1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Allocation in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cpu.h> 16 #include <linux/debugfs.h> 17 #include <linux/fs.h> 18 #include <linux/fs_parser.h> 19 #include <linux/sysfs.h> 20 #include <linux/kernfs.h> 21 #include <linux/seq_buf.h> 22 #include <linux/seq_file.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/task.h> 25 #include <linux/slab.h> 26 #include <linux/task_work.h> 27 #include <linux/user_namespace.h> 28 29 #include <uapi/linux/magic.h> 30 31 #include <asm/resctrl.h> 32 #include "internal.h" 33 34 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 35 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 37 38 /* Mutex to protect rdtgroup access. */ 39 DEFINE_MUTEX(rdtgroup_mutex); 40 41 static struct kernfs_root *rdt_root; 42 struct rdtgroup rdtgroup_default; 43 LIST_HEAD(rdt_all_groups); 44 45 /* list of entries for the schemata file */ 46 LIST_HEAD(resctrl_schema_all); 47 48 /* The filesystem can only be mounted once. */ 49 bool resctrl_mounted; 50 51 /* Kernel fs node for "info" directory under root */ 52 static struct kernfs_node *kn_info; 53 54 /* Kernel fs node for "mon_groups" directory under root */ 55 static struct kernfs_node *kn_mongrp; 56 57 /* Kernel fs node for "mon_data" directory under root */ 58 static struct kernfs_node *kn_mondata; 59 60 static struct seq_buf last_cmd_status; 61 static char last_cmd_status_buf[512]; 62 63 static int rdtgroup_setup_root(struct rdt_fs_context *ctx); 64 static void rdtgroup_destroy_root(void); 65 66 struct dentry *debugfs_resctrl; 67 68 /* 69 * Memory bandwidth monitoring event to use for the default CTRL_MON group 70 * and each new CTRL_MON group created by the user. Only relevant when 71 * the filesystem is mounted with the "mba_MBps" option so it does not 72 * matter that it remains uninitialized on systems that do not support 73 * the "mba_MBps" option. 74 */ 75 enum resctrl_event_id mba_mbps_default_event; 76 77 static bool resctrl_debug; 78 79 void rdt_last_cmd_clear(void) 80 { 81 lockdep_assert_held(&rdtgroup_mutex); 82 seq_buf_clear(&last_cmd_status); 83 } 84 85 void rdt_last_cmd_puts(const char *s) 86 { 87 lockdep_assert_held(&rdtgroup_mutex); 88 seq_buf_puts(&last_cmd_status, s); 89 } 90 91 void rdt_last_cmd_printf(const char *fmt, ...) 92 { 93 va_list ap; 94 95 va_start(ap, fmt); 96 lockdep_assert_held(&rdtgroup_mutex); 97 seq_buf_vprintf(&last_cmd_status, fmt, ap); 98 va_end(ap); 99 } 100 101 void rdt_staged_configs_clear(void) 102 { 103 struct rdt_ctrl_domain *dom; 104 struct rdt_resource *r; 105 106 lockdep_assert_held(&rdtgroup_mutex); 107 108 for_each_alloc_capable_rdt_resource(r) { 109 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) 110 memset(dom->staged_config, 0, sizeof(dom->staged_config)); 111 } 112 } 113 114 /* 115 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 116 * we can keep a bitmap of free CLOSIDs in a single integer. 117 * 118 * Using a global CLOSID across all resources has some advantages and 119 * some drawbacks: 120 * + We can simply set current's closid to assign a task to a resource 121 * group. 122 * + Context switch code can avoid extra memory references deciding which 123 * CLOSID to load into the PQR_ASSOC MSR 124 * - We give up some options in configuring resource groups across multi-socket 125 * systems. 126 * - Our choices on how to configure each resource become progressively more 127 * limited as the number of resources grows. 128 */ 129 static unsigned long closid_free_map; 130 static int closid_free_map_len; 131 132 int closids_supported(void) 133 { 134 return closid_free_map_len; 135 } 136 137 static void closid_init(void) 138 { 139 struct resctrl_schema *s; 140 u32 rdt_min_closid = 32; 141 142 /* Compute rdt_min_closid across all resources */ 143 list_for_each_entry(s, &resctrl_schema_all, list) 144 rdt_min_closid = min(rdt_min_closid, s->num_closid); 145 146 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 147 148 /* RESCTRL_RESERVED_CLOSID is always reserved for the default group */ 149 __clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map); 150 closid_free_map_len = rdt_min_closid; 151 } 152 153 static int closid_alloc(void) 154 { 155 int cleanest_closid; 156 u32 closid; 157 158 lockdep_assert_held(&rdtgroup_mutex); 159 160 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { 161 cleanest_closid = resctrl_find_cleanest_closid(); 162 if (cleanest_closid < 0) 163 return cleanest_closid; 164 closid = cleanest_closid; 165 } else { 166 closid = ffs(closid_free_map); 167 if (closid == 0) 168 return -ENOSPC; 169 closid--; 170 } 171 __clear_bit(closid, &closid_free_map); 172 173 return closid; 174 } 175 176 void closid_free(int closid) 177 { 178 lockdep_assert_held(&rdtgroup_mutex); 179 180 __set_bit(closid, &closid_free_map); 181 } 182 183 /** 184 * closid_allocated - test if provided closid is in use 185 * @closid: closid to be tested 186 * 187 * Return: true if @closid is currently associated with a resource group, 188 * false if @closid is free 189 */ 190 bool closid_allocated(unsigned int closid) 191 { 192 lockdep_assert_held(&rdtgroup_mutex); 193 194 return !test_bit(closid, &closid_free_map); 195 } 196 197 /** 198 * rdtgroup_mode_by_closid - Return mode of resource group with closid 199 * @closid: closid if the resource group 200 * 201 * Each resource group is associated with a @closid. Here the mode 202 * of a resource group can be queried by searching for it using its closid. 203 * 204 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 205 */ 206 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 207 { 208 struct rdtgroup *rdtgrp; 209 210 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 211 if (rdtgrp->closid == closid) 212 return rdtgrp->mode; 213 } 214 215 return RDT_NUM_MODES; 216 } 217 218 static const char * const rdt_mode_str[] = { 219 [RDT_MODE_SHAREABLE] = "shareable", 220 [RDT_MODE_EXCLUSIVE] = "exclusive", 221 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 222 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 223 }; 224 225 /** 226 * rdtgroup_mode_str - Return the string representation of mode 227 * @mode: the resource group mode as &enum rdtgroup_mode 228 * 229 * Return: string representation of valid mode, "unknown" otherwise 230 */ 231 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 232 { 233 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 234 return "unknown"; 235 236 return rdt_mode_str[mode]; 237 } 238 239 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 240 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 241 { 242 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 243 .ia_uid = current_fsuid(), 244 .ia_gid = current_fsgid(), }; 245 246 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 247 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 248 return 0; 249 250 return kernfs_setattr(kn, &iattr); 251 } 252 253 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 254 { 255 struct kernfs_node *kn; 256 int ret; 257 258 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 259 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 260 0, rft->kf_ops, rft, NULL, NULL); 261 if (IS_ERR(kn)) 262 return PTR_ERR(kn); 263 264 ret = rdtgroup_kn_set_ugid(kn); 265 if (ret) { 266 kernfs_remove(kn); 267 return ret; 268 } 269 270 return 0; 271 } 272 273 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 274 { 275 struct kernfs_open_file *of = m->private; 276 struct rftype *rft = of->kn->priv; 277 278 if (rft->seq_show) 279 return rft->seq_show(of, m, arg); 280 return 0; 281 } 282 283 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 284 size_t nbytes, loff_t off) 285 { 286 struct rftype *rft = of->kn->priv; 287 288 if (rft->write) 289 return rft->write(of, buf, nbytes, off); 290 291 return -EINVAL; 292 } 293 294 static const struct kernfs_ops rdtgroup_kf_single_ops = { 295 .atomic_write_len = PAGE_SIZE, 296 .write = rdtgroup_file_write, 297 .seq_show = rdtgroup_seqfile_show, 298 }; 299 300 static const struct kernfs_ops kf_mondata_ops = { 301 .atomic_write_len = PAGE_SIZE, 302 .seq_show = rdtgroup_mondata_show, 303 }; 304 305 static bool is_cpu_list(struct kernfs_open_file *of) 306 { 307 struct rftype *rft = of->kn->priv; 308 309 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 310 } 311 312 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 313 struct seq_file *s, void *v) 314 { 315 struct rdtgroup *rdtgrp; 316 struct cpumask *mask; 317 int ret = 0; 318 319 rdtgrp = rdtgroup_kn_lock_live(of->kn); 320 321 if (rdtgrp) { 322 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 323 if (!rdtgrp->plr->d) { 324 rdt_last_cmd_clear(); 325 rdt_last_cmd_puts("Cache domain offline\n"); 326 ret = -ENODEV; 327 } else { 328 mask = &rdtgrp->plr->d->hdr.cpu_mask; 329 seq_printf(s, is_cpu_list(of) ? 330 "%*pbl\n" : "%*pb\n", 331 cpumask_pr_args(mask)); 332 } 333 } else { 334 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 335 cpumask_pr_args(&rdtgrp->cpu_mask)); 336 } 337 } else { 338 ret = -ENOENT; 339 } 340 rdtgroup_kn_unlock(of->kn); 341 342 return ret; 343 } 344 345 /* 346 * This is safe against resctrl_sched_in() called from __switch_to() 347 * because __switch_to() is executed with interrupts disabled. A local call 348 * from update_closid_rmid() is protected against __switch_to() because 349 * preemption is disabled. 350 */ 351 static void update_cpu_closid_rmid(void *info) 352 { 353 struct rdtgroup *r = info; 354 355 if (r) { 356 this_cpu_write(pqr_state.default_closid, r->closid); 357 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 358 } 359 360 /* 361 * We cannot unconditionally write the MSR because the current 362 * executing task might have its own closid selected. Just reuse 363 * the context switch code. 364 */ 365 resctrl_sched_in(current); 366 } 367 368 /* 369 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 370 * 371 * Per task closids/rmids must have been set up before calling this function. 372 */ 373 static void 374 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 375 { 376 on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1); 377 } 378 379 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 380 cpumask_var_t tmpmask) 381 { 382 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 383 struct list_head *head; 384 385 /* Check whether cpus belong to parent ctrl group */ 386 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 387 if (!cpumask_empty(tmpmask)) { 388 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 389 return -EINVAL; 390 } 391 392 /* Check whether cpus are dropped from this group */ 393 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 394 if (!cpumask_empty(tmpmask)) { 395 /* Give any dropped cpus to parent rdtgroup */ 396 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 397 update_closid_rmid(tmpmask, prgrp); 398 } 399 400 /* 401 * If we added cpus, remove them from previous group that owned them 402 * and update per-cpu rmid 403 */ 404 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 405 if (!cpumask_empty(tmpmask)) { 406 head = &prgrp->mon.crdtgrp_list; 407 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 408 if (crgrp == rdtgrp) 409 continue; 410 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 411 tmpmask); 412 } 413 update_closid_rmid(tmpmask, rdtgrp); 414 } 415 416 /* Done pushing/pulling - update this group with new mask */ 417 cpumask_copy(&rdtgrp->cpu_mask, newmask); 418 419 return 0; 420 } 421 422 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 423 { 424 struct rdtgroup *crgrp; 425 426 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 427 /* update the child mon group masks as well*/ 428 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 429 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 430 } 431 432 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 433 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 434 { 435 struct rdtgroup *r, *crgrp; 436 struct list_head *head; 437 438 /* Check whether cpus are dropped from this group */ 439 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 440 if (!cpumask_empty(tmpmask)) { 441 /* Can't drop from default group */ 442 if (rdtgrp == &rdtgroup_default) { 443 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 444 return -EINVAL; 445 } 446 447 /* Give any dropped cpus to rdtgroup_default */ 448 cpumask_or(&rdtgroup_default.cpu_mask, 449 &rdtgroup_default.cpu_mask, tmpmask); 450 update_closid_rmid(tmpmask, &rdtgroup_default); 451 } 452 453 /* 454 * If we added cpus, remove them from previous group and 455 * the prev group's child groups that owned them 456 * and update per-cpu closid/rmid. 457 */ 458 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 459 if (!cpumask_empty(tmpmask)) { 460 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 461 if (r == rdtgrp) 462 continue; 463 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 464 if (!cpumask_empty(tmpmask1)) 465 cpumask_rdtgrp_clear(r, tmpmask1); 466 } 467 update_closid_rmid(tmpmask, rdtgrp); 468 } 469 470 /* Done pushing/pulling - update this group with new mask */ 471 cpumask_copy(&rdtgrp->cpu_mask, newmask); 472 473 /* 474 * Clear child mon group masks since there is a new parent mask 475 * now and update the rmid for the cpus the child lost. 476 */ 477 head = &rdtgrp->mon.crdtgrp_list; 478 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 479 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 480 update_closid_rmid(tmpmask, rdtgrp); 481 cpumask_clear(&crgrp->cpu_mask); 482 } 483 484 return 0; 485 } 486 487 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 488 char *buf, size_t nbytes, loff_t off) 489 { 490 cpumask_var_t tmpmask, newmask, tmpmask1; 491 struct rdtgroup *rdtgrp; 492 int ret; 493 494 if (!buf) 495 return -EINVAL; 496 497 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 498 return -ENOMEM; 499 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 500 free_cpumask_var(tmpmask); 501 return -ENOMEM; 502 } 503 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 504 free_cpumask_var(tmpmask); 505 free_cpumask_var(newmask); 506 return -ENOMEM; 507 } 508 509 rdtgrp = rdtgroup_kn_lock_live(of->kn); 510 if (!rdtgrp) { 511 ret = -ENOENT; 512 goto unlock; 513 } 514 515 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 516 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 517 ret = -EINVAL; 518 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 519 goto unlock; 520 } 521 522 if (is_cpu_list(of)) 523 ret = cpulist_parse(buf, newmask); 524 else 525 ret = cpumask_parse(buf, newmask); 526 527 if (ret) { 528 rdt_last_cmd_puts("Bad CPU list/mask\n"); 529 goto unlock; 530 } 531 532 /* check that user didn't specify any offline cpus */ 533 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 534 if (!cpumask_empty(tmpmask)) { 535 ret = -EINVAL; 536 rdt_last_cmd_puts("Can only assign online CPUs\n"); 537 goto unlock; 538 } 539 540 if (rdtgrp->type == RDTCTRL_GROUP) 541 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 542 else if (rdtgrp->type == RDTMON_GROUP) 543 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 544 else 545 ret = -EINVAL; 546 547 unlock: 548 rdtgroup_kn_unlock(of->kn); 549 free_cpumask_var(tmpmask); 550 free_cpumask_var(newmask); 551 free_cpumask_var(tmpmask1); 552 553 return ret ?: nbytes; 554 } 555 556 /** 557 * rdtgroup_remove - the helper to remove resource group safely 558 * @rdtgrp: resource group to remove 559 * 560 * On resource group creation via a mkdir, an extra kernfs_node reference is 561 * taken to ensure that the rdtgroup structure remains accessible for the 562 * rdtgroup_kn_unlock() calls where it is removed. 563 * 564 * Drop the extra reference here, then free the rdtgroup structure. 565 * 566 * Return: void 567 */ 568 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 569 { 570 kernfs_put(rdtgrp->kn); 571 kfree(rdtgrp); 572 } 573 574 static void _update_task_closid_rmid(void *task) 575 { 576 /* 577 * If the task is still current on this CPU, update PQR_ASSOC MSR. 578 * Otherwise, the MSR is updated when the task is scheduled in. 579 */ 580 if (task == current) 581 resctrl_sched_in(task); 582 } 583 584 static void update_task_closid_rmid(struct task_struct *t) 585 { 586 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 587 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 588 else 589 _update_task_closid_rmid(t); 590 } 591 592 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp) 593 { 594 u32 closid, rmid = rdtgrp->mon.rmid; 595 596 if (rdtgrp->type == RDTCTRL_GROUP) 597 closid = rdtgrp->closid; 598 else if (rdtgrp->type == RDTMON_GROUP) 599 closid = rdtgrp->mon.parent->closid; 600 else 601 return false; 602 603 return resctrl_arch_match_closid(tsk, closid) && 604 resctrl_arch_match_rmid(tsk, closid, rmid); 605 } 606 607 static int __rdtgroup_move_task(struct task_struct *tsk, 608 struct rdtgroup *rdtgrp) 609 { 610 /* If the task is already in rdtgrp, no need to move the task. */ 611 if (task_in_rdtgroup(tsk, rdtgrp)) 612 return 0; 613 614 /* 615 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 616 * updated by them. 617 * 618 * For ctrl_mon groups, move both closid and rmid. 619 * For monitor groups, can move the tasks only from 620 * their parent CTRL group. 621 */ 622 if (rdtgrp->type == RDTMON_GROUP && 623 !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) { 624 rdt_last_cmd_puts("Can't move task to different control group\n"); 625 return -EINVAL; 626 } 627 628 if (rdtgrp->type == RDTMON_GROUP) 629 resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid, 630 rdtgrp->mon.rmid); 631 else 632 resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid, 633 rdtgrp->mon.rmid); 634 635 /* 636 * Ensure the task's closid and rmid are written before determining if 637 * the task is current that will decide if it will be interrupted. 638 * This pairs with the full barrier between the rq->curr update and 639 * resctrl_sched_in() during context switch. 640 */ 641 smp_mb(); 642 643 /* 644 * By now, the task's closid and rmid are set. If the task is current 645 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 646 * group go into effect. If the task is not current, the MSR will be 647 * updated when the task is scheduled in. 648 */ 649 update_task_closid_rmid(tsk); 650 651 return 0; 652 } 653 654 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 655 { 656 return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) && 657 resctrl_arch_match_closid(t, r->closid)); 658 } 659 660 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 661 { 662 return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) && 663 resctrl_arch_match_rmid(t, r->mon.parent->closid, 664 r->mon.rmid)); 665 } 666 667 /** 668 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 669 * @r: Resource group 670 * 671 * Return: 1 if tasks have been assigned to @r, 0 otherwise 672 */ 673 int rdtgroup_tasks_assigned(struct rdtgroup *r) 674 { 675 struct task_struct *p, *t; 676 int ret = 0; 677 678 lockdep_assert_held(&rdtgroup_mutex); 679 680 rcu_read_lock(); 681 for_each_process_thread(p, t) { 682 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 683 ret = 1; 684 break; 685 } 686 } 687 rcu_read_unlock(); 688 689 return ret; 690 } 691 692 static int rdtgroup_task_write_permission(struct task_struct *task, 693 struct kernfs_open_file *of) 694 { 695 const struct cred *tcred = get_task_cred(task); 696 const struct cred *cred = current_cred(); 697 int ret = 0; 698 699 /* 700 * Even if we're attaching all tasks in the thread group, we only 701 * need to check permissions on one of them. 702 */ 703 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 704 !uid_eq(cred->euid, tcred->uid) && 705 !uid_eq(cred->euid, tcred->suid)) { 706 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 707 ret = -EPERM; 708 } 709 710 put_cred(tcred); 711 return ret; 712 } 713 714 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 715 struct kernfs_open_file *of) 716 { 717 struct task_struct *tsk; 718 int ret; 719 720 rcu_read_lock(); 721 if (pid) { 722 tsk = find_task_by_vpid(pid); 723 if (!tsk) { 724 rcu_read_unlock(); 725 rdt_last_cmd_printf("No task %d\n", pid); 726 return -ESRCH; 727 } 728 } else { 729 tsk = current; 730 } 731 732 get_task_struct(tsk); 733 rcu_read_unlock(); 734 735 ret = rdtgroup_task_write_permission(tsk, of); 736 if (!ret) 737 ret = __rdtgroup_move_task(tsk, rdtgrp); 738 739 put_task_struct(tsk); 740 return ret; 741 } 742 743 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 744 char *buf, size_t nbytes, loff_t off) 745 { 746 struct rdtgroup *rdtgrp; 747 char *pid_str; 748 int ret = 0; 749 pid_t pid; 750 751 rdtgrp = rdtgroup_kn_lock_live(of->kn); 752 if (!rdtgrp) { 753 rdtgroup_kn_unlock(of->kn); 754 return -ENOENT; 755 } 756 rdt_last_cmd_clear(); 757 758 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 759 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 760 ret = -EINVAL; 761 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 762 goto unlock; 763 } 764 765 while (buf && buf[0] != '\0' && buf[0] != '\n') { 766 pid_str = strim(strsep(&buf, ",")); 767 768 if (kstrtoint(pid_str, 0, &pid)) { 769 rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str); 770 ret = -EINVAL; 771 break; 772 } 773 774 if (pid < 0) { 775 rdt_last_cmd_printf("Invalid pid %d\n", pid); 776 ret = -EINVAL; 777 break; 778 } 779 780 ret = rdtgroup_move_task(pid, rdtgrp, of); 781 if (ret) { 782 rdt_last_cmd_printf("Error while processing task %d\n", pid); 783 break; 784 } 785 } 786 787 unlock: 788 rdtgroup_kn_unlock(of->kn); 789 790 return ret ?: nbytes; 791 } 792 793 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 794 { 795 struct task_struct *p, *t; 796 pid_t pid; 797 798 rcu_read_lock(); 799 for_each_process_thread(p, t) { 800 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 801 pid = task_pid_vnr(t); 802 if (pid) 803 seq_printf(s, "%d\n", pid); 804 } 805 } 806 rcu_read_unlock(); 807 } 808 809 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 810 struct seq_file *s, void *v) 811 { 812 struct rdtgroup *rdtgrp; 813 int ret = 0; 814 815 rdtgrp = rdtgroup_kn_lock_live(of->kn); 816 if (rdtgrp) 817 show_rdt_tasks(rdtgrp, s); 818 else 819 ret = -ENOENT; 820 rdtgroup_kn_unlock(of->kn); 821 822 return ret; 823 } 824 825 static int rdtgroup_closid_show(struct kernfs_open_file *of, 826 struct seq_file *s, void *v) 827 { 828 struct rdtgroup *rdtgrp; 829 int ret = 0; 830 831 rdtgrp = rdtgroup_kn_lock_live(of->kn); 832 if (rdtgrp) 833 seq_printf(s, "%u\n", rdtgrp->closid); 834 else 835 ret = -ENOENT; 836 rdtgroup_kn_unlock(of->kn); 837 838 return ret; 839 } 840 841 static int rdtgroup_rmid_show(struct kernfs_open_file *of, 842 struct seq_file *s, void *v) 843 { 844 struct rdtgroup *rdtgrp; 845 int ret = 0; 846 847 rdtgrp = rdtgroup_kn_lock_live(of->kn); 848 if (rdtgrp) 849 seq_printf(s, "%u\n", rdtgrp->mon.rmid); 850 else 851 ret = -ENOENT; 852 rdtgroup_kn_unlock(of->kn); 853 854 return ret; 855 } 856 857 #ifdef CONFIG_PROC_CPU_RESCTRL 858 859 /* 860 * A task can only be part of one resctrl control group and of one monitor 861 * group which is associated to that control group. 862 * 863 * 1) res: 864 * mon: 865 * 866 * resctrl is not available. 867 * 868 * 2) res:/ 869 * mon: 870 * 871 * Task is part of the root resctrl control group, and it is not associated 872 * to any monitor group. 873 * 874 * 3) res:/ 875 * mon:mon0 876 * 877 * Task is part of the root resctrl control group and monitor group mon0. 878 * 879 * 4) res:group0 880 * mon: 881 * 882 * Task is part of resctrl control group group0, and it is not associated 883 * to any monitor group. 884 * 885 * 5) res:group0 886 * mon:mon1 887 * 888 * Task is part of resctrl control group group0 and monitor group mon1. 889 */ 890 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 891 struct pid *pid, struct task_struct *tsk) 892 { 893 struct rdtgroup *rdtg; 894 int ret = 0; 895 896 mutex_lock(&rdtgroup_mutex); 897 898 /* Return empty if resctrl has not been mounted. */ 899 if (!resctrl_mounted) { 900 seq_puts(s, "res:\nmon:\n"); 901 goto unlock; 902 } 903 904 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 905 struct rdtgroup *crg; 906 907 /* 908 * Task information is only relevant for shareable 909 * and exclusive groups. 