { 1295 rdtgroup_kn_unlock(of->kn); 1296 return -ENOENT; 1297 } 1298 1299 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1300 if (!rdtgrp->plr->d) { 1301 rdt_last_cmd_clear(); 1302 rdt_last_cmd_puts("Cache domain offline\n"); 1303 ret = -ENODEV; 1304 } else { 1305 seq_printf(s, "%*s:", max_name_width, 1306 rdtgrp->plr->r->name); 1307 size = rdtgroup_cbm_to_size(rdtgrp->plr->r, 1308 rdtgrp->plr->d, 1309 rdtgrp->plr->cbm); 1310 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1311 } 1312 goto out; 1313 } 1314 1315 for_each_alloc_enabled_rdt_resource(r) { 1316 sep = false; 1317 seq_printf(s, "%*s:", max_name_width, r->name); 1318 list_for_each_entry(d, &r->domains, list) { 1319 if (sep) 1320 seq_putc(s, ';'); 1321 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1322 size = 0; 1323 } else { 1324 ctrl = (!is_mba_sc(r) ? 1325 d->ctrl_val[rdtgrp->closid] : 1326 d->mbps_val[rdtgrp->closid]); 1327 if (r->rid == RDT_RESOURCE_MBA) 1328 size = ctrl; 1329 else 1330 size = rdtgroup_cbm_to_size(r, d, ctrl); 1331 } 1332 seq_printf(s, "%d=%u", d->id, size); 1333 sep = true; 1334 } 1335 seq_putc(s, '\n'); 1336 } 1337 1338 out: 1339 rdtgroup_kn_unlock(of->kn); 1340 1341 return ret; 1342 } 1343 1344 /* rdtgroup information files for one cache resource. */ 1345 static struct rftype res_common_files[] = { 1346 { 1347 .name = "last_cmd_status", 1348 .mode = 0444, 1349 .kf_ops = &rdtgroup_kf_single_ops, 1350 .seq_show = rdt_last_cmd_status_show, 1351 .fflags = RF_TOP_INFO, 1352 }, 1353 { 1354 .name = "num_closids", 1355 .mode = 0444, 1356 .kf_ops = &rdtgroup_kf_single_ops, 1357 .seq_show = rdt_num_closids_show, 1358 .fflags = RF_CTRL_INFO, 1359 }, 1360 { 1361 .name = "mon_features", 1362 .mode = 0444, 1363 .kf_ops = &rdtgroup_kf_single_ops, 1364 .seq_show = rdt_mon_features_show, 1365 .fflags = RF_MON_INFO, 1366 }, 1367 { 1368 .name = "num_rmids", 1369 .mode = 0444, 1370 .kf_ops = &rdtgroup_kf_single_ops, 1371 .seq_show = rdt_num_rmids_show, 1372 .fflags = RF_MON_INFO, 1373 }, 1374 { 1375 .name = "cbm_mask", 1376 .mode = 0444, 1377 .kf_ops = &rdtgroup_kf_single_ops, 1378 .seq_show = rdt_default_ctrl_show, 1379 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1380 }, 1381 { 1382 .name = "min_cbm_bits", 1383 .mode = 0444, 1384 .kf_ops = &rdtgroup_kf_single_ops, 1385 .seq_show = rdt_min_cbm_bits_show, 1386 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1387 }, 1388 { 1389 .name = "shareable_bits", 1390 .mode = 0444, 1391 .kf_ops = &rdtgroup_kf_single_ops, 1392 .seq_show = rdt_shareable_bits_show, 1393 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1394 }, 1395 { 1396 .name = "bit_usage", 1397 .mode = 0444, 1398 .kf_ops = &rdtgroup_kf_single_ops, 1399 .seq_show = rdt_bit_usage_show, 1400 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1401 }, 1402 { 1403 .name = "min_bandwidth", 1404 .mode = 0444, 1405 .kf_ops = &rdtgroup_kf_single_ops, 1406 .seq_show = rdt_min_bw_show, 1407 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1408 }, 1409 { 1410 .name = "bandwidth_gran", 1411 .mode = 0444, 1412 .kf_ops = &rdtgroup_kf_single_ops, 1413 .seq_show = rdt_bw_gran_show, 1414 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1415 }, 1416 { 1417 .name = "delay_linear", 1418 .mode = 0444, 1419 .kf_ops = &rdtgroup_kf_single_ops, 1420 .seq_show = rdt_delay_linear_show, 1421 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1422 }, 1423 { 1424 .name = "max_threshold_occupancy", 1425 .mode = 0644, 1426 .kf_ops = &rdtgroup_kf_single_ops, 1427 .write = max_threshold_occ_write, 1428 .seq_show = max_threshold_occ_show, 1429 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1430 }, 1431 { 1432 .name = "cpus", 1433 .mode = 0644, 1434 .kf_ops = &rdtgroup_kf_single_ops, 1435 .write = rdtgroup_cpus_write, 1436 .seq_show = rdtgroup_cpus_show, 1437 .fflags = RFTYPE_BASE, 1438 }, 1439 { 1440 .name = "cpus_list", 1441 .mode = 0644, 1442 .kf_ops = &rdtgroup_kf_single_ops, 1443 .write = rdtgroup_cpus_write, 1444 .seq_show = rdtgroup_cpus_show, 1445 .flags = RFTYPE_FLAGS_CPUS_LIST, 1446 .fflags = RFTYPE_BASE, 1447 }, 1448 { 1449 .name = "tasks", 1450 .mode = 0644, 1451 .kf_ops = &rdtgroup_kf_single_ops, 1452 .write = rdtgroup_tasks_write, 1453 .seq_show = rdtgroup_tasks_show, 1454 .fflags = RFTYPE_BASE, 1455 }, 1456 { 1457 .name = "schemata", 1458 .mode = 0644, 1459 .kf_ops = &rdtgroup_kf_single_ops, 1460 .write = rdtgroup_schemata_write, 1461 .seq_show = rdtgroup_schemata_show, 1462 .fflags = RF_CTRL_BASE, 1463 }, 1464 { 1465 .name = "mode", 1466 .mode = 0644, 1467 .kf_ops = &rdtgroup_kf_single_ops, 1468 .write = rdtgroup_mode_write, 1469 .seq_show = rdtgroup_mode_show, 1470 .fflags = RF_CTRL_BASE, 1471 }, 1472 { 1473 .name = "size", 1474 .mode = 0444, 1475 .kf_ops = &rdtgroup_kf_single_ops, 1476 .seq_show = rdtgroup_size_show, 1477 .fflags = RF_CTRL_BASE, 1478 }, 1479 1480 }; 1481 1482 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1483 { 1484 struct rftype *rfts, *rft; 1485 int ret, len; 1486 1487 rfts = res_common_files; 1488 len = ARRAY_SIZE(res_common_files); 1489 1490 lockdep_assert_held(&rdtgroup_mutex); 1491 1492 for (rft = rfts; rft < rfts + len; rft++) { 1493 if ((fflags & rft->fflags) == rft->fflags) { 1494 ret = rdtgroup_add_file(kn, rft); 1495 if (ret) 1496 goto error; 1497 } 1498 } 1499 1500 return 0; 1501 error: 1502 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1503 while (--rft >= rfts) { 1504 if ((fflags & rft->fflags) == rft->fflags) 1505 kernfs_remove_by_name(kn, rft->name); 1506 } 1507 return ret; 1508 } 1509 1510 /** 1511 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1512 * @r: The resource group with which the file is associated. 1513 * @name: Name of the file 1514 * 1515 * The permissions of named resctrl file, directory, or link are modified 1516 * to not allow read, write, or execute by any user. 1517 * 1518 * WARNING: This function is intended to communicate to the user that the 1519 * resctrl file has been locked down - that it is not relevant to the 1520 * particular state the system finds itself in. It should not be relied 1521 * on to protect from user access because after the file's permissions 1522 * are restricted the user can still change the permissions using chmod 1523 * from the command line. 1524 * 1525 * Return: 0 on success, <0 on failure. 