910 */ 911 if (rdtg->mode != RDT_MODE_SHAREABLE && 912 rdtg->mode != RDT_MODE_EXCLUSIVE) 913 continue; 914 915 if (!resctrl_arch_match_closid(tsk, rdtg->closid)) 916 continue; 917 918 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 919 rdtg->kn->name); 920 seq_puts(s, "mon:"); 921 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 922 mon.crdtgrp_list) { 923 if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid, 924 crg->mon.rmid)) 925 continue; 926 seq_printf(s, "%s", crg->kn->name); 927 break; 928 } 929 seq_putc(s, '\n'); 930 goto unlock; 931 } 932 /* 933 * The above search should succeed. Otherwise return 934 * with an error. 935 */ 936 ret = -ENOENT; 937 unlock: 938 mutex_unlock(&rdtgroup_mutex); 939 940 return ret; 941 } 942 #endif 943 944 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 945 struct seq_file *seq, void *v) 946 { 947 int len; 948 949 mutex_lock(&rdtgroup_mutex); 950 len = seq_buf_used(&last_cmd_status); 951 if (len) 952 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 953 else 954 seq_puts(seq, "ok\n"); 955 mutex_unlock(&rdtgroup_mutex); 956 return 0; 957 } 958 959 static int rdt_num_closids_show(struct kernfs_open_file *of, 960 struct seq_file *seq, void *v) 961 { 962 struct resctrl_schema *s = of->kn->parent->priv; 963 964 seq_printf(seq, "%u\n", s->num_closid); 965 return 0; 966 } 967 968 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 969 struct seq_file *seq, void *v) 970 { 971 struct resctrl_schema *s = of->kn->parent->priv; 972 struct rdt_resource *r = s->res; 973 974 seq_printf(seq, "%x\n", r->default_ctrl); 975 return 0; 976 } 977 978 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 979 struct seq_file *seq, void *v) 980 { 981 struct resctrl_schema *s = of->kn->parent->priv; 982 struct rdt_resource *r = s->res; 983 984 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 985 return 0; 986 } 987 988 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 989 struct seq_file *seq, void *v) 990 { 991 struct resctrl_schema *s = of->kn->parent->priv; 992 struct rdt_resource *r = s->res; 993 994 seq_printf(seq, "%x\n", r->cache.shareable_bits); 995 return 0; 996 } 997 998 /* 999 * rdt_bit_usage_show - Display current usage of resources 1000 * 1001 * A domain is a shared resource that can now be allocated differently. Here 1002 * we display the current regions of the domain as an annotated bitmask. 1003 * For each domain of this resource its allocation bitmask 1004 * is annotated as below to indicate the current usage of the corresponding bit: 1005 * 0 - currently unused 1006 * X - currently available for sharing and used by software and hardware 1007 * H - currently used by hardware only but available for software use 1008 * S - currently used and shareable by software only 1009 * E - currently used exclusively by one resource group 1010 * P - currently pseudo-locked by one resource group 1011 */ 1012 static int rdt_bit_usage_show(struct kernfs_open_file *of, 1013 struct seq_file *seq, void *v) 1014 { 1015 struct resctrl_schema *s = of->kn->parent->priv; 1016 /* 1017 * Use unsigned long even though only 32 bits are used to ensure 1018 * test_bit() is used safely. 1019 */ 1020 unsigned long sw_shareable = 0, hw_shareable = 0; 1021 unsigned long exclusive = 0, pseudo_locked = 0; 1022 struct rdt_resource *r = s->res; 1023 struct rdt_ctrl_domain *dom; 1024 int i, hwb, swb, excl, psl; 1025 enum rdtgrp_mode mode; 1026 bool sep = false; 1027 u32 ctrl_val; 1028 1029 cpus_read_lock(); 1030 mutex_lock(&rdtgroup_mutex); 1031 hw_shareable = r->cache.shareable_bits; 1032 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) { 1033 if (sep) 1034 seq_putc(seq, ';'); 1035 sw_shareable = 0; 1036 exclusive = 0; 1037 seq_printf(seq, "%d=", dom->hdr.id); 1038 for (i = 0; i < closids_supported(); i++) { 1039 if (!closid_allocated(i)) 1040 continue; 1041 ctrl_val = resctrl_arch_get_config(r, dom, i, 1042 s->conf_type); 1043 mode = rdtgroup_mode_by_closid(i); 1044 switch (mode) { 1045 case RDT_MODE_SHAREABLE: 1046 sw_shareable |= ctrl_val; 1047 break; 1048 case RDT_MODE_EXCLUSIVE: 1049 exclusive |= ctrl_val; 1050 break; 1051 case RDT_MODE_PSEUDO_LOCKSETUP: 1052 /* 1053 * RDT_MODE_PSEUDO_LOCKSETUP is possible 1054 * here but not included since the CBM 1055 * associated with this CLOSID in this mode 1056 * is not initialized and no task or cpu can be 1057 * assigned this CLOSID. 1058 */ 1059 break; 1060 case RDT_MODE_PSEUDO_LOCKED: 1061 case RDT_NUM_MODES: 1062 WARN(1, 1063 "invalid mode for closid %d\n", i); 1064 break; 1065 } 1066 } 1067 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 1068 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 1069 hwb = test_bit(i, &hw_shareable); 1070 swb = test_bit(i, &sw_shareable); 1071 excl = test_bit(i, &exclusive); 1072 psl = test_bit(i, &pseudo_locked); 1073 if (hwb && swb) 1074 seq_putc(seq, 'X'); 1075 else if (hwb && !swb) 1076 seq_putc(seq, 'H'); 1077 else if (!hwb && swb) 1078 seq_putc(seq, 'S'); 1079 else if (excl) 1080 seq_putc(seq, 'E'); 1081 else if (psl) 1082 seq_putc(seq, 'P'); 1083 else /* Unused bits remain */ 1084 seq_putc(seq, '0'); 1085 } 1086 sep = true; 1087 } 1088 seq_putc(seq, '\n'); 1089 mutex_unlock(&rdtgroup_mutex); 1090 cpus_read_unlock(); 1091 return 0; 1092 } 1093 1094 static int rdt_min_bw_show(struct kernfs_open_file *of, 1095 struct seq_file *seq, void *v) 1096 { 1097 struct resctrl_schema *s = of->kn->parent->priv; 1098 struct rdt_resource *r = s->res; 1099 1100 seq_printf(seq, "%u\n", r->membw.min_bw); 1101 return 0; 1102 } 1103 1104 static int rdt_num_rmids_show(struct kernfs_open_file *of, 1105 struct seq_file *seq, void *v) 1106 { 1107 struct rdt_resource *r = of->kn->parent->priv; 1108 1109 seq_printf(seq, "%d\n", r->num_rmid); 1110 1111 return 0; 1112 } 1113 1114 static int rdt_mon_features_show(struct kernfs_open_file *of, 1115 struct seq_file *seq, void *v) 1116 { 1117 struct rdt_resource *r = of->kn->parent->priv; 1118 struct mon_evt *mevt; 1119 1120 list_for_each_entry(mevt, &r->evt_list, list) { 1121 seq_printf(seq, "%s\n", mevt->name); 1122 if (mevt->configurable) 1123 seq_printf(seq, "%s_config\n", mevt->name); 1124 } 1125 1126 return 0; 1127 } 1128 1129 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1130 struct seq_file *seq, void *v) 1131 { 1132 struct resctrl_schema *s = of->kn->parent->priv; 1133 struct rdt_resource *r = s->res; 1134 1135 seq_printf(seq, "%u\n", r->membw.bw_gran); 1136 return 0; 1137 } 1138 1139 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1140 struct seq_file *seq, void *v) 1141 { 1142 struct resctrl_schema *s = of->kn->parent->priv; 1143 struct rdt_resource *r = s->res; 1144 1145 seq_printf(seq, "%u\n", r->membw.delay_linear); 1146 return 0; 1147 } 1148 1149 static int max_threshold_occ_show(struct kernfs_open_file *of, 1150 struct seq_file *seq, void *v) 1151 { 1152 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold); 1153 1154 return 0; 1155 } 1156 1157 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1158 struct seq_file *seq, void *v) 1159 { 1160 struct resctrl_schema *s = of->kn->parent->priv; 1161 struct rdt_resource *r = s->res; 1162 1163 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD) 1164 seq_puts(seq, "per-thread\n"); 1165 else 1166 seq_puts(seq, "max\n"); 1167 1168 return 0; 1169 } 1170 1171 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1172 char *buf, size_t nbytes, loff_t off) 1173 { 1174 unsigned int bytes; 1175 int ret; 1176 1177 ret = kstrtouint(buf, 0, &bytes); 1178 if (ret) 1179 return ret; 1180 1181 if (bytes > resctrl_rmid_realloc_limit) 1182 return -EINVAL; 1183 1184 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes); 1185 1186 return nbytes; 1187 } 1188 1189 /* 1190 * rdtgroup_mode_show - Display mode of this resource group 1191 */ 1192 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1193 struct seq_file *s, void *v) 1194 { 1195 struct rdtgroup *rdtgrp; 1196 1197 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1198 if (!rdtgrp) { 1199 rdtgroup_kn_unlock(of->kn); 1200 return -ENOENT; 1201 } 1202 1203 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1204 1205 rdtgroup_kn_unlock(of->kn); 1206 return 0; 1207 } 1208 1209 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type) 1210 { 1211 switch (my_type) { 1212 case CDP_CODE: 1213 return CDP_DATA; 1214 case CDP_DATA: 1215 return CDP_CODE; 1216 default: 1217 case CDP_NONE: 1218 return CDP_NONE; 1219 } 1220 } 1221 1222 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of, 1223 struct seq_file *seq, void *v) 1224 { 1225 struct resctrl_schema *s = of->kn->parent->priv; 1226 struct rdt_resource *r = s->res; 1227 1228 seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks); 1229 1230 return 0; 1231 } 1232 1233 /** 1234 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1235 * @r: Resource to which domain instance @d belongs. 1236 * @d: The domain instance for which @closid is being tested. 1237 * @cbm: Capacity bitmask being tested. 1238 * @closid: Intended closid for @cbm. 1239 * @type: CDP type of @r. 1240 * @exclusive: Only check if overlaps with exclusive resource groups 1241 * 1242 * Checks if provided @cbm intended to be used for @closid on domain 1243 * @d overlaps with any other closids or other hardware usage associated 1244 * with this domain. If @exclusive is true then only overlaps with 1245 * resource groups in exclusive mode will be considered. If @exclusive 1246 * is false then overlaps with any resource group or hardware entities 1247 * will be considered. 1248 * 1249 * @cbm is unsigned long, even if only 32 bits are used, to make the 1250 * bitmap functions work correctly. 1251 * 1252 * Return: false if CBM does not overlap, true if it does. 1253 */ 1254 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d, 1255 unsigned long cbm, int closid, 1256 enum resctrl_conf_type type, bool exclusive) 1257 { 1258 enum rdtgrp_mode mode; 1259 unsigned long ctrl_b; 1260 int i; 1261 1262 /* Check for any overlap with regions used by hardware directly */ 1263 if (!exclusive) { 1264 ctrl_b = r->cache.shareable_bits; 1265 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1266 return true; 1267 } 1268 1269 /* Check for overlap with other resource groups */ 1270 for (i = 0; i < closids_supported(); i++) { 1271 ctrl_b = resctrl_arch_get_config(r, d, i, type); 1272 mode = rdtgroup_mode_by_closid(i); 1273 if (closid_allocated(i) && i != closid && 1274 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1275 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1276 if (exclusive) { 1277 if (mode == RDT_MODE_EXCLUSIVE) 1278 return true; 1279 continue; 1280 } 1281 return true; 1282 } 1283 } 1284 } 1285 1286 return false; 1287 } 1288 1289 /** 1290 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1291 * @s: Schema for the resource to which domain instance @d belongs. 1292 * @d: The domain instance for which @closid is being tested. 1293 * @cbm: Capacity bitmask being tested. 1294 * @closid: Intended closid for @cbm. 1295 * @exclusive: Only check if overlaps with exclusive resource groups 1296 * 1297 * Resources that can be allocated using a CBM can use the CBM to control 1298 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1299 * for overlap. Overlap test is not limited to the specific resource for 1300 * which the CBM is intended though - when dealing with CDP resources that 1301 * share the underlying hardware the overlap check should be performed on 1302 * the CDP resource sharing the hardware also. 1303 * 1304 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1305 * overlap test. 1306 * 1307 * Return: true if CBM overlap detected, false if there is no overlap 1308 */ 1309 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d, 1310 unsigned long cbm, int closid, bool exclusive) 1311 { 1312 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 1313 struct rdt_resource *r = s->res; 1314 1315 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type, 1316 exclusive)) 1317 return true; 1318 1319 if (!resctrl_arch_get_cdp_enabled(r->rid)) 1320 return false; 1321 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive); 1322 } 1323 1324 /** 1325 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1326 * @rdtgrp: Resource group identified through its closid. 1327 * 1328 * An exclusive resource group implies that there should be no sharing of 1329 * its allocated resources. At the time this group is considered to be 1330 * exclusive this test can determine if its current schemata supports this 1331 * setting by testing for overlap with all other resource groups. 1332 * 1333 * Return: true if resource group can be exclusive, false if there is overlap 1334 * with allocations of other resource groups and thus this resource group 1335 * cannot be exclusive. 1336 */ 1337 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1338 { 1339 int closid = rdtgrp->closid; 1340 struct rdt_ctrl_domain *d; 1341 struct resctrl_schema *s; 1342 struct rdt_resource *r; 1343 bool has_cache = false; 1344 u32 ctrl; 1345 1346 /* Walking r->domains, ensure it can't race with cpuhp */ 1347 lockdep_assert_cpus_held(); 1348 1349 list_for_each_entry(s, &resctrl_schema_all, list) { 1350 r = s->res; 1351 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA) 1352 continue; 1353 has_cache = true; 1354 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 1355 ctrl = resctrl_arch_get_config(r, d, closid, 1356 s->conf_type); 1357 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) { 1358 rdt_last_cmd_puts("Schemata overlaps\n"); 1359 return false; 1360 } 1361 } 1362 } 1363 1364 if (!has_cache) { 1365 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1366 return false; 1367 } 1368 1369 return true; 1370 } 1371 1372 /* 1373 * rdtgroup_mode_write - Modify the resource group's mode 1374 */ 1375 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1376 char *buf, size_t nbytes, loff_t off) 1377 { 1378 struct rdtgroup *rdtgrp; 1379 enum rdtgrp_mode mode; 1380 int ret = 0; 1381 1382 /* Valid input requires a trailing newline */ 1383 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1384 return -EINVAL; 1385 buf[nbytes - 1] = '\0'; 1386 1387 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1388 if (!rdtgrp) { 1389 rdtgroup_kn_unlock(of->kn); 1390 return -ENOENT; 1391 } 1392 1393 rdt_last_cmd_clear(); 1394 1395 mode = rdtgrp->mode; 1396 1397 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1398 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1399 (!strcmp(buf, "pseudo-locksetup") && 1400 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1401 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1402 goto out; 1403 1404 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1405 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1406 ret = -EINVAL; 1407 goto out; 1408 } 1409 1410 if (!strcmp(buf, "shareable")) { 1411 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1412 ret = rdtgroup_locksetup_exit(rdtgrp); 1413 if (ret) 1414 goto out; 1415 } 1416 rdtgrp->mode = RDT_MODE_SHAREABLE; 1417 } else if (!strcmp(buf, "exclusive")) { 1418 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1419 ret = -EINVAL; 1420 goto out; 1421 } 1422 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1423 ret = rdtgroup_locksetup_exit(rdtgrp); 1424 if (ret) 1425 goto out; 1426 } 1427 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1428 } else if (!strcmp(buf, "pseudo-locksetup")) { 1429 ret = rdtgroup_locksetup_enter(rdtgrp); 1430 if (ret) 1431 goto out; 1432 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1433 } else { 1434 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1435 ret = -EINVAL; 1436 } 1437 1438 out: 1439 rdtgroup_kn_unlock(of->kn); 1440 return ret ?: nbytes; 1441 } 1442 1443 /** 1444 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1445 * @r: RDT resource to which @d belongs. 1446 * @d: RDT domain instance. 1447 * @cbm: bitmask for which the size should be computed. 1448 * 1449 * The bitmask provided associated with the RDT domain instance @d will be 1450 * translated into how many bytes it represents. The size in bytes is 1451 * computed by first dividing the total cache size by the CBM length to 1452 * determine how many bytes each bit in the bitmask represents. The result 1453 * is multiplied with the number of bits set in the bitmask. 1454 * 1455 * @cbm is unsigned long, even if only 32 bits are used to make the 1456 * bitmap functions work correctly. 1457 */ 1458 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1459 struct rdt_ctrl_domain *d, unsigned long cbm) 1460 { 1461 unsigned int size = 0; 1462 struct cacheinfo *ci; 1463 int num_b; 1464 1465 if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE)) 1466 return size; 1467 1468 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1469 ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope); 1470 if (ci) 1471 size = ci->size / r->cache.cbm_len * num_b; 1472 1473 return size; 1474 } 1475 1476 /* 1477 * rdtgroup_size_show - Display size in bytes of allocated regions 1478 * 1479 * The "size" file mirrors the layout of the "schemata" file, printing the 1480 * size in bytes of each region instead of the capacity bitmask. 1481 */ 1482 static int rdtgroup_size_show(struct kernfs_open_file *of, 1483 struct seq_file *s, void *v) 1484 { 1485 struct resctrl_schema *schema; 1486 enum resctrl_conf_type type; 1487 struct rdt_ctrl_domain *d; 1488 struct rdtgroup *rdtgrp; 1489 struct rdt_resource *r; 1490 unsigned int size; 1491 int ret = 0; 1492 u32 closid; 1493 bool sep; 1494 u32 ctrl; 1495 1496 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1497 if (!rdtgrp) { 1498 rdtgroup_kn_unlock(of->kn); 1499 return -ENOENT; 1500 } 1501 1502 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1503 if (!rdtgrp->plr->d) { 1504 rdt_last_cmd_clear(); 1505 rdt_last_cmd_puts("Cache domain offline\n"); 1506 ret = -ENODEV; 1507 } else { 1508 seq_printf(s, "%*s:", max_name_width, 1509 rdtgrp->plr->s->name); 1510 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res, 1511 rdtgrp->plr->d, 1512 rdtgrp->plr->cbm); 1513 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size); 1514 } 1515 goto out; 1516 } 1517 1518 closid = rdtgrp->closid; 1519 1520 list_for_each_entry(schema, &resctrl_schema_all, list) { 1521 r = schema->res; 1522 type = schema->conf_type; 1523 sep = false; 1524 seq_printf(s, "%*s:", max_name_width, schema->name); 1525 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 1526 if (sep) 1527 seq_putc(s, ';'); 1528 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1529 size = 0; 1530 } else { 1531 if (is_mba_sc(r)) 1532 ctrl = d->mbps_val[closid]; 1533 else 1534 ctrl = resctrl_arch_get_config(r, d, 1535 closid, 1536 type); 1537 if (r->rid == RDT_RESOURCE_MBA || 1538 r->rid == RDT_RESOURCE_SMBA) 1539 size = ctrl; 1540 else 1541 size = rdtgroup_cbm_to_size(r, d, ctrl); 1542 } 1543 seq_printf(s, "%d=%u", d->hdr.id, size); 1544 sep = true; 1545 } 1546 seq_putc(s, '\n'); 1547 } 1548 1549 out: 1550 rdtgroup_kn_unlock(of->kn); 1551 1552 return ret; 1553 } 1554 1555 struct mon_config_info { 1556 u32 evtid; 1557 u32 mon_config; 1558 }; 1559 1560 #define INVALID_CONFIG_INDEX UINT_MAX 1561 1562 /** 1563 * mon_event_config_index_get - get the hardware index for the 1564 * configurable event 1565 * @evtid: event id. 1566 * 1567 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID 1568 * 1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID 1569 * INVALID_CONFIG_INDEX for invalid evtid 1570 */ 1571 static inline unsigned int mon_event_config_index_get(u32 evtid) 1572 { 1573 switch (evtid) { 1574 case QOS_L3_MBM_TOTAL_EVENT_ID: 1575 return 0; 1576 case QOS_L3_MBM_LOCAL_EVENT_ID: 1577 return 1; 1578 default: 1579 /* Should never reach here */ 1580 return INVALID_CONFIG_INDEX; 1581 } 1582 } 1583 1584 static void mon_event_config_read(void *info) 1585 { 1586 struct mon_config_info *mon_info = info; 1587 unsigned int index; 1588 u64 msrval; 1589 1590 index = mon_event_config_index_get(mon_info->evtid); 1591 if (index == INVALID_CONFIG_INDEX) { 1592 pr_warn_once("Invalid event id %d\n", mon_info->evtid); 1593 return; 1594 } 1595 rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval); 1596 1597 /* Report only the valid event configuration bits */ 1598 mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS; 1599 } 1600 1601 static void mondata_config_read(struct rdt_mon_domain *d, struct mon_config_info *mon_info) 1602 { 1603 smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_read, mon_info, 1); 1604 } 1605 1606 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid) 1607 { 1608 struct mon_config_info mon_info; 1609 struct rdt_mon_domain *dom; 1610 bool sep = false; 1611 1612 cpus_read_lock(); 1613 mutex_lock(&rdtgroup_mutex); 1614 1615 list_for_each_entry(dom, &r->mon_domains, hdr.list) { 1616 if (sep) 1617 seq_puts(s, ";"); 1618 1619 memset(&mon_info, 0, sizeof(struct mon_config_info)); 1620 mon_info.evtid = evtid; 1621 mondata_config_read(dom, &mon_info); 1622 1623 seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config); 1624 sep = true; 1625 } 1626 seq_puts(s, "\n"); 1627 1628 mutex_unlock(&rdtgroup_mutex); 1629 cpus_read_unlock(); 1630 1631 return 0; 1632 } 1633 1634 static int mbm_total_bytes_config_show(struct kernfs_open_file *of, 1635 struct seq_file *seq, void *v) 1636 { 1637 struct rdt_resource *r = of->kn->parent->priv; 1638 1639 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID); 1640 1641 return 0; 1642 } 1643 1644 static int mbm_local_bytes_config_show(struct kernfs_open_file *of, 1645 struct seq_file *seq, void *v) 1646 { 1647 struct rdt_resource *r = of->kn->parent->priv; 1648 1649 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID); 1650 1651 return 0; 1652 } 1653 1654 static void mon_event_config_write(void *info) 1655 { 1656 struct mon_config_info *mon_info = info; 1657 unsigned int index; 1658 1659 index = mon_event_config_index_get(mon_info->evtid); 1660 if (index == INVALID_CONFIG_INDEX) { 1661 pr_warn_once("Invalid event id %d\n", mon_info->evtid); 1662 return; 1663 } 1664 wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0); 1665 } 1666 1667 static void mbm_config_write_domain(struct rdt_resource *r, 1668 struct rdt_mon_domain *d, u32 evtid, u32 val) 1669 { 1670 struct mon_config_info mon_info = {0}; 1671 1672 /* 1673 * Read the current config value first. If both are the same then 1674 * no need to write it again. 1675 */ 1676 mon_info.evtid = evtid; 1677 mondata_config_read(d, &mon_info); 1678 if (mon_info.mon_config == val) 1679 return; 1680 1681 mon_info.mon_config = val; 1682 1683 /* 1684 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the 1685 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE 1686 * are scoped at the domain level. Writing any of these MSRs 1687 * on one CPU is observed by all the CPUs in the domain. 1688 */ 1689 smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_write, 1690 &mon_info, 1); 1691 1692 /* 1693 * When an Event Configuration is changed, the bandwidth counters 1694 * for all RMIDs and Events will be cleared by the hardware. The 1695 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for 1696 * every RMID on the next read to any event for every RMID. 1697 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62) 1698 * cleared while it is tracked by the hardware. Clear the 1699 * mbm_local and mbm_total counts for all the RMIDs. 