1526 */ 1527 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1528 { 1529 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1530 struct kernfs_node *kn; 1531 int ret = 0; 1532 1533 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1534 if (!kn) 1535 return -ENOENT; 1536 1537 switch (kernfs_type(kn)) { 1538 case KERNFS_DIR: 1539 iattr.ia_mode = S_IFDIR; 1540 break; 1541 case KERNFS_FILE: 1542 iattr.ia_mode = S_IFREG; 1543 break; 1544 case KERNFS_LINK: 1545 iattr.ia_mode = S_IFLNK; 1546 break; 1547 } 1548 1549 ret = kernfs_setattr(kn, &iattr); 1550 kernfs_put(kn); 1551 return ret; 1552 } 1553 1554 /** 1555 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1556 * @r: The resource group with which the file is associated. 1557 * @name: Name of the file 1558 * @mask: Mask of permissions that should be restored 1559 * 1560 * Restore the permissions of the named file. If @name is a directory the 1561 * permissions of its parent will be used. 1562 * 1563 * Return: 0 on success, <0 on failure. 1564 */ 1565 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1566 umode_t mask) 1567 { 1568 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1569 struct kernfs_node *kn, *parent; 1570 struct rftype *rfts, *rft; 1571 int ret, len; 1572 1573 rfts = res_common_files; 1574 len = ARRAY_SIZE(res_common_files); 1575 1576 for (rft = rfts; rft < rfts + len; rft++) { 1577 if (!strcmp(rft->name, name)) 1578 iattr.ia_mode = rft->mode & mask; 1579 } 1580 1581 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1582 if (!kn) 1583 return -ENOENT; 1584 1585 switch (kernfs_type(kn)) { 1586 case KERNFS_DIR: 1587 parent = kernfs_get_parent(kn); 1588 if (parent) { 1589 iattr.ia_mode |= parent->mode; 1590 kernfs_put(parent); 1591 } 1592 iattr.ia_mode |= S_IFDIR; 1593 break; 1594 case KERNFS_FILE: 1595 iattr.ia_mode |= S_IFREG; 1596 break; 1597 case KERNFS_LINK: 1598 iattr.ia_mode |= S_IFLNK; 1599 break; 1600 } 1601 1602 ret = kernfs_setattr(kn, &iattr); 1603 kernfs_put(kn); 1604 return ret; 1605 } 1606 1607 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name, 1608 unsigned long fflags) 1609 { 1610 struct kernfs_node *kn_subdir; 1611 int ret; 1612 1613 kn_subdir = kernfs_create_dir(kn_info, name, 1614 kn_info->mode, r); 1615 if (IS_ERR(kn_subdir)) 1616 return PTR_ERR(kn_subdir); 1617 1618 kernfs_get(kn_subdir); 1619 ret = rdtgroup_kn_set_ugid(kn_subdir); 1620 if (ret) 1621 return ret; 1622 1623 ret = rdtgroup_add_files(kn_subdir, fflags); 1624 if (!ret) 1625 kernfs_activate(kn_subdir); 1626 1627 return ret; 1628 } 1629 1630 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 1631 { 1632 struct rdt_resource *r; 1633 unsigned long fflags; 1634 char name[32]; 1635 int ret; 1636 1637 /* create the directory */ 1638 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 1639 if (IS_ERR(kn_info)) 1640 return PTR_ERR(kn_info); 1641 kernfs_get(kn_info); 1642 1643 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 1644 if (ret) 1645 goto out_destroy; 1646 1647 for_each_alloc_enabled_rdt_resource(r) { 1648 fflags = r->fflags | RF_CTRL_INFO; 1649 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags); 1650 if (ret) 1651 goto out_destroy; 1652 } 1653 1654 for_each_mon_enabled_rdt_resource(r) { 1655 fflags = r->fflags | RF_MON_INFO; 1656 sprintf(name, "%s_MON", r->name); 1657 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 1658 if (ret) 1659 goto out_destroy; 1660 } 1661 1662 /* 1663 * This extra ref will be put in kernfs_remove() and guarantees 1664 * that @rdtgrp->kn is always accessible. 1665 */ 1666 kernfs_get(kn_info); 1667 1668 ret = rdtgroup_kn_set_ugid(kn_info); 1669 if (ret) 1670 goto out_destroy; 1671 1672 kernfs_activate(kn_info); 1673 1674 return 0; 1675 1676 out_destroy: 1677 kernfs_remove(kn_info); 1678 return ret; 1679 } 1680 1681 static int 1682 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 1683 char *name, struct kernfs_node **dest_kn) 1684 { 1685 struct kernfs_node *kn; 1686 int ret; 1687 1688 /* create the directory */ 1689 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 1690 if (IS_ERR(kn)) 1691 return PTR_ERR(kn); 1692 1693 if (dest_kn) 1694 *dest_kn = kn; 1695 1696 /* 1697 * This extra ref will be put in kernfs_remove() and guarantees 1698 * that @rdtgrp->kn is always accessible. 1699 */ 1700 kernfs_get(kn); 1701 1702 ret = rdtgroup_kn_set_ugid(kn); 1703 if (ret) 1704 goto out_destroy; 1705 1706 kernfs_activate(kn); 1707 1708 return 0; 1709 1710 out_destroy: 1711 kernfs_remove(kn); 1712 return ret; 1713 } 1714 1715 static void l3_qos_cfg_update(void *arg) 1716 { 1717 bool *enable = arg; 1718 1719 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 1720 } 1721 1722 static void l2_qos_cfg_update(void *arg) 1723 { 1724 bool *enable = arg; 1725 1726 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 1727 } 1728 1729 static inline bool is_mba_linear(void) 1730 { 1731 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear; 1732 } 1733 1734 static int set_cache_qos_cfg(int level, bool enable) 1735 { 1736 void (*update)(void *arg); 1737 struct rdt_resource *r_l; 1738 cpumask_var_t cpu_mask; 1739 struct rdt_domain *d; 1740 int cpu; 1741 1742 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 1743 return -ENOMEM; 1744 1745 if (level == RDT_RESOURCE_L3) 1746 update = l3_qos_cfg_update; 1747 else if (level == RDT_RESOURCE_L2) 1748 update = l2_qos_cfg_update; 1749 else 1750 return -EINVAL; 1751 1752 r_l = &rdt_resources_all[level]; 1753 list_for_each_entry(d, &r_l->domains, list) { 1754 /* Pick one CPU from each domain instance to update MSR */ 1755 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 1756 } 1757 cpu = get_cpu(); 1758 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */ 1759 if (cpumask_test_cpu(cpu, cpu_mask)) 1760 update(&enable); 1761 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */ 1762 smp_call_function_many(cpu_mask, update, &enable, 1); 1763 put_cpu(); 1764 1765 free_cpumask_var(cpu_mask); 1766 1767 return 0; 1768 } 1769 1770 /* 1771 * Enable or disable the MBA software controller 1772 * which helps user specify bandwidth in MBps. 1773 * MBA software controller is supported only if 1774 * MBM is supported and MBA is in linear scale. 