1700 */ 1701 resctrl_arch_reset_rmid_all(r, d); 1702 } 1703 1704 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid) 1705 { 1706 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 1707 char *dom_str = NULL, *id_str; 1708 unsigned long dom_id, val; 1709 struct rdt_mon_domain *d; 1710 1711 /* Walking r->domains, ensure it can't race with cpuhp */ 1712 lockdep_assert_cpus_held(); 1713 1714 next: 1715 if (!tok || tok[0] == '\0') 1716 return 0; 1717 1718 /* Start processing the strings for each domain */ 1719 dom_str = strim(strsep(&tok, ";")); 1720 id_str = strsep(&dom_str, "="); 1721 1722 if (!id_str || kstrtoul(id_str, 10, &dom_id)) { 1723 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n"); 1724 return -EINVAL; 1725 } 1726 1727 if (!dom_str || kstrtoul(dom_str, 16, &val)) { 1728 rdt_last_cmd_puts("Non-numeric event configuration value\n"); 1729 return -EINVAL; 1730 } 1731 1732 /* Value from user cannot be more than the supported set of events */ 1733 if ((val & hw_res->mbm_cfg_mask) != val) { 1734 rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n", 1735 hw_res->mbm_cfg_mask); 1736 return -EINVAL; 1737 } 1738 1739 list_for_each_entry(d, &r->mon_domains, hdr.list) { 1740 if (d->hdr.id == dom_id) { 1741 mbm_config_write_domain(r, d, evtid, val); 1742 goto next; 1743 } 1744 } 1745 1746 return -EINVAL; 1747 } 1748 1749 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of, 1750 char *buf, size_t nbytes, 1751 loff_t off) 1752 { 1753 struct rdt_resource *r = of->kn->parent->priv; 1754 int ret; 1755 1756 /* Valid input requires a trailing newline */ 1757 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1758 return -EINVAL; 1759 1760 cpus_read_lock(); 1761 mutex_lock(&rdtgroup_mutex); 1762 1763 rdt_last_cmd_clear(); 1764 1765 buf[nbytes - 1] = '\0'; 1766 1767 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID); 1768 1769 mutex_unlock(&rdtgroup_mutex); 1770 cpus_read_unlock(); 1771 1772 return ret ?: nbytes; 1773 } 1774 1775 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of, 1776 char *buf, size_t nbytes, 1777 loff_t off) 1778 { 1779 struct rdt_resource *r = of->kn->parent->priv; 1780 int ret; 1781 1782 /* Valid input requires a trailing newline */ 1783 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1784 return -EINVAL; 1785 1786 cpus_read_lock(); 1787 mutex_lock(&rdtgroup_mutex); 1788 1789 rdt_last_cmd_clear(); 1790 1791 buf[nbytes - 1] = '\0'; 1792 1793 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID); 1794 1795 mutex_unlock(&rdtgroup_mutex); 1796 cpus_read_unlock(); 1797 1798 return ret ?: nbytes; 1799 } 1800 1801 /* rdtgroup information files for one cache resource. */ 1802 static struct rftype res_common_files[] = { 1803 { 1804 .name = "last_cmd_status", 1805 .mode = 0444, 1806 .kf_ops = &rdtgroup_kf_single_ops, 1807 .seq_show = rdt_last_cmd_status_show, 1808 .fflags = RFTYPE_TOP_INFO, 1809 }, 1810 { 1811 .name = "num_closids", 1812 .mode = 0444, 1813 .kf_ops = &rdtgroup_kf_single_ops, 1814 .seq_show = rdt_num_closids_show, 1815 .fflags = RFTYPE_CTRL_INFO, 1816 }, 1817 { 1818 .name = "mon_features", 1819 .mode = 0444, 1820 .kf_ops = &rdtgroup_kf_single_ops, 1821 .seq_show = rdt_mon_features_show, 1822 .fflags = RFTYPE_MON_INFO, 1823 }, 1824 { 1825 .name = "num_rmids", 1826 .mode = 0444, 1827 .kf_ops = &rdtgroup_kf_single_ops, 1828 .seq_show = rdt_num_rmids_show, 1829 .fflags = RFTYPE_MON_INFO, 1830 }, 1831 { 1832 .name = "cbm_mask", 1833 .mode = 0444, 1834 .kf_ops = &rdtgroup_kf_single_ops, 1835 .seq_show = rdt_default_ctrl_show, 1836 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1837 }, 1838 { 1839 .name = "min_cbm_bits", 1840 .mode = 0444, 1841 .kf_ops = &rdtgroup_kf_single_ops, 1842 .seq_show = rdt_min_cbm_bits_show, 1843 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1844 }, 1845 { 1846 .name = "shareable_bits", 1847 .mode = 0444, 1848 .kf_ops = &rdtgroup_kf_single_ops, 1849 .seq_show = rdt_shareable_bits_show, 1850 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1851 }, 1852 { 1853 .name = "bit_usage", 1854 .mode = 0444, 1855 .kf_ops = &rdtgroup_kf_single_ops, 1856 .seq_show = rdt_bit_usage_show, 1857 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1858 }, 1859 { 1860 .name = "min_bandwidth", 1861 .mode = 0444, 1862 .kf_ops = &rdtgroup_kf_single_ops, 1863 .seq_show = rdt_min_bw_show, 1864 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1865 }, 1866 { 1867 .name = "bandwidth_gran", 1868 .mode = 0444, 1869 .kf_ops = &rdtgroup_kf_single_ops, 1870 .seq_show = rdt_bw_gran_show, 1871 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1872 }, 1873 { 1874 .name = "delay_linear", 1875 .mode = 0444, 1876 .kf_ops = &rdtgroup_kf_single_ops, 1877 .seq_show = rdt_delay_linear_show, 1878 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1879 }, 1880 /* 1881 * Platform specific which (if any) capabilities are provided by 1882 * thread_throttle_mode. Defer "fflags" initialization to platform 1883 * discovery. 1884 */ 1885 { 1886 .name = "thread_throttle_mode", 1887 .mode = 0444, 1888 .kf_ops = &rdtgroup_kf_single_ops, 1889 .seq_show = rdt_thread_throttle_mode_show, 1890 }, 1891 { 1892 .name = "max_threshold_occupancy", 1893 .mode = 0644, 1894 .kf_ops = &rdtgroup_kf_single_ops, 1895 .write = max_threshold_occ_write, 1896 .seq_show = max_threshold_occ_show, 1897 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE, 1898 }, 1899 { 1900 .name = "mbm_total_bytes_config", 1901 .mode = 0644, 1902 .kf_ops = &rdtgroup_kf_single_ops, 1903 .seq_show = mbm_total_bytes_config_show, 1904 .write = mbm_total_bytes_config_write, 1905 }, 1906 { 1907 .name = "mbm_local_bytes_config", 1908 .mode = 0644, 1909 .kf_ops = &rdtgroup_kf_single_ops, 1910 .seq_show = mbm_local_bytes_config_show, 1911 .write = mbm_local_bytes_config_write, 1912 }, 1913 { 1914 .name = "cpus", 1915 .mode = 0644, 1916 .kf_ops = &rdtgroup_kf_single_ops, 1917 .write = rdtgroup_cpus_write, 1918 .seq_show = rdtgroup_cpus_show, 1919 .fflags = RFTYPE_BASE, 1920 }, 1921 { 1922 .name = "cpus_list", 1923 .mode = 0644, 1924 .kf_ops = &rdtgroup_kf_single_ops, 1925 .write = rdtgroup_cpus_write, 1926 .seq_show = rdtgroup_cpus_show, 1927 .flags = RFTYPE_FLAGS_CPUS_LIST, 1928 .fflags = RFTYPE_BASE, 1929 }, 1930 { 1931 .name = "tasks", 1932 .mode = 0644, 1933 .kf_ops = &rdtgroup_kf_single_ops, 1934 .write = rdtgroup_tasks_write, 1935 .seq_show = rdtgroup_tasks_show, 1936 .fflags = RFTYPE_BASE, 1937 }, 1938 { 1939 .name = "mon_hw_id", 1940 .mode = 0444, 1941 .kf_ops = &rdtgroup_kf_single_ops, 1942 .seq_show = rdtgroup_rmid_show, 1943 .fflags = RFTYPE_MON_BASE | RFTYPE_DEBUG, 1944 }, 1945 { 1946 .name = "schemata", 1947 .mode = 0644, 1948 .kf_ops = &rdtgroup_kf_single_ops, 1949 .write = rdtgroup_schemata_write, 1950 .seq_show = rdtgroup_schemata_show, 1951 .fflags = RFTYPE_CTRL_BASE, 1952 }, 1953 { 1954 .name = "mba_MBps_event", 1955 .mode = 0644, 1956 .kf_ops = &rdtgroup_kf_single_ops, 1957 .write = rdtgroup_mba_mbps_event_write, 1958 .seq_show = rdtgroup_mba_mbps_event_show, 1959 }, 1960 { 1961 .name = "mode", 1962 .mode = 0644, 1963 .kf_ops = &rdtgroup_kf_single_ops, 1964 .write = rdtgroup_mode_write, 1965 .seq_show = rdtgroup_mode_show, 1966 .fflags = RFTYPE_CTRL_BASE, 1967 }, 1968 { 1969 .name = "size", 1970 .mode = 0444, 1971 .kf_ops = &rdtgroup_kf_single_ops, 1972 .seq_show = rdtgroup_size_show, 1973 .fflags = RFTYPE_CTRL_BASE, 1974 }, 1975 { 1976 .name = "sparse_masks", 1977 .mode = 0444, 1978 .kf_ops = &rdtgroup_kf_single_ops, 1979 .seq_show = rdt_has_sparse_bitmasks_show, 1980 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1981 }, 1982 { 1983 .name = "ctrl_hw_id", 1984 .mode = 0444, 1985 .kf_ops = &rdtgroup_kf_single_ops, 1986 .seq_show = rdtgroup_closid_show, 1987 .fflags = RFTYPE_CTRL_BASE | RFTYPE_DEBUG, 1988 }, 1989 1990 }; 1991 1992 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1993 { 1994 struct rftype *rfts, *rft; 1995 int ret, len; 1996 1997 rfts = res_common_files; 1998 len = ARRAY_SIZE(res_common_files); 1999 2000 lockdep_assert_held(&rdtgroup_mutex); 2001 2002 if (resctrl_debug) 2003 fflags |= RFTYPE_DEBUG; 2004 2005 for (rft = rfts; rft < rfts + len; rft++) { 2006 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 2007 ret = rdtgroup_add_file(kn, rft); 2008 if (ret) 2009 goto error; 2010 } 2011 } 2012 2013 return 0; 2014 error: 2015 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 2016 while (--rft >= rfts) { 2017 if ((fflags & rft->fflags) == rft->fflags) 2018 kernfs_remove_by_name(kn, rft->name); 2019 } 2020 return ret; 2021 } 2022 2023 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 2024 { 2025 struct rftype *rfts, *rft; 2026 int len; 2027 2028 rfts = res_common_files; 2029 len = ARRAY_SIZE(res_common_files); 2030 2031 for (rft = rfts; rft < rfts + len; rft++) { 2032 if (!strcmp(rft->name, name)) 2033 return rft; 2034 } 2035 2036 return NULL; 2037 } 2038 2039 void resctrl_file_fflags_init(const char *config, unsigned long fflags) 2040 { 2041 struct rftype *rft; 2042 2043 rft = rdtgroup_get_rftype_by_name(config); 2044 if (rft) 2045 rft->fflags = fflags; 2046 } 2047 2048 /** 2049 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 2050 * @r: The resource group with which the file is associated. 2051 * @name: Name of the file 2052 * 2053 * The permissions of named resctrl file, directory, or link are modified 2054 * to not allow read, write, or execute by any user. 2055 * 2056 * WARNING: This function is intended to communicate to the user that the 2057 * resctrl file has been locked down - that it is not relevant to the 2058 * particular state the system finds itself in. It should not be relied 2059 * on to protect from user access because after the file's permissions 2060 * are restricted the user can still change the permissions using chmod 2061 * from the command line. 2062 * 2063 * Return: 0 on success, <0 on failure. 2064 */ 2065 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 2066 { 2067 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 2068 struct kernfs_node *kn; 2069 int ret = 0; 2070 2071 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 2072 if (!kn) 2073 return -ENOENT; 2074 2075 switch (kernfs_type(kn)) { 2076 case KERNFS_DIR: 2077 iattr.ia_mode = S_IFDIR; 2078 break; 2079 case KERNFS_FILE: 2080 iattr.ia_mode = S_IFREG; 2081 break; 2082 case KERNFS_LINK: 2083 iattr.ia_mode = S_IFLNK; 2084 break; 2085 } 2086 2087 ret = kernfs_setattr(kn, &iattr); 2088 kernfs_put(kn); 2089 return ret; 2090 } 2091 2092 /** 2093 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 2094 * @r: The resource group with which the file is associated. 2095 * @name: Name of the file 2096 * @mask: Mask of permissions that should be restored 2097 * 2098 * Restore the permissions of the named file. If @name is a directory the 2099 * permissions of its parent will be used. 2100 * 2101 * Return: 0 on success, <0 on failure. 2102 */ 2103 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 2104 umode_t mask) 2105 { 2106 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 2107 struct kernfs_node *kn, *parent; 2108 struct rftype *rfts, *rft; 2109 int ret, len; 2110 2111 rfts = res_common_files; 2112 len = ARRAY_SIZE(res_common_files); 2113 2114 for (rft = rfts; rft < rfts + len; rft++) { 2115 if (!strcmp(rft->name, name)) 2116 iattr.ia_mode = rft->mode & mask; 2117 } 2118 2119 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 2120 if (!kn) 2121 return -ENOENT; 2122 2123 switch (kernfs_type(kn)) { 2124 case KERNFS_DIR: 2125 parent = kernfs_get_parent(kn); 2126 if (parent) { 2127 iattr.ia_mode |= parent->mode; 2128 kernfs_put(parent); 2129 } 2130 iattr.ia_mode |= S_IFDIR; 2131 break; 2132 case KERNFS_FILE: 2133 iattr.ia_mode |= S_IFREG; 2134 break; 2135 case KERNFS_LINK: 2136 iattr.ia_mode |= S_IFLNK; 2137 break; 2138 } 2139 2140 ret = kernfs_setattr(kn, &iattr); 2141 kernfs_put(kn); 2142 return ret; 2143 } 2144 2145 static int rdtgroup_mkdir_info_resdir(void *priv, char *name, 2146 unsigned long fflags) 2147 { 2148 struct kernfs_node *kn_subdir; 2149 int ret; 2150 2151 kn_subdir = kernfs_create_dir(kn_info, name, 2152 kn_info->mode, priv); 2153 if (IS_ERR(kn_subdir)) 2154 return PTR_ERR(kn_subdir); 2155 2156 ret = rdtgroup_kn_set_ugid(kn_subdir); 2157 if (ret) 2158 return ret; 2159 2160 ret = rdtgroup_add_files(kn_subdir, fflags); 2161 if (!ret) 2162 kernfs_activate(kn_subdir); 2163 2164 return ret; 2165 } 2166 2167 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 2168 { 2169 struct resctrl_schema *s; 2170 struct rdt_resource *r; 2171 unsigned long fflags; 2172 char name[32]; 2173 int ret; 2174 2175 /* create the directory */ 2176 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 2177 if (IS_ERR(kn_info)) 2178 return PTR_ERR(kn_info); 2179 2180 ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO); 2181 if (ret) 2182 goto out_destroy; 2183 2184 /* loop over enabled controls, these are all alloc_capable */ 2185 list_for_each_entry(s, &resctrl_schema_all, list) { 2186 r = s->res; 2187 fflags = r->fflags | RFTYPE_CTRL_INFO; 2188 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags); 2189 if (ret) 2190 goto out_destroy; 2191 } 2192 2193 for_each_mon_capable_rdt_resource(r) { 2194 fflags = r->fflags | RFTYPE_MON_INFO; 2195 sprintf(name, "%s_MON", r->name); 2196 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 2197 if (ret) 2198 goto out_destroy; 2199 } 2200 2201 ret = rdtgroup_kn_set_ugid(kn_info); 2202 if (ret) 2203 goto out_destroy; 2204 2205 kernfs_activate(kn_info); 2206 2207 return 0; 2208 2209 out_destroy: 2210 kernfs_remove(kn_info); 2211 return ret; 2212 } 2213 2214 static int 2215 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 2216 char *name, struct kernfs_node **dest_kn) 2217 { 2218 struct kernfs_node *kn; 2219 int ret; 2220 2221 /* create the directory */ 2222 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2223 if (IS_ERR(kn)) 2224 return PTR_ERR(kn); 2225 2226 if (dest_kn) 2227 *dest_kn = kn; 2228 2229 ret = rdtgroup_kn_set_ugid(kn); 2230 if (ret) 2231 goto out_destroy; 2232 2233 kernfs_activate(kn); 2234 2235 return 0; 2236 2237 out_destroy: 2238 kernfs_remove(kn); 2239 return ret; 2240 } 2241 2242 static void l3_qos_cfg_update(void *arg) 2243 { 2244 bool *enable = arg; 2245 2246 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 2247 } 2248 2249 static void l2_qos_cfg_update(void *arg) 2250 { 2251 bool *enable = arg; 2252 2253 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 2254 } 2255 2256 static inline bool is_mba_linear(void) 2257 { 2258 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear; 2259 } 2260 2261 static int set_cache_qos_cfg(int level, bool enable) 2262 { 2263 void (*update)(void *arg); 2264 struct rdt_ctrl_domain *d; 2265 struct rdt_resource *r_l; 2266 cpumask_var_t cpu_mask; 2267 int cpu; 2268 2269 /* Walking r->domains, ensure it can't race with cpuhp */ 2270 lockdep_assert_cpus_held(); 2271 2272 if (level == RDT_RESOURCE_L3) 2273 update = l3_qos_cfg_update; 2274 else if (level == RDT_RESOURCE_L2) 2275 update = l2_qos_cfg_update; 2276 else 2277 return -EINVAL; 2278 2279 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2280 return -ENOMEM; 2281 2282 r_l = &rdt_resources_all[level].r_resctrl; 2283 list_for_each_entry(d, &r_l->ctrl_domains, hdr.list) { 2284 if (r_l->cache.arch_has_per_cpu_cfg) 2285 /* Pick all the CPUs in the domain instance */ 2286 for_each_cpu(cpu, &d->hdr.cpu_mask) 2287 cpumask_set_cpu(cpu, cpu_mask); 2288 else 2289 /* Pick one CPU from each domain instance to update MSR */ 2290 cpumask_set_cpu(cpumask_any(&d->hdr.cpu_mask), cpu_mask); 2291 } 2292 2293 /* Update QOS_CFG MSR on all the CPUs in cpu_mask */ 2294 on_each_cpu_mask(cpu_mask, update, &enable, 1); 2295 2296 free_cpumask_var(cpu_mask); 2297 2298 return 0; 2299 } 2300 2301 /* Restore the qos cfg state when a domain comes online */ 2302 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 2303 { 2304 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2305 2306 if (!r->cdp_capable) 2307 return; 2308 2309 if (r->rid == RDT_RESOURCE_L2) 2310 l2_qos_cfg_update(&hw_res->cdp_enabled); 2311 2312 if (r->rid == RDT_RESOURCE_L3) 2313 l3_qos_cfg_update(&hw_res->cdp_enabled); 2314 } 2315 2316 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d) 2317 { 2318 u32 num_closid = resctrl_arch_get_num_closid(r); 2319 int cpu = cpumask_any(&d->hdr.cpu_mask); 2320 int i; 2321 2322 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val), 2323 GFP_KERNEL, cpu_to_node(cpu)); 2324 if (!d->mbps_val) 2325 return -ENOMEM; 2326 2327 for (i = 0; i < num_closid; i++) 2328 d->mbps_val[i] = MBA_MAX_MBPS; 2329 2330 return 0; 2331 } 2332 2333 static void mba_sc_domain_destroy(struct rdt_resource *r, 2334 struct rdt_ctrl_domain *d) 2335 { 2336 kfree(d->mbps_val); 2337 d->mbps_val = NULL; 2338 } 2339 2340 /* 2341 * MBA software controller is supported only if 2342 * MBM is supported and MBA is in linear scale, 2343 * and the MBM monitor scope is the same as MBA 2344 * control scope. 2345 */ 2346 static bool supports_mba_mbps(void) 2347 { 2348 struct rdt_resource *rmbm = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 2349 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 2350 2351 return (is_mbm_enabled() && 2352 r->alloc_capable && is_mba_linear() && 2353 r->ctrl_scope == rmbm->mon_scope); 2354 } 2355 2356 /* 2357 * Enable or disable the MBA software controller 2358 * which helps user specify bandwidth in MBps. 2359 */ 2360 static int set_mba_sc(bool mba_sc) 2361 { 2362 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 2363 u32 num_closid = resctrl_arch_get_num_closid(r); 2364 struct rdt_ctrl_domain *d; 2365 unsigned long fflags; 2366 int i; 2367 2368 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r)) 2369 return -EINVAL; 2370 2371 r->membw.mba_sc = mba_sc; 2372 2373 rdtgroup_default.mba_mbps_event = mba_mbps_default_event; 2374 2375 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 2376 for (i = 0; i < num_closid; i++) 2377 d->mbps_val[i] = MBA_MAX_MBPS; 2378 } 2379 2380 fflags = mba_sc ? RFTYPE_CTRL_BASE | RFTYPE_MON_BASE : 0; 2381 resctrl_file_fflags_init("mba_MBps_event", fflags); 2382 2383 return 0; 2384 } 2385 2386 static int cdp_enable(int level) 2387 { 2388 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl; 2389 int ret; 2390 2391 if (!r_l->alloc_capable) 2392 return -EINVAL; 2393 2394 ret = set_cache_qos_cfg(level, true); 2395 if (!ret) 2396 rdt_resources_all[level].cdp_enabled = true; 2397 2398 return ret; 2399 } 2400 2401 static void cdp_disable(int level) 2402 { 2403 struct rdt_hw_resource *r_hw = &rdt_resources_all[level]; 2404 2405 if (r_hw->cdp_enabled) { 2406 set_cache_qos_cfg(level, false); 2407 r_hw->cdp_enabled = false; 2408 } 2409 } 2410 2411 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable) 2412 { 2413 struct rdt_hw_resource *hw_res = &rdt_resources_all[l]; 2414 2415 if (!hw_res->r_resctrl.cdp_capable) 2416 return -EINVAL; 2417 2418 if (enable) 2419 return cdp_enable(l); 2420 2421 cdp_disable(l); 2422 2423 return 0; 2424 } 2425 2426 /* 2427 * We don't allow rdtgroup directories to be created anywhere 2428 * except the root directory. Thus when looking for the rdtgroup 2429 * structure for a kernfs node we are either looking at a directory, 2430 * in which case the rdtgroup structure is pointed at by the "priv" 2431 * field, otherwise we have a file, and need only look to the parent 2432 * to find the rdtgroup. 2433 */ 2434 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2435 { 2436 if (kernfs_type(kn) == KERNFS_DIR) { 2437 /* 2438 * All the resource directories use "kn->priv" 2439 * to point to the "struct rdtgroup" for the 2440 * resource. "info" and its subdirectories don't 2441 * have rdtgroup structures, so return NULL here. 2442 */ 2443 if (kn == kn_info || kn->parent == kn_info) 2444 return NULL; 2445 else 2446 return kn->priv; 2447 } else { 2448 return kn->parent->priv; 2449 } 2450 } 2451 2452 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2453 { 2454 atomic_inc(&rdtgrp->waitcount); 2455 kernfs_break_active_protection(kn); 2456 } 2457 2458 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2459 { 2460 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2461 (rdtgrp->flags & RDT_DELETED)) { 2462 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2463 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2464 rdtgroup_pseudo_lock_remove(rdtgrp); 2465 kernfs_unbreak_active_protection(kn); 2466 rdtgroup_remove(rdtgrp); 2467 } else { 2468 kernfs_unbreak_active_protection(kn); 2469 } 2470 } 2471 2472 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2473 { 2474 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2475 2476 if (!rdtgrp) 2477 return NULL; 2478 2479 rdtgroup_kn_get(rdtgrp, kn); 2480 2481 cpus_read_lock(); 2482 mutex_lock(&rdtgroup_mutex); 2483 2484 /* Was this group deleted while we waited? */ 2485 if (rdtgrp->flags & RDT_DELETED) 2486 return NULL; 2487 2488 return rdtgrp; 2489 } 2490 2491 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2492 { 2493 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2494 2495 if (!rdtgrp) 2496 return; 2497 2498 mutex_unlock(&rdtgroup_mutex); 2499 cpus_read_unlock(); 2500 2501 rdtgroup_kn_put(rdtgrp, kn); 2502 } 2503 2504 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2505 struct rdtgroup *prgrp, 2506 struct kernfs_node **mon_data_kn); 2507 2508 static void rdt_disable_ctx(void) 2509 { 2510 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2511 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2512 set_mba_sc(false); 2513 2514 resctrl_debug = false; 2515 } 2516 2517 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2518 { 2519 int ret = 0; 2520 2521 if (ctx->enable_cdpl2) { 2522 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true); 2523 if (ret) 2524 goto out_done; 2525 } 2526 2527 if (ctx->enable_cdpl3) { 2528 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true); 2529 if (ret) 2530 goto out_cdpl2; 2531 } 2532 2533 if (ctx->enable_mba_mbps) { 2534 ret = set_mba_sc(true); 2535 if (ret) 2536 goto out_cdpl3; 2537 } 2538 2539 if (ctx->enable_debug) 2540 resctrl_debug = true; 2541 2542 return 0; 2543 2544 out_cdpl3: 2545 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2546 out_cdpl2: 2547 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2548 out_done: 2549 return ret; 2550 } 2551 2552 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type) 2553 { 2554 struct resctrl_schema *s; 2555 const char *suffix = ""; 2556 int ret, cl; 2557 2558 s = kzalloc(sizeof(*s), GFP_KERNEL); 2559 if (!s) 2560 return -ENOMEM; 2561 2562 s->res = r; 2563 s->num_closid = resctrl_arch_get_num_closid(r); 2564 if (resctrl_arch_get_cdp_enabled(r->rid)) 2565 s->num_closid /= 2; 2566 2567 s->conf_type = type; 2568 switch (type) { 2569 case CDP_CODE: 2570 suffix = "CODE"; 2571 break; 2572 case CDP_DATA: 2573 suffix = "DATA"; 2574 break; 2575 case CDP_NONE: 2576 suffix = ""; 2577 break; 2578 } 2579 2580 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix); 2581 if (ret >= sizeof(s->name)) { 2582 kfree(s); 2583 return -EINVAL; 2584 } 2585 2586 cl = strlen(s->name); 2587 2588 /* 2589 * If CDP is supported by this resource, but not enabled, 2590 * include the suffix. This ensures the tabular format of the 2591 * schemata file does not change between mounts of the filesystem. 