1775 */ 1776 static int set_mba_sc(bool mba_sc) 1777 { 1778 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA]; 1779 struct rdt_domain *d; 1780 1781 if (!is_mbm_enabled() || !is_mba_linear() || 1782 mba_sc == is_mba_sc(r)) 1783 return -EINVAL; 1784 1785 r->membw.mba_sc = mba_sc; 1786 list_for_each_entry(d, &r->domains, list) 1787 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val); 1788 1789 return 0; 1790 } 1791 1792 static int cdp_enable(int level, int data_type, int code_type) 1793 { 1794 struct rdt_resource *r_ldata = &rdt_resources_all[data_type]; 1795 struct rdt_resource *r_lcode = &rdt_resources_all[code_type]; 1796 struct rdt_resource *r_l = &rdt_resources_all[level]; 1797 int ret; 1798 1799 if (!r_l->alloc_capable || !r_ldata->alloc_capable || 1800 !r_lcode->alloc_capable) 1801 return -EINVAL; 1802 1803 ret = set_cache_qos_cfg(level, true); 1804 if (!ret) { 1805 r_l->alloc_enabled = false; 1806 r_ldata->alloc_enabled = true; 1807 r_lcode->alloc_enabled = true; 1808 } 1809 return ret; 1810 } 1811 1812 static int cdpl3_enable(void) 1813 { 1814 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, 1815 RDT_RESOURCE_L3CODE); 1816 } 1817 1818 static int cdpl2_enable(void) 1819 { 1820 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, 1821 RDT_RESOURCE_L2CODE); 1822 } 1823 1824 static void cdp_disable(int level, int data_type, int code_type) 1825 { 1826 struct rdt_resource *r = &rdt_resources_all[level]; 1827 1828 r->alloc_enabled = r->alloc_capable; 1829 1830 if (rdt_resources_all[data_type].alloc_enabled) { 1831 rdt_resources_all[data_type].alloc_enabled = false; 1832 rdt_resources_all[code_type].alloc_enabled = false; 1833 set_cache_qos_cfg(level, false); 1834 } 1835 } 1836 1837 static void cdpl3_disable(void) 1838 { 1839 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE); 1840 } 1841 1842 static void cdpl2_disable(void) 1843 { 1844 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE); 1845 } 1846 1847 static void cdp_disable_all(void) 1848 { 1849 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) 1850 cdpl3_disable(); 1851 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) 1852 cdpl2_disable(); 1853 } 1854 1855 /* 1856 * We don't allow rdtgroup directories to be created anywhere 1857 * except the root directory. Thus when looking for the rdtgroup 1858 * structure for a kernfs node we are either looking at a directory, 1859 * in which case the rdtgroup structure is pointed at by the "priv" 1860 * field, otherwise we have a file, and need only look to the parent 1861 * to find the rdtgroup. 1862 */ 1863 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 1864 { 1865 if (kernfs_type(kn) == KERNFS_DIR) { 1866 /* 1867 * All the resource directories use "kn->priv" 1868 * to point to the "struct rdtgroup" for the 1869 * resource. "info" and its subdirectories don't 1870 * have rdtgroup structures, so return NULL here. 1871 */ 1872 if (kn == kn_info || kn->parent == kn_info) 1873 return NULL; 1874 else 1875 return kn->priv; 1876 } else { 1877 return kn->parent->priv; 1878 } 1879 } 1880 1881 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 1882 { 1883 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 1884 1885 if (!rdtgrp) 1886 return NULL; 1887 1888 atomic_inc(&rdtgrp->waitcount); 1889 kernfs_break_active_protection(kn); 1890 1891 mutex_lock(&rdtgroup_mutex); 1892 1893 /* Was this group deleted while we waited? */ 1894 if (rdtgrp->flags & RDT_DELETED) 1895 return NULL; 1896 1897 return rdtgrp; 1898 } 1899 1900 void rdtgroup_kn_unlock(struct kernfs_node *kn) 1901 { 1902 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 1903 1904 if (!rdtgrp) 1905 return; 1906 1907 mutex_unlock(&rdtgroup_mutex); 1908 1909 if (atomic_dec_and_test(&rdtgrp->waitcount) && 1910 (rdtgrp->flags & RDT_DELETED)) { 1911 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 1912 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 1913 rdtgroup_pseudo_lock_remove(rdtgrp); 1914 kernfs_unbreak_active_protection(kn); 1915 kernfs_put(rdtgrp->kn); 1916 kfree(rdtgrp); 1917 } else { 1918 kernfs_unbreak_active_protection(kn); 1919 } 1920 } 1921 1922 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 1923 struct rdtgroup *prgrp, 1924 struct kernfs_node **mon_data_kn); 1925 1926 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 1927 { 1928 int ret = 0; 1929 1930 if (ctx->enable_cdpl2) 1931 ret = cdpl2_enable(); 1932 1933 if (!ret && ctx->enable_cdpl3) 1934 ret = cdpl3_enable(); 1935 1936 if (!ret && ctx->enable_mba_mbps) 1937 ret = set_mba_sc(true); 1938 1939 return ret; 1940 } 1941 1942 static int rdt_get_tree(struct fs_context *fc) 1943 { 1944 struct rdt_fs_context *ctx = rdt_fc2context(fc); 1945 struct rdt_domain *dom; 1946 struct rdt_resource *r; 1947 int ret; 1948 1949 cpus_read_lock(); 1950 mutex_lock(&rdtgroup_mutex); 1951 /* 1952 * resctrl file system can only be mounted once. 1953 */ 1954 if (static_branch_unlikely(&rdt_enable_key)) { 1955 ret = -EBUSY; 1956 goto out; 1957 } 1958 1959 ret = rdt_enable_ctx(ctx); 1960 if (ret < 0) 1961 goto out_cdp; 1962 1963 closid_init(); 1964 1965 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 1966 if (ret < 0) 1967 goto out_mba; 1968 1969 if (rdt_mon_capable) { 1970 ret = mongroup_create_dir(rdtgroup_default.kn, 1971 NULL, "mon_groups", 1972 &kn_mongrp); 1973 if (ret < 0) 1974 goto out_info; 1975 kernfs_get(kn_mongrp); 1976 1977 ret = mkdir_mondata_all(rdtgroup_default.kn, 1978 &rdtgroup_default, &kn_mondata); 1979 if (ret < 0) 1980 goto out_mongrp; 1981 kernfs_get(kn_mondata); 1982 rdtgroup_default.mon.mon_data_kn = kn_mondata; 1983 } 1984 1985 ret = rdt_pseudo_lock_init(); 1986 if (ret) 1987 goto out_mondata; 1988 1989 ret = kernfs_get_tree(fc); 1990 if (ret < 0) 1991 goto out_psl; 1992 1993 if (rdt_alloc_capable) 1994 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 1995 if (rdt_mon_capable) 1996 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 1997 1998 if (rdt_alloc_capable || rdt_mon_capable) 1999 static_branch_enable_cpuslocked(&rdt_enable_key); 2000 2001 if (is_mbm_enabled()) { 2002 r = &rdt_resources_all[RDT_RESOURCE_L3]; 2003 list_for_each_entry(dom, &r->domains, list) 2004 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2005 } 2006 2007 goto out; 2008 2009 out_psl: 2010 rdt_pseudo_lock_release(); 2011 out_mondata: 2012 if (rdt_mon_capable) 2013 kernfs_remove(kn_mondata); 2014 out_mongrp: 2015 if (rdt_mon_capable) 2016 kernfs_remove(kn_mongrp); 2017 out_info: 2018 kernfs_remove(kn_info); 2019 out_mba: 2020 if (ctx->enable_mba_mbps) 2021 set_mba_sc(false); 2022 out_cdp: 2023 cdp_disable_all(); 2024 out: 2025 rdt_last_cmd_clear(); 2026 mutex_unlock(&rdtgroup_mutex); 2027 cpus_read_unlock(); 2028 return ret; 2029 } 2030 2031 enum rdt_param { 2032 Opt_cdp, 2033 Opt_cdpl2, 2034 Opt_mba_mbps, 2035 nr__rdt_params 2036 }; 2037 2038 static const struct fs_parameter_spec rdt_param_specs[] = { 2039 fsparam_flag("cdp", Opt_cdp), 2040 fsparam_flag("cdpl2", Opt_cdpl2), 2041 fsparam_flag("mba_MBps", Opt_mba_mbps), 2042 {} 2043 }; 2044 2045 static const struct fs_parameter_description rdt_fs_parameters = { 2046 .name = "rdt", 2047 .specs = rdt_param_specs, 2048 }; 2049 2050 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2051 { 2052 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2053 struct fs_parse_result result; 2054 int opt; 2055 2056 opt = fs_parse(fc, &rdt_fs_parameters, param, &result); 2057 if (opt < 0) 2058 return opt; 2059 2060 switch (opt) { 2061 case Opt_cdp: 2062 ctx->enable_cdpl3 = true; 2063 return 0; 2064 case Opt_cdpl2: 2065 ctx->enable_cdpl2 = true; 2066 return 0; 2067 case Opt_mba_mbps: 2068 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 2069 return -EINVAL; 2070 ctx->enable_mba_mbps = true; 2071 return 0; 2072 } 2073 2074 return -EINVAL; 2075 } 2076 2077 static void rdt_fs_context_free(struct fs_context *fc) 2078 { 2079 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2080 2081 kernfs_free_fs_context(fc); 2082 kfree(ctx); 2083 } 2084 2085 static const struct fs_context_operations rdt_fs_context_ops = { 2086 .free = rdt_fs_context_free, 2087 .parse_param = rdt_parse_param, 2088 .get_tree = rdt_get_tree, 2089 }; 2090 2091 static int rdt_init_fs_context(struct fs_context *fc) 2092 { 2093 struct rdt_fs_context *ctx; 2094 2095 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2096 if (!ctx) 2097 return -ENOMEM; 2098 2099 ctx->kfc.root = rdt_root; 2100 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2101 fc->fs_private = &ctx->kfc; 2102 fc->ops = &rdt_fs_context_ops; 2103 if (fc->user_ns) 2104 put_user_ns(fc->user_ns); 2105 fc->user_ns = get_user_ns(&init_user_ns); 2106 fc->global = true; 2107 return 0; 2108 } 2109 2110 static int reset_all_ctrls(struct rdt_resource *r) 2111 { 2112 struct msr_param msr_param; 2113 cpumask_var_t cpu_mask; 2114 struct rdt_domain *d; 2115 int i, cpu; 2116 2117 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2118 return -ENOMEM; 2119 2120 msr_param.res = r; 2121 msr_param.low = 0; 2122 msr_param.high = r->num_closid; 2123 2124 /* 2125 * Disable resource control for this resource by setting all 2126 * CBMs in all domains to the maximum mask value. Pick one CPU 2127 * from each domain to update the MSRs below. 2128 */ 2129 list_for_each_entry(d, &r->domains, list) { 2130 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2131 2132 for (i = 0; i < r->num_closid; i++) 2133 d->ctrl_val[i] = r->default_ctrl; 2134 } 2135 cpu = get_cpu(); 2136 /* Update CBM on this cpu if it's in cpu_mask. */ 2137 if (cpumask_test_cpu(cpu, cpu_mask)) 2138 rdt_ctrl_update(&msr_param); 2139 /* Update CBM on all other cpus in cpu_mask. */ 2140 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2141 put_cpu(); 2142 2143 free_cpumask_var(cpu_mask); 2144 2145 return 0; 2146 } 2147 2148 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 2149 { 2150 return (rdt_alloc_capable && 2151 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 2152 } 2153 2154 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 2155 { 2156 return (rdt_mon_capable && 2157 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 2158 } 2159 2160 /* 2161 * Move tasks from one to the other group. If @from is NULL, then all tasks 2162 * in the systems are moved unconditionally (used for teardown). 2163 * 2164 * If @mask is not NULL the cpus on which moved tasks are running are set 2165 * in that mask so the update smp function call is restricted to affected 2166 * cpus. 2167 */ 2168 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2169 struct cpumask *mask) 2170 { 2171 struct task_struct *p, *t; 2172 2173 read_lock(&tasklist_lock); 2174 for_each_process_thread(p, t) { 2175 if (!from || is_closid_match(t, from) || 2176 is_rmid_match(t, from)) { 2177 t->closid = to->closid; 2178 t->rmid = to->mon.rmid; 2179 2180 #ifdef CONFIG_SMP 2181 /* 2182 * This is safe on x86 w/o barriers as the ordering 2183 * of writing to task_cpu() and t->on_cpu is 2184 * reverse to the reading here. The detection is 2185 * inaccurate as tasks might move or schedule 2186 * before the smp function call takes place. In 2187 * such a case the function call is pointless, but 2188 * there is no other side effect. 2189 */ 2190 if (mask && t->on_cpu) 2191 cpumask_set_cpu(task_cpu(t), mask); 2192 #endif 2193 } 2194 } 2195 read_unlock(&tasklist_lock); 2196 } 2197 2198 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2199 { 2200 struct rdtgroup *sentry, *stmp; 2201 struct list_head *head; 2202 2203 head = &rdtgrp->mon.crdtgrp_list; 2204 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2205 free_rmid(sentry->mon.rmid); 2206 list_del(&sentry->mon.crdtgrp_list); 2207 kfree(sentry); 2208 } 2209 } 2210 2211 /* 2212 * Forcibly remove all of subdirectories under root. 2213 */ 2214 static void rmdir_all_sub(void) 2215 { 2216 struct rdtgroup *rdtgrp, *tmp; 2217 2218 /* Move all tasks to the default resource group */ 2219 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2220 2221 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2222 /* Free any child rmids */ 2223 free_all_child_rdtgrp(rdtgrp); 2224 2225 /* Remove each rdtgroup other than root */ 2226 if (rdtgrp == &rdtgroup_default) 2227 continue; 2228 2229 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2230 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2231 rdtgroup_pseudo_lock_remove(rdtgrp); 2232 2233 /* 2234 * Give any CPUs back to the default group. We cannot copy 2235 * cpu_online_mask because a CPU might have executed the 2236 * offline callback already, but is still marked online. 2237 */ 2238 cpumask_or(&rdtgroup_default.cpu_mask, 2239 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2240 2241 free_rmid(rdtgrp->mon.rmid); 2242 2243 kernfs_remove(rdtgrp->kn); 2244 list_del(&rdtgrp->rdtgroup_list); 2245 kfree(rdtgrp); 2246 } 2247 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2248 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2249 2250 kernfs_remove(kn_info); 2251 kernfs_remove(kn_mongrp); 2252 kernfs_remove(kn_mondata); 2253 } 2254 2255 static void rdt_kill_sb(struct super_block *sb) 2256 { 2257 struct rdt_resource *r; 2258 2259 cpus_read_lock(); 2260 mutex_lock(&rdtgroup_mutex); 2261 2262 set_mba_sc(false); 2263 2264 /*Put everything back to default values. */ 2265 for_each_alloc_enabled_rdt_resource(r) 2266 reset_all_ctrls(r); 2267 cdp_disable_all(); 2268 rmdir_all_sub(); 2269 rdt_pseudo_lock_release(); 2270 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2271 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2272 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2273 static_branch_disable_cpuslocked(&rdt_enable_key); 2274 kernfs_kill_sb(sb); 2275 mutex_unlock(&rdtgroup_mutex); 2276 cpus_read_unlock(); 2277 } 2278 2279 static struct file_system_type rdt_fs_type = { 2280 .name = "resctrl", 2281 .init_fs_context = rdt_init_fs_context, 2282 .parameters = &rdt_fs_parameters, 2283 .kill_sb = rdt_kill_sb, 2284 }; 2285 2286 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2287 void *priv) 2288 { 2289 struct kernfs_node *kn; 2290 int ret = 0; 2291 2292 kn = __kernfs_create_file(parent_kn, name, 0444, 2293 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2294 &kf_mondata_ops, priv, NULL, NULL); 2295 if (IS_ERR(kn)) 2296 return PTR_ERR(kn); 2297 2298 ret = rdtgroup_kn_set_ugid(kn); 2299 if (ret) { 2300 kernfs_remove(kn); 2301 return ret; 2302 } 2303 2304 return ret; 2305 } 2306 2307 /* 2308 * Remove all subdirectories of mon_data of ctrl_mon groups 2309 * and monitor groups with given domain id. 2310 */ 2311 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id) 2312 { 2313 struct rdtgroup *prgrp, *crgrp; 2314 char name[32]; 2315 2316 if (!r->mon_enabled) 2317 return; 2318 2319 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2320 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2321 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2322 2323 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2324 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2325 } 2326 } 2327 2328 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2329 struct rdt_domain *d, 2330 struct rdt_resource *r, struct rdtgroup *prgrp) 2331 { 2332 union mon_data_bits priv; 2333 struct kernfs_node *kn; 2334 struct mon_evt *mevt; 2335 struct rmid_read rr; 2336 char name[32]; 2337 int ret; 2338 2339 sprintf(name, "mon_%s_%02d", r->name, d->id); 2340 /* create the directory */ 2341 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2342 if (IS_ERR(kn)) 2343 return PTR_ERR(kn); 2344 2345 /* 2346 * This extra ref will be put in kernfs_remove() and guarantees 2347 * that kn is always accessible. 2348 */ 2349 kernfs_get(kn); 2350 ret = rdtgroup_kn_set_ugid(kn); 2351 if (ret) 2352 goto out_destroy; 2353 2354 if (WARN_ON(list_empty(&r->evt_list))) { 2355 ret = -EPERM; 2356 goto out_destroy; 2357 } 2358 2359 priv.u.rid = r->rid; 2360 priv.u.domid = d->id; 2361 list_for_each_entry(mevt, &r->evt_list, list) { 2362 priv.u.evtid = mevt->evtid; 2363 ret = mon_addfile(kn, mevt->name, priv.priv); 2364 if (ret) 2365 goto out_destroy; 2366 2367 if (is_mbm_event(mevt->evtid)) 2368 mon_event_read(&rr, d, prgrp, mevt->evtid, true); 2369 } 2370 kernfs_activate(kn); 2371 return 0; 2372 2373 out_destroy: 2374 kernfs_remove(kn); 2375 return ret; 2376 } 2377 2378 /* 2379 * Add all subdirectories of mon_data for "ctrl_mon" groups 2380 * and "monitor" groups with given domain id. 2381 */ 2382 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2383 struct rdt_domain *d) 2384 { 2385 struct kernfs_node *parent_kn; 2386 struct rdtgroup *prgrp, *crgrp; 2387 struct list_head *head; 2388 2389 if (!r->mon_enabled) 2390 return; 2391 2392 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2393 parent_kn = prgrp->mon.mon_data_kn; 2394 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2395 2396 head = &prgrp->mon.crdtgrp_list; 2397 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2398 parent_kn = crgrp->mon.mon_data_kn; 2399 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2400 } 2401 } 2402 } 2403 2404 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2405 struct rdt_resource *r, 2406 struct rdtgroup *prgrp) 2407 { 2408 struct rdt_domain *dom; 2409 int ret; 2410 2411 list_for_each_entry(dom, &r->domains, list) { 2412 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2413 if (ret) 2414 return ret; 2415 } 2416 2417 return 0; 2418 } 2419 2420 /* 2421 * This creates a directory mon_data which contains the monitored data. 2422 * 2423 * mon_data has one directory for each domain whic are named 2424 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2425 * with L3 domain looks as below: 2426 * ./mon_data: 2427 * mon_L3_00 2428 * mon_L3_01 2429 * mon_L3_02 2430 * ... 2431 * 2432 * Each domain directory has one file per event: 2433 * ./mon_L3_00/: 2434 * llc_occupancy 2435 * 2436 */ 2437 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2438 struct rdtgroup *prgrp, 2439 struct kernfs_node **dest_kn) 2440 { 2441 struct rdt_resource *r; 2442 struct kernfs_node *kn; 2443 int ret; 2444 2445 /* 2446 * Create the mon_data directory first. 2447 */ 2448 ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn); 2449 if (ret) 2450 return ret; 2451 2452 if (dest_kn) 2453 *dest_kn = kn; 2454 2455 /* 2456 * Create the subdirectories for each domain. Note that all events 2457 * in a domain like L3 are grouped into a resource whose domain is L3 2458 */ 2459 for_each_mon_enabled_rdt_resource(r) { 2460 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2461 if (ret) 2462 goto out_destroy; 2463 } 2464 2465 return 0; 2466 2467 out_destroy: 2468 kernfs_remove(kn); 2469 return ret; 2470 } 2471 2472 /** 2473 * cbm_ensure_valid - Enforce validity on provided CBM 2474 * @_val: Candidate CBM 2475 * @r: RDT resource to which the CBM belongs 2476 * 2477 * The provided CBM represents all cache portions available for use. This 2478 * may be represented by a bitmap that does not consist of contiguous ones 2479 * and thus be an invalid CBM. 2480 * Here the provided CBM is forced to be a valid CBM by only considering 2481 * the first set of contiguous bits as valid and clearing all bits. 2482 * The intention here is to provide a valid default CBM with which a new 2483 * resource group is initialized. The user can follow this with a 2484 * modification to the CBM if the default does not satisfy the 2485 * requirements. 2486 */ 2487 static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r) 2488 { 2489 /* 2490 * Convert the u32 _val to an unsigned long required by all the bit 2491 * operations within this function. No more than 32 bits of this 2492 * converted value can be accessed because all bit operations are 2493 * additionally provided with cbm_len that is initialized during 2494 * hardware enumeration using five bits from the EAX register and 2495 * thus never can exceed 32 bits. 2496 */ 2497 unsigned long *val = (unsigned long *)_val; 2498 unsigned int cbm_len = r->cache.cbm_len; 2499 unsigned long first_bit, zero_bit; 2500 2501 if (*val == 0) 2502 return; 2503 2504 first_bit = find_first_bit(val, cbm_len); 2505 zero_bit = find_next_zero_bit(val, cbm_len, first_bit); 2506 2507 /* Clear any remaining bits to ensure contiguous region */ 2508 bitmap_clear(val, zero_bit, cbm_len - zero_bit); 2509 } 2510 2511 /* 2512 * Initialize cache resources per RDT domain 2513 * 2514 * Set the RDT domain up to start off with all usable allocations. That is, 2515 * all shareable and unused bits. All-zero CBM is invalid. 2516 */ 2517 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r, 2518 u32 closid) 2519 { 2520 struct rdt_resource *r_cdp = NULL; 2521 struct rdt_domain *d_cdp = NULL; 2522 u32 used_b = 0, unused_b = 0; 2523 unsigned long tmp_cbm; 2524 enum rdtgrp_mode mode; 2525 u32 peer_ctl, *ctrl; 2526 int i; 2527 2528 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp); 2529 d->have_new_ctrl = false; 2530 d->new_ctrl = r->cache.shareable_bits; 2531 used_b = r->cache.shareable_bits; 2532 ctrl = d->ctrl_val; 2533 for (i = 0; i < closids_supported(); i++, ctrl++) { 2534 if (closid_allocated(i) && i != closid) { 2535 mode = rdtgroup_mode_by_closid(i); 2536 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 2537 /* 2538 * ctrl values for locksetup aren't relevant 2539 * until the schemata is written, and the mode 2540 * becomes RDT_MODE_PSEUDO_LOCKED. 2541 */ 2542 continue; 2543 /* 2544 * If CDP is active include peer domain's 2545 * usage to ensure there is no overlap 2546 * with an exclusive group. 2547 */ 2548 if (d_cdp) 2549 peer_ctl = d_cdp->ctrl_val[i]; 2550 else 2551 peer_ctl = 0; 2552 used_b |= *ctrl | peer_ctl; 2553 if (mode == RDT_MODE_SHAREABLE) 2554 d->new_ctrl |= *ctrl | peer_ctl; 2555 } 2556 } 2557 if (d->plr && d->plr->cbm > 0) 2558 used_b |= d->plr->cbm; 2559 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 2560 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 2561 d->new_ctrl |= unused_b; 2562 /* 2563 * Force the initial CBM to be valid, user can 2564 * modify the CBM based on system availability. 2565 */ 2566 cbm_ensure_valid(&d->new_ctrl, r); 2567 /* 2568 * Assign the u32 CBM to an unsigned long to ensure that 2569 * bitmap_weight() does not access out-of-bound memory. 2570 */ 2571 tmp_cbm = d->new_ctrl; 2572 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 2573 rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id); 2574 return -ENOSPC; 2575 } 2576 d->have_new_ctrl = true; 2577 2578 return 0; 2579 } 2580 2581 /* 2582 * Initialize cache resources with default values. 2583 * 2584 * A new RDT group is being created on an allocation capable (CAT) 2585 * supporting system. Set this group up to start off with all usable 2586 * allocations. 2587 * 2588 * If there are no more shareable bits available on any domain then 2589 * the entire allocation will fail. 2590 */ 2591 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid) 2592 { 2593 struct rdt_domain *d; 2594 int ret; 2595 2596 list_for_each_entry(d, &r->domains, list) { 2597 ret = __init_one_rdt_domain(d, r, closid); 2598 if (ret < 0) 2599 return ret; 2600 } 2601 2602 return 0; 2603 } 2604 2605 /* Initialize MBA resource with default values. */ 2606 static void rdtgroup_init_mba(struct rdt_resource *r) 2607 { 2608 struct rdt_domain *d; 2609 2610 list_for_each_entry(d, &r->domains, list) { 2611 d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl; 2612 d->have_new_ctrl = true; 2613 } 2614 } 2615 2616 /* Initialize the RDT group's allocations. */ 2617 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 2618 { 2619 struct rdt_resource *r; 2620 int ret; 2621 2622 for_each_alloc_enabled_rdt_resource(r) { 2623 if (r->rid == RDT_RESOURCE_MBA) { 2624 rdtgroup_init_mba(r); 2625 } else { 2626 ret = rdtgroup_init_cat(r, rdtgrp->closid); 2627 if (ret < 0) 2628 return ret; 2629 } 2630 2631 ret = update_domains(r, rdtgrp->closid); 2632 if (ret < 0) { 2633 rdt_last_cmd_puts("Failed to initialize allocations\n"); 2634 return ret; 2635 } 2636 2637 } 2638 2639 rdtgrp->mode = RDT_MODE_SHAREABLE; 2640 2641 return 0; 2642 } 2643 2644 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 2645 struct kernfs_node *prgrp_kn, 2646 const char *name, umode_t mode, 2647 enum rdt_group_type rtype, struct rdtgroup **r) 2648 { 2649 struct rdtgroup *prdtgrp, *rdtgrp; 2650 struct kernfs_node *kn; 2651 uint files = 0; 2652 int ret; 2653 2654 prdtgrp = rdtgroup_kn_lock_live(prgrp_kn); 2655 rdt_last_cmd_clear(); 2656 if (!prdtgrp) { 2657 ret = -ENODEV; 2658 rdt_last_cmd_puts("Directory was removed\n"); 2659 goto out_unlock; 2660 } 2661 2662 if (rtype == RDTMON_GROUP && 2663 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2664 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 2665 ret = -EINVAL; 2666 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 2667 goto out_unlock; 2668 } 2669 2670 /* allocate the rdtgroup. */ 2671 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 2672 if (!rdtgrp) { 2673 ret = -ENOSPC; 2674 rdt_last_cmd_puts("Kernel out of memory\n"); 2675 goto out_unlock; 2676 } 2677 *r = rdtgrp; 2678 rdtgrp->mon.parent = prdtgrp; 2679 rdtgrp->type = rtype; 2680 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 2681 2682 /* kernfs creates the directory for rdtgrp */ 2683 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 2684 if (IS_ERR(kn)) { 2685 ret = PTR_ERR(kn); 2686 rdt_last_cmd_puts("kernfs create error\n"); 2687 goto out_free_rgrp; 2688 } 2689 rdtgrp->kn = kn; 2690 2691 /* 2692 * kernfs_remove() will drop the reference count on "kn" which 2693 * will free it. But we still need it to stick around for the 2694 * rdtgroup_kn_unlock(kn} call below. Take one extra reference 2695 * here, which will be dropped inside rdtgroup_kn_unlock(). 2696 */ 2697 kernfs_get(kn); 2698 2699 ret = rdtgroup_kn_set_ugid(kn); 2700 if (ret) { 2701 rdt_last_cmd_puts("kernfs perm error\n"); 2702 goto out_destroy; 2703 } 2704 2705 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 2706 ret = rdtgroup_add_files(kn, files); 2707 if (ret) { 2708 rdt_last_cmd_puts("kernfs fill error\n"); 2709 goto out_destroy; 2710 } 2711 2712 if (rdt_mon_capable) { 2713 ret = alloc_rmid(); 2714 if (ret < 0) { 2715 rdt_last_cmd_puts("Out of RMIDs\n"); 2716 goto out_destroy; 2717 } 2718 rdtgrp->mon.rmid = ret; 2719 2720 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 2721 if (ret) { 2722 rdt_last_cmd_puts("kernfs subdir error\n"); 2723 goto out_idfree; 2724 } 2725 } 2726 kernfs_activate(kn); 2727 2728 /* 2729 * The caller unlocks the prgrp_kn upon success. 2730 */ 2731 return 0; 2732 2733 out_idfree: 2734 free_rmid(rdtgrp->mon.rmid); 2735 out_destroy: 2736 kernfs_remove(rdtgrp->kn); 2737 out_free_rgrp: 2738 kfree(rdtgrp); 2739 out_unlock: 2740 rdtgroup_kn_unlock(prgrp_kn); 2741 return ret; 2742 } 2743 2744 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 2745 { 2746 kernfs_remove(rgrp->kn); 2747 free_rmid(rgrp->mon.rmid); 2748 kfree(rgrp); 2749 } 2750 2751 /* 2752 * Create a monitor group under "mon_groups" directory of a control 2753 * and monitor group(ctrl_mon). This is a resource group 2754 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 2755 */ 2756 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 2757 struct kernfs_node *prgrp_kn, 2758 const char *name, 2759 umode_t mode) 2760 { 2761 struct rdtgroup *rdtgrp, *prgrp; 2762 int ret; 2763 2764 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP, 2765 &rdtgrp); 2766 if (ret) 2767 return ret; 2768 2769 prgrp = rdtgrp->mon.parent; 2770 rdtgrp->closid = prgrp->closid; 2771 2772 /* 2773 * Add the rdtgrp to the list of rdtgrps the parent 2774 * ctrl_mon group has to track. 2775 */ 2776 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 2777 2778 rdtgroup_kn_unlock(prgrp_kn); 2779 return ret; 2780 } 2781 2782 /* 2783 * These are rdtgroups created under the root directory. Can be used 2784 * to allocate and monitor resources. 2785 */ 2786 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 2787 struct kernfs_node *prgrp_kn, 2788 const char *name, umode_t mode) 2789 { 2790 struct rdtgroup *rdtgrp; 2791 struct kernfs_node *kn; 2792 u32 closid; 2793 int ret; 2794 2795 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP, 2796 &rdtgrp); 2797 if (ret) 2798 return ret; 2799 2800 kn = rdtgrp->kn; 2801 ret = closid_alloc(); 2802 if (ret < 0) { 2803 rdt_last_cmd_puts("Out of CLOSIDs\n"); 2804 goto out_common_fail; 2805 } 2806 closid = ret; 2807 ret = 0; 2808 2809 rdtgrp->closid = closid; 2810 ret = rdtgroup_init_alloc(rdtgrp); 2811 if (ret < 0) 2812 goto out_id_free; 2813 2814 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 2815 2816 if (rdt_mon_capable) { 2817 /* 2818 * Create an empty mon_groups directory to hold the subset 2819 * of tasks and cpus to monitor. 2820 */ 2821 ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL); 2822 if (ret) { 2823 rdt_last_cmd_puts("kernfs subdir error\n"); 2824 goto out_del_list; 2825 } 2826 } 2827 2828 goto out_unlock; 2829 2830 out_del_list: 2831 list_del(&rdtgrp->rdtgroup_list); 2832 out_id_free: 2833 closid_free(closid); 2834 out_common_fail: 2835 mkdir_rdt_prepare_clean(rdtgrp); 2836 out_unlock: 2837 rdtgroup_kn_unlock(prgrp_kn); 2838 return ret; 2839 } 2840 2841 /* 2842 * We allow creating mon groups only with in a directory called "mon_groups" 2843 * which is present in every ctrl_mon group. Check if this is a valid 2844 * "mon_groups" directory. 2845 * 2846 * 1. The directory should be named "mon_groups". 2847 * 2. The mon group itself should "not" be named "mon_groups". 2848 * This makes sure "mon_groups" directory always has a ctrl_mon group 2849 * as parent. 2850 */ 2851 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 2852 { 2853 return (!strcmp(kn->name, "mon_groups") && 2854 strcmp(name, "mon_groups")); 2855 } 2856 2857 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 2858 umode_t mode) 2859 { 2860 /* Do not accept '\n' to avoid unparsable situation. */ 2861 if (strchr(name, '\n')) 2862 return -EINVAL; 2863 2864 /* 2865 * If the parent directory is the root directory and RDT 2866 * allocation is supported, add a control and monitoring 2867 * subdirectory 2868 */ 2869 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 2870 return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode); 2871 2872 /* 2873 * If RDT monitoring is supported and the parent directory is a valid 2874 * "mon_groups" directory, add a monitoring subdirectory. 2875 */ 2876 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 2877 return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode); 2878 2879 return -EPERM; 2880 } 2881 2882 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp, 2883 cpumask_var_t tmpmask) 2884 { 2885 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 2886 int cpu; 2887 2888 /* Give any tasks back to the parent group */ 2889 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 2890 2891 /* Update per cpu rmid of the moved CPUs first */ 2892 for_each_cpu(cpu, &rdtgrp->cpu_mask) 2893 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 2894 /* 2895 * Update the MSR on moved CPUs and CPUs which have moved 2896 * task running on them. 2897 */ 2898 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 2899 update_closid_rmid(tmpmask, NULL); 2900 2901 rdtgrp->flags = RDT_DELETED; 2902 free_rmid(rdtgrp->mon.rmid); 2903 2904 /* 2905 * Remove the rdtgrp from the parent ctrl_mon group's list 2906 */ 2907 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 2908 list_del(&rdtgrp->mon.crdtgrp_list); 2909 2910 /* 2911 * one extra hold on this, will drop when we kfree(rdtgrp) 2912 * in rdtgroup_kn_unlock() 2913 */ 2914 kernfs_get(kn); 2915 kernfs_remove(rdtgrp->kn); 2916 2917 return 0; 2918 } 2919 2920 static int rdtgroup_ctrl_remove(struct kernfs_node *kn, 2921 struct rdtgroup *rdtgrp) 2922 { 2923 rdtgrp->flags = RDT_DELETED; 2924 list_del(&rdtgrp->rdtgroup_list); 2925 2926 /* 2927 * one extra hold on this, will drop when we kfree(rdtgrp) 2928 * in rdtgroup_kn_unlock() 2929 */ 2930 kernfs_get(kn); 2931 kernfs_remove(rdtgrp->kn); 2932 return 0; 2933 } 2934 2935 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp, 2936 cpumask_var_t tmpmask) 2937 { 2938 int cpu; 2939 2940 /* Give any tasks back to the default group */ 2941 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 2942 2943 /* Give any CPUs back to the default group */ 2944 cpumask_or(&rdtgroup_default.cpu_mask, 2945 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2946 2947 /* Update per cpu closid and rmid of the moved CPUs first */ 2948 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 2949 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 2950 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 2951 } 2952 2953 /* 2954 * Update the MSR on moved CPUs and CPUs which have moved 2955 * task running on them. 2956 */ 2957 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 2958 update_closid_rmid(tmpmask, NULL); 2959 2960 closid_free(rdtgrp->closid); 2961 free_rmid(rdtgrp->mon.rmid); 2962 2963 /* 2964 * Free all the child monitor group rmids. 2965 */ 2966 free_all_child_rdtgrp(rdtgrp); 2967 2968 rdtgroup_ctrl_remove(kn, rdtgrp); 2969 2970 return 0; 2971 } 2972 2973 static int rdtgroup_rmdir(struct kernfs_node *kn) 2974 { 2975 struct kernfs_node *parent_kn = kn->parent; 2976 struct rdtgroup *rdtgrp; 2977 cpumask_var_t tmpmask; 2978 int ret = 0; 2979 2980 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 2981 return -ENOMEM; 2982 2983 rdtgrp = rdtgroup_kn_lock_live(kn); 2984 if (!rdtgrp) { 2985 ret = -EPERM; 2986 goto out; 2987 } 2988 2989 /* 2990 * If the rdtgroup is a ctrl_mon group and parent directory 2991 * is the root directory, remove the ctrl_mon group. 2992 * 2993 * If the rdtgroup is a mon group and parent directory 2994 * is a valid "mon_groups" directory, remove the mon group. 2995 */ 2996 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) { 2997 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2998 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 2999 ret = rdtgroup_ctrl_remove(kn, rdtgrp); 3000 } else { 3001 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask); 3002 } 3003 } else if (rdtgrp->type == RDTMON_GROUP && 3004 is_mon_groups(parent_kn, kn->name)) { 3005 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask); 3006 } else { 3007 ret = -EPERM; 3008 } 3009 3010 out: 3011 rdtgroup_kn_unlock(kn); 3012 free_cpumask_var(tmpmask); 3013 return ret; 3014 } 3015 3016 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3017 { 3018 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) 3019 seq_puts(seq, ",cdp"); 3020 3021 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) 3022 seq_puts(seq, ",cdpl2"); 3023 3024 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA])) 3025 seq_puts(seq, ",mba_MBps"); 3026 3027 return 0; 3028 } 3029 3030 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3031 .mkdir = rdtgroup_mkdir, 3032 .rmdir = rdtgroup_rmdir, 3033 .show_options = rdtgroup_show_options, 3034 }; 3035 3036 static int __init rdtgroup_setup_root(void) 3037 { 3038 int ret; 3039 3040 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3041 KERNFS_ROOT_CREATE_DEACTIVATED | 3042 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3043 &rdtgroup_default); 3044 if (IS_ERR(rdt_root)) 3045 return PTR_ERR(rdt_root); 3046 3047 mutex_lock(&rdtgroup_mutex); 3048 3049 rdtgroup_default.closid = 0; 3050 rdtgroup_default.mon.rmid = 0; 3051 rdtgroup_default.type = RDTCTRL_GROUP; 3052 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3053 3054 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3055 3056 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE); 3057 if (ret) { 3058 kernfs_destroy_root(rdt_root); 3059 goto out; 3060 } 3061 3062 rdtgroup_default.kn = rdt_root->kn; 3063 kernfs_activate(rdtgroup_default.kn); 3064 3065 out: 3066 mutex_unlock(&rdtgroup_mutex); 3067 3068 return ret; 3069 } 3070 3071 /* 3072 * rdtgroup_init - rdtgroup initialization 3073 * 3074 * Setup resctrl file system including set up root, create mount point, 3075 * register rdtgroup filesystem, and initialize files under root directory. 3076 * 3077 * Return: 0 on success or -errno 3078 */ 3079 int __init rdtgroup_init(void) 3080 { 3081 int ret = 0; 3082 3083 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3084 sizeof(last_cmd_status_buf)); 3085 3086 ret = rdtgroup_setup_root(); 3087 if (ret) 3088 return ret; 3089 3090 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3091 if (ret) 3092 goto cleanup_root; 3093 3094 ret = register_filesystem(&rdt_fs_type); 3095 if (ret) 3096 goto cleanup_mountpoint; 3097 3098 /* 3099 * Adding the resctrl debugfs directory here may not be ideal since 3100 * it would let the resctrl debugfs directory appear on the debugfs 3101 * filesystem before the resctrl filesystem is mounted. 3102 * It may also be ok since that would enable debugging of RDT before 3103 * resctrl is mounted. 3104 * The reason why the debugfs directory is created here and not in 3105 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and 3106 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3107 * (the lockdep class of inode->i_rwsem). Other filesystem 3108 * interactions (eg. SyS_getdents) have the lock ordering: 3109 * &sb->s_type->i_mutex_key --> &mm->mmap_sem 3110 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex 3111 * is taken, thus creating dependency: 3112 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause 3113 * issues considering the other two lock dependencies. 3114 * By creating the debugfs directory here we avoid a dependency 3115 * that may cause deadlock (even though file operations cannot 3116 * occur until the filesystem is mounted, but I do not know how to 3117 * tell lockdep that). 3118 */ 3119 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3120 3121 return 0; 3122 3123 cleanup_mountpoint: 3124 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3125 cleanup_root: 3126 kernfs_destroy_root(rdt_root); 3127 3128 return ret; 3129 } 3130 3131 void __exit rdtgroup_exit(void) 3132 { 3133 debugfs_remove_recursive(debugfs_resctrl); 3134 unregister_filesystem(&rdt_fs_type); 3135 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3136 kernfs_destroy_root(rdt_root); 3137 } 3138