2592 */ 2593 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid)) 2594 cl += 4; 2595 2596 if (cl > max_name_width) 2597 max_name_width = cl; 2598 2599 INIT_LIST_HEAD(&s->list); 2600 list_add(&s->list, &resctrl_schema_all); 2601 2602 return 0; 2603 } 2604 2605 static int schemata_list_create(void) 2606 { 2607 struct rdt_resource *r; 2608 int ret = 0; 2609 2610 for_each_alloc_capable_rdt_resource(r) { 2611 if (resctrl_arch_get_cdp_enabled(r->rid)) { 2612 ret = schemata_list_add(r, CDP_CODE); 2613 if (ret) 2614 break; 2615 2616 ret = schemata_list_add(r, CDP_DATA); 2617 } else { 2618 ret = schemata_list_add(r, CDP_NONE); 2619 } 2620 2621 if (ret) 2622 break; 2623 } 2624 2625 return ret; 2626 } 2627 2628 static void schemata_list_destroy(void) 2629 { 2630 struct resctrl_schema *s, *tmp; 2631 2632 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) { 2633 list_del(&s->list); 2634 kfree(s); 2635 } 2636 } 2637 2638 static int rdt_get_tree(struct fs_context *fc) 2639 { 2640 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2641 unsigned long flags = RFTYPE_CTRL_BASE; 2642 struct rdt_mon_domain *dom; 2643 struct rdt_resource *r; 2644 int ret; 2645 2646 cpus_read_lock(); 2647 mutex_lock(&rdtgroup_mutex); 2648 /* 2649 * resctrl file system can only be mounted once. 2650 */ 2651 if (resctrl_mounted) { 2652 ret = -EBUSY; 2653 goto out; 2654 } 2655 2656 ret = rdtgroup_setup_root(ctx); 2657 if (ret) 2658 goto out; 2659 2660 ret = rdt_enable_ctx(ctx); 2661 if (ret) 2662 goto out_root; 2663 2664 ret = schemata_list_create(); 2665 if (ret) { 2666 schemata_list_destroy(); 2667 goto out_ctx; 2668 } 2669 2670 closid_init(); 2671 2672 if (resctrl_arch_mon_capable()) 2673 flags |= RFTYPE_MON; 2674 2675 ret = rdtgroup_add_files(rdtgroup_default.kn, flags); 2676 if (ret) 2677 goto out_schemata_free; 2678 2679 kernfs_activate(rdtgroup_default.kn); 2680 2681 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2682 if (ret < 0) 2683 goto out_schemata_free; 2684 2685 if (resctrl_arch_mon_capable()) { 2686 ret = mongroup_create_dir(rdtgroup_default.kn, 2687 &rdtgroup_default, "mon_groups", 2688 &kn_mongrp); 2689 if (ret < 0) 2690 goto out_info; 2691 2692 ret = mkdir_mondata_all(rdtgroup_default.kn, 2693 &rdtgroup_default, &kn_mondata); 2694 if (ret < 0) 2695 goto out_mongrp; 2696 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2697 } 2698 2699 ret = rdt_pseudo_lock_init(); 2700 if (ret) 2701 goto out_mondata; 2702 2703 ret = kernfs_get_tree(fc); 2704 if (ret < 0) 2705 goto out_psl; 2706 2707 if (resctrl_arch_alloc_capable()) 2708 resctrl_arch_enable_alloc(); 2709 if (resctrl_arch_mon_capable()) 2710 resctrl_arch_enable_mon(); 2711 2712 if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable()) 2713 resctrl_mounted = true; 2714 2715 if (is_mbm_enabled()) { 2716 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 2717 list_for_each_entry(dom, &r->mon_domains, hdr.list) 2718 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL, 2719 RESCTRL_PICK_ANY_CPU); 2720 } 2721 2722 goto out; 2723 2724 out_psl: 2725 rdt_pseudo_lock_release(); 2726 out_mondata: 2727 if (resctrl_arch_mon_capable()) 2728 kernfs_remove(kn_mondata); 2729 out_mongrp: 2730 if (resctrl_arch_mon_capable()) 2731 kernfs_remove(kn_mongrp); 2732 out_info: 2733 kernfs_remove(kn_info); 2734 out_schemata_free: 2735 schemata_list_destroy(); 2736 out_ctx: 2737 rdt_disable_ctx(); 2738 out_root: 2739 rdtgroup_destroy_root(); 2740 out: 2741 rdt_last_cmd_clear(); 2742 mutex_unlock(&rdtgroup_mutex); 2743 cpus_read_unlock(); 2744 return ret; 2745 } 2746 2747 enum rdt_param { 2748 Opt_cdp, 2749 Opt_cdpl2, 2750 Opt_mba_mbps, 2751 Opt_debug, 2752 nr__rdt_params 2753 }; 2754 2755 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2756 fsparam_flag("cdp", Opt_cdp), 2757 fsparam_flag("cdpl2", Opt_cdpl2), 2758 fsparam_flag("mba_MBps", Opt_mba_mbps), 2759 fsparam_flag("debug", Opt_debug), 2760 {} 2761 }; 2762 2763 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2764 { 2765 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2766 struct fs_parse_result result; 2767 const char *msg; 2768 int opt; 2769 2770 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2771 if (opt < 0) 2772 return opt; 2773 2774 switch (opt) { 2775 case Opt_cdp: 2776 ctx->enable_cdpl3 = true; 2777 return 0; 2778 case Opt_cdpl2: 2779 ctx->enable_cdpl2 = true; 2780 return 0; 2781 case Opt_mba_mbps: 2782 msg = "mba_MBps requires MBM and linear scale MBA at L3 scope"; 2783 if (!supports_mba_mbps()) 2784 return invalfc(fc, msg); 2785 ctx->enable_mba_mbps = true; 2786 return 0; 2787 case Opt_debug: 2788 ctx->enable_debug = true; 2789 return 0; 2790 } 2791 2792 return -EINVAL; 2793 } 2794 2795 static void rdt_fs_context_free(struct fs_context *fc) 2796 { 2797 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2798 2799 kernfs_free_fs_context(fc); 2800 kfree(ctx); 2801 } 2802 2803 static const struct fs_context_operations rdt_fs_context_ops = { 2804 .free = rdt_fs_context_free, 2805 .parse_param = rdt_parse_param, 2806 .get_tree = rdt_get_tree, 2807 }; 2808 2809 static int rdt_init_fs_context(struct fs_context *fc) 2810 { 2811 struct rdt_fs_context *ctx; 2812 2813 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2814 if (!ctx) 2815 return -ENOMEM; 2816 2817 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2818 fc->fs_private = &ctx->kfc; 2819 fc->ops = &rdt_fs_context_ops; 2820 put_user_ns(fc->user_ns); 2821 fc->user_ns = get_user_ns(&init_user_ns); 2822 fc->global = true; 2823 return 0; 2824 } 2825 2826 static int reset_all_ctrls(struct rdt_resource *r) 2827 { 2828 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2829 struct rdt_hw_ctrl_domain *hw_dom; 2830 struct msr_param msr_param; 2831 struct rdt_ctrl_domain *d; 2832 int i; 2833 2834 /* Walking r->domains, ensure it can't race with cpuhp */ 2835 lockdep_assert_cpus_held(); 2836 2837 msr_param.res = r; 2838 msr_param.low = 0; 2839 msr_param.high = hw_res->num_closid; 2840 2841 /* 2842 * Disable resource control for this resource by setting all 2843 * CBMs in all ctrl_domains to the maximum mask value. Pick one CPU 2844 * from each domain to update the MSRs below. 2845 */ 2846 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 2847 hw_dom = resctrl_to_arch_ctrl_dom(d); 2848 2849 for (i = 0; i < hw_res->num_closid; i++) 2850 hw_dom->ctrl_val[i] = r->default_ctrl; 2851 msr_param.dom = d; 2852 smp_call_function_any(&d->hdr.cpu_mask, rdt_ctrl_update, &msr_param, 1); 2853 } 2854 2855 return 0; 2856 } 2857 2858 /* 2859 * Move tasks from one to the other group. If @from is NULL, then all tasks 2860 * in the systems are moved unconditionally (used for teardown). 2861 * 2862 * If @mask is not NULL the cpus on which moved tasks are running are set 2863 * in that mask so the update smp function call is restricted to affected 2864 * cpus. 2865 */ 2866 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2867 struct cpumask *mask) 2868 { 2869 struct task_struct *p, *t; 2870 2871 read_lock(&tasklist_lock); 2872 for_each_process_thread(p, t) { 2873 if (!from || is_closid_match(t, from) || 2874 is_rmid_match(t, from)) { 2875 resctrl_arch_set_closid_rmid(t, to->closid, 2876 to->mon.rmid); 2877 2878 /* 2879 * Order the closid/rmid stores above before the loads 2880 * in task_curr(). This pairs with the full barrier 2881 * between the rq->curr update and resctrl_sched_in() 2882 * during context switch. 2883 */ 2884 smp_mb(); 2885 2886 /* 2887 * If the task is on a CPU, set the CPU in the mask. 2888 * The detection is inaccurate as tasks might move or 2889 * schedule before the smp function call takes place. 2890 * In such a case the function call is pointless, but 2891 * there is no other side effect. 2892 */ 2893 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t)) 2894 cpumask_set_cpu(task_cpu(t), mask); 2895 } 2896 } 2897 read_unlock(&tasklist_lock); 2898 } 2899 2900 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2901 { 2902 struct rdtgroup *sentry, *stmp; 2903 struct list_head *head; 2904 2905 head = &rdtgrp->mon.crdtgrp_list; 2906 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2907 free_rmid(sentry->closid, sentry->mon.rmid); 2908 list_del(&sentry->mon.crdtgrp_list); 2909 2910 if (atomic_read(&sentry->waitcount) != 0) 2911 sentry->flags = RDT_DELETED; 2912 else 2913 rdtgroup_remove(sentry); 2914 } 2915 } 2916 2917 /* 2918 * Forcibly remove all of subdirectories under root. 2919 */ 2920 static void rmdir_all_sub(void) 2921 { 2922 struct rdtgroup *rdtgrp, *tmp; 2923 2924 /* Move all tasks to the default resource group */ 2925 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2926 2927 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2928 /* Free any child rmids */ 2929 free_all_child_rdtgrp(rdtgrp); 2930 2931 /* Remove each rdtgroup other than root */ 2932 if (rdtgrp == &rdtgroup_default) 2933 continue; 2934 2935 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2936 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2937 rdtgroup_pseudo_lock_remove(rdtgrp); 2938 2939 /* 2940 * Give any CPUs back to the default group. We cannot copy 2941 * cpu_online_mask because a CPU might have executed the 2942 * offline callback already, but is still marked online. 2943 */ 2944 cpumask_or(&rdtgroup_default.cpu_mask, 2945 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2946 2947 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 2948 2949 kernfs_remove(rdtgrp->kn); 2950 list_del(&rdtgrp->rdtgroup_list); 2951 2952 if (atomic_read(&rdtgrp->waitcount) != 0) 2953 rdtgrp->flags = RDT_DELETED; 2954 else 2955 rdtgroup_remove(rdtgrp); 2956 } 2957 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2958 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2959 2960 kernfs_remove(kn_info); 2961 kernfs_remove(kn_mongrp); 2962 kernfs_remove(kn_mondata); 2963 } 2964 2965 static void rdt_kill_sb(struct super_block *sb) 2966 { 2967 struct rdt_resource *r; 2968 2969 cpus_read_lock(); 2970 mutex_lock(&rdtgroup_mutex); 2971 2972 rdt_disable_ctx(); 2973 2974 /*Put everything back to default values. */ 2975 for_each_alloc_capable_rdt_resource(r) 2976 reset_all_ctrls(r); 2977 rmdir_all_sub(); 2978 rdt_pseudo_lock_release(); 2979 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2980 schemata_list_destroy(); 2981 rdtgroup_destroy_root(); 2982 if (resctrl_arch_alloc_capable()) 2983 resctrl_arch_disable_alloc(); 2984 if (resctrl_arch_mon_capable()) 2985 resctrl_arch_disable_mon(); 2986 resctrl_mounted = false; 2987 kernfs_kill_sb(sb); 2988 mutex_unlock(&rdtgroup_mutex); 2989 cpus_read_unlock(); 2990 } 2991 2992 static struct file_system_type rdt_fs_type = { 2993 .name = "resctrl", 2994 .init_fs_context = rdt_init_fs_context, 2995 .parameters = rdt_fs_parameters, 2996 .kill_sb = rdt_kill_sb, 2997 }; 2998 2999 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 3000 void *priv) 3001 { 3002 struct kernfs_node *kn; 3003 int ret = 0; 3004 3005 kn = __kernfs_create_file(parent_kn, name, 0444, 3006 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 3007 &kf_mondata_ops, priv, NULL, NULL); 3008 if (IS_ERR(kn)) 3009 return PTR_ERR(kn); 3010 3011 ret = rdtgroup_kn_set_ugid(kn); 3012 if (ret) { 3013 kernfs_remove(kn); 3014 return ret; 3015 } 3016 3017 return ret; 3018 } 3019 3020 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname) 3021 { 3022 struct kernfs_node *kn; 3023 3024 kn = kernfs_find_and_get(pkn, name); 3025 if (!kn) 3026 return; 3027 kernfs_put(kn); 3028 3029 if (kn->dir.subdirs <= 1) 3030 kernfs_remove(kn); 3031 else 3032 kernfs_remove_by_name(kn, subname); 3033 } 3034 3035 /* 3036 * Remove all subdirectories of mon_data of ctrl_mon groups 3037 * and monitor groups for the given domain. 3038 * Remove files and directories containing "sum" of domain data 3039 * when last domain being summed is removed. 3040 */ 3041 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 3042 struct rdt_mon_domain *d) 3043 { 3044 struct rdtgroup *prgrp, *crgrp; 3045 char subname[32]; 3046 bool snc_mode; 3047 char name[32]; 3048 3049 snc_mode = r->mon_scope == RESCTRL_L3_NODE; 3050 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id); 3051 if (snc_mode) 3052 sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id); 3053 3054 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 3055 mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname); 3056 3057 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 3058 mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname); 3059 } 3060 } 3061 3062 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d, 3063 struct rdt_resource *r, struct rdtgroup *prgrp, 3064 bool do_sum) 3065 { 3066 struct rmid_read rr = {0}; 3067 union mon_data_bits priv; 3068 struct mon_evt *mevt; 3069 int ret; 3070 3071 if (WARN_ON(list_empty(&r->evt_list))) 3072 return -EPERM; 3073 3074 priv.u.rid = r->rid; 3075 priv.u.domid = do_sum ? d->ci->id : d->hdr.id; 3076 priv.u.sum = do_sum; 3077 list_for_each_entry(mevt, &r->evt_list, list) { 3078 priv.u.evtid = mevt->evtid; 3079 ret = mon_addfile(kn, mevt->name, priv.priv); 3080 if (ret) 3081 return ret; 3082 3083 if (!do_sum && is_mbm_event(mevt->evtid)) 3084 mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true); 3085 } 3086 3087 return 0; 3088 } 3089 3090 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 3091 struct rdt_mon_domain *d, 3092 struct rdt_resource *r, struct rdtgroup *prgrp) 3093 { 3094 struct kernfs_node *kn, *ckn; 3095 char name[32]; 3096 bool snc_mode; 3097 int ret = 0; 3098 3099 lockdep_assert_held(&rdtgroup_mutex); 3100 3101 snc_mode = r->mon_scope == RESCTRL_L3_NODE; 3102 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id); 3103 kn = kernfs_find_and_get(parent_kn, name); 3104 if (kn) { 3105 /* 3106 * rdtgroup_mutex will prevent this directory from being 3107 * removed. No need to keep this hold. 3108 */ 3109 kernfs_put(kn); 3110 } else { 3111 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 3112 if (IS_ERR(kn)) 3113 return PTR_ERR(kn); 3114 3115 ret = rdtgroup_kn_set_ugid(kn); 3116 if (ret) 3117 goto out_destroy; 3118 ret = mon_add_all_files(kn, d, r, prgrp, snc_mode); 3119 if (ret) 3120 goto out_destroy; 3121 } 3122 3123 if (snc_mode) { 3124 sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id); 3125 ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp); 3126 if (IS_ERR(ckn)) { 3127 ret = -EINVAL; 3128 goto out_destroy; 3129 } 3130 3131 ret = rdtgroup_kn_set_ugid(ckn); 3132 if (ret) 3133 goto out_destroy; 3134 3135 ret = mon_add_all_files(ckn, d, r, prgrp, false); 3136 if (ret) 3137 goto out_destroy; 3138 } 3139 3140 kernfs_activate(kn); 3141 return 0; 3142 3143 out_destroy: 3144 kernfs_remove(kn); 3145 return ret; 3146 } 3147 3148 /* 3149 * Add all subdirectories of mon_data for "ctrl_mon" groups 3150 * and "monitor" groups with given domain id. 3151 */ 3152 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 3153 struct rdt_mon_domain *d) 3154 { 3155 struct kernfs_node *parent_kn; 3156 struct rdtgroup *prgrp, *crgrp; 3157 struct list_head *head; 3158 3159 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 3160 parent_kn = prgrp->mon.mon_data_kn; 3161 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 3162 3163 head = &prgrp->mon.crdtgrp_list; 3164 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 3165 parent_kn = crgrp->mon.mon_data_kn; 3166 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 3167 } 3168 } 3169 } 3170 3171 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 3172 struct rdt_resource *r, 3173 struct rdtgroup *prgrp) 3174 { 3175 struct rdt_mon_domain *dom; 3176 int ret; 3177 3178 /* Walking r->domains, ensure it can't race with cpuhp */ 3179 lockdep_assert_cpus_held(); 3180 3181 list_for_each_entry(dom, &r->mon_domains, hdr.list) { 3182 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 3183 if (ret) 3184 return ret; 3185 } 3186 3187 return 0; 3188 } 3189 3190 /* 3191 * This creates a directory mon_data which contains the monitored data. 3192 * 3193 * mon_data has one directory for each domain which are named 3194 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 3195 * with L3 domain looks as below: 3196 * ./mon_data: 3197 * mon_L3_00 3198 * mon_L3_01 3199 * mon_L3_02 3200 * ... 3201 * 3202 * Each domain directory has one file per event: 3203 * ./mon_L3_00/: 3204 * llc_occupancy 3205 * 3206 */ 3207 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 3208 struct rdtgroup *prgrp, 3209 struct kernfs_node **dest_kn) 3210 { 3211 struct rdt_resource *r; 3212 struct kernfs_node *kn; 3213 int ret; 3214 3215 /* 3216 * Create the mon_data directory first. 3217 */ 3218 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 3219 if (ret) 3220 return ret; 3221 3222 if (dest_kn) 3223 *dest_kn = kn; 3224 3225 /* 3226 * Create the subdirectories for each domain. Note that all events 3227 * in a domain like L3 are grouped into a resource whose domain is L3 3228 */ 3229 for_each_mon_capable_rdt_resource(r) { 3230 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 3231 if (ret) 3232 goto out_destroy; 3233 } 3234 3235 return 0; 3236 3237 out_destroy: 3238 kernfs_remove(kn); 3239 return ret; 3240 } 3241 3242 /** 3243 * cbm_ensure_valid - Enforce validity on provided CBM 3244 * @_val: Candidate CBM 3245 * @r: RDT resource to which the CBM belongs 3246 * 3247 * The provided CBM represents all cache portions available for use. This 3248 * may be represented by a bitmap that does not consist of contiguous ones 3249 * and thus be an invalid CBM. 3250 * Here the provided CBM is forced to be a valid CBM by only considering 3251 * the first set of contiguous bits as valid and clearing all bits. 3252 * The intention here is to provide a valid default CBM with which a new 3253 * resource group is initialized. The user can follow this with a 3254 * modification to the CBM if the default does not satisfy the 3255 * requirements. 3256 */ 3257 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 3258 { 3259 unsigned int cbm_len = r->cache.cbm_len; 3260 unsigned long first_bit, zero_bit; 3261 unsigned long val = _val; 3262 3263 if (!val) 3264 return 0; 3265 3266 first_bit = find_first_bit(&val, cbm_len); 3267 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 3268 3269 /* Clear any remaining bits to ensure contiguous region */ 3270 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 3271 return (u32)val; 3272 } 3273 3274 /* 3275 * Initialize cache resources per RDT domain 3276 * 3277 * Set the RDT domain up to start off with all usable allocations. That is, 3278 * all shareable and unused bits. All-zero CBM is invalid. 3279 */ 3280 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s, 3281 u32 closid) 3282 { 3283 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 3284 enum resctrl_conf_type t = s->conf_type; 3285 struct resctrl_staged_config *cfg; 3286 struct rdt_resource *r = s->res; 3287 u32 used_b = 0, unused_b = 0; 3288 unsigned long tmp_cbm; 3289 enum rdtgrp_mode mode; 3290 u32 peer_ctl, ctrl_val; 3291 int i; 3292 3293 cfg = &d->staged_config[t]; 3294 cfg->have_new_ctrl = false; 3295 cfg->new_ctrl = r->cache.shareable_bits; 3296 used_b = r->cache.shareable_bits; 3297 for (i = 0; i < closids_supported(); i++) { 3298 if (closid_allocated(i) && i != closid) { 3299 mode = rdtgroup_mode_by_closid(i); 3300 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 3301 /* 3302 * ctrl values for locksetup aren't relevant 3303 * until the schemata is written, and the mode 3304 * becomes RDT_MODE_PSEUDO_LOCKED. 3305 */ 3306 continue; 3307 /* 3308 * If CDP is active include peer domain's 3309 * usage to ensure there is no overlap 3310 * with an exclusive group. 3311 */ 3312 if (resctrl_arch_get_cdp_enabled(r->rid)) 3313 peer_ctl = resctrl_arch_get_config(r, d, i, 3314 peer_type); 3315 else 3316 peer_ctl = 0; 3317 ctrl_val = resctrl_arch_get_config(r, d, i, 3318 s->conf_type); 3319 used_b |= ctrl_val | peer_ctl; 3320 if (mode == RDT_MODE_SHAREABLE) 3321 cfg->new_ctrl |= ctrl_val | peer_ctl; 3322 } 3323 } 3324 if (d->plr && d->plr->cbm > 0) 3325 used_b |= d->plr->cbm; 3326 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 3327 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 3328 cfg->new_ctrl |= unused_b; 3329 /* 3330 * Force the initial CBM to be valid, user can 3331 * modify the CBM based on system availability. 3332 */ 3333 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r); 3334 /* 3335 * Assign the u32 CBM to an unsigned long to ensure that 3336 * bitmap_weight() does not access out-of-bound memory. 3337 */ 3338 tmp_cbm = cfg->new_ctrl; 3339 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 3340 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id); 3341 return -ENOSPC; 3342 } 3343 cfg->have_new_ctrl = true; 3344 3345 return 0; 3346 } 3347 3348 /* 3349 * Initialize cache resources with default values. 3350 * 3351 * A new RDT group is being created on an allocation capable (CAT) 3352 * supporting system. Set this group up to start off with all usable 3353 * allocations. 3354 * 3355 * If there are no more shareable bits available on any domain then 3356 * the entire allocation will fail. 3357 */ 3358 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid) 3359 { 3360 struct rdt_ctrl_domain *d; 3361 int ret; 3362 3363 list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) { 3364 ret = __init_one_rdt_domain(d, s, closid); 3365 if (ret < 0) 3366 return ret; 3367 } 3368 3369 return 0; 3370 } 3371 3372 /* Initialize MBA resource with default values. */ 3373 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid) 3374 { 3375 struct resctrl_staged_config *cfg; 3376 struct rdt_ctrl_domain *d; 3377 3378 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 3379 if (is_mba_sc(r)) { 3380 d->mbps_val[closid] = MBA_MAX_MBPS; 3381 continue; 3382 } 3383 3384 cfg = &d->staged_config[CDP_NONE]; 3385 cfg->new_ctrl = r->default_ctrl; 3386 cfg->have_new_ctrl = true; 3387 } 3388 } 3389 3390 /* Initialize the RDT group's allocations. */ 3391 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 3392 { 3393 struct resctrl_schema *s; 3394 struct rdt_resource *r; 3395 int ret = 0; 3396 3397 rdt_staged_configs_clear(); 3398 3399 list_for_each_entry(s, &resctrl_schema_all, list) { 3400 r = s->res; 3401 if (r->rid == RDT_RESOURCE_MBA || 3402 r->rid == RDT_RESOURCE_SMBA) { 3403 rdtgroup_init_mba(r, rdtgrp->closid); 3404 if (is_mba_sc(r)) 3405 continue; 3406 } else { 3407 ret = rdtgroup_init_cat(s, rdtgrp->closid); 3408 if (ret < 0) 3409 goto out; 3410 } 3411 3412 ret = resctrl_arch_update_domains(r, rdtgrp->closid); 3413 if (ret < 0) { 3414 rdt_last_cmd_puts("Failed to initialize allocations\n"); 3415 goto out; 3416 } 3417 3418 } 3419 3420 rdtgrp->mode = RDT_MODE_SHAREABLE; 3421 3422 out: 3423 rdt_staged_configs_clear(); 3424 return ret; 3425 } 3426 3427 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp) 3428 { 3429 int ret; 3430 3431 if (!resctrl_arch_mon_capable()) 3432 return 0; 3433 3434 ret = alloc_rmid(rdtgrp->closid); 3435 if (ret < 0) { 3436 rdt_last_cmd_puts("Out of RMIDs\n"); 3437 return ret; 3438 } 3439 rdtgrp->mon.rmid = ret; 3440 3441 ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 3442 if (ret) { 3443 rdt_last_cmd_puts("kernfs subdir error\n"); 3444 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3445 return ret; 3446 } 3447 3448 return 0; 3449 } 3450 3451 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp) 3452 { 3453 if (resctrl_arch_mon_capable()) 3454 free_rmid(rgrp->closid, rgrp->mon.rmid); 3455 } 3456 3457 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 3458 const char *name, umode_t mode, 3459 enum rdt_group_type rtype, struct rdtgroup **r) 3460 { 3461 struct rdtgroup *prdtgrp, *rdtgrp; 3462 unsigned long files = 0; 3463 struct kernfs_node *kn; 3464 int ret; 3465 3466 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 3467 if (!prdtgrp) { 3468 ret = -ENODEV; 3469 goto out_unlock; 3470 } 3471 3472 if (rtype == RDTMON_GROUP && 3473 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3474 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 3475 ret = -EINVAL; 3476 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 3477 goto out_unlock; 3478 } 3479 3480 /* allocate the rdtgroup. */ 3481 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 3482 if (!rdtgrp) { 3483 ret = -ENOSPC; 3484 rdt_last_cmd_puts("Kernel out of memory\n"); 3485 goto out_unlock; 3486 } 3487 *r = rdtgrp; 3488 rdtgrp->mon.parent = prdtgrp; 3489 rdtgrp->type = rtype; 3490 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 3491 3492 /* kernfs creates the directory for rdtgrp */ 3493 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 3494 if (IS_ERR(kn)) { 3495 ret = PTR_ERR(kn); 3496 rdt_last_cmd_puts("kernfs create error\n"); 3497 goto out_free_rgrp; 3498 } 3499 rdtgrp->kn = kn; 3500 3501 /* 3502 * kernfs_remove() will drop the reference count on "kn" which 3503 * will free it. But we still need it to stick around for the 3504 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 3505 * which will be dropped by kernfs_put() in rdtgroup_remove(). 3506 */ 3507 kernfs_get(kn); 3508 3509 ret = rdtgroup_kn_set_ugid(kn); 3510 if (ret) { 3511 rdt_last_cmd_puts("kernfs perm error\n"); 3512 goto out_destroy; 3513 } 3514 3515 if (rtype == RDTCTRL_GROUP) { 3516 files = RFTYPE_BASE | RFTYPE_CTRL; 3517 if (resctrl_arch_mon_capable()) 3518 files |= RFTYPE_MON; 3519 } else { 3520 files = RFTYPE_BASE | RFTYPE_MON; 3521 } 3522 3523 ret = rdtgroup_add_files(kn, files); 3524 if (ret) { 3525 rdt_last_cmd_puts("kernfs fill error\n"); 3526 goto out_destroy; 3527 } 3528 3529 /* 3530 * The caller unlocks the parent_kn upon success. 3531 */ 3532 return 0; 3533 3534 out_destroy: 3535 kernfs_put(rdtgrp->kn); 3536 kernfs_remove(rdtgrp->kn); 3537 out_free_rgrp: 3538 kfree(rdtgrp); 3539 out_unlock: 3540 rdtgroup_kn_unlock(parent_kn); 3541 return ret; 3542 } 3543 3544 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 3545 { 3546 kernfs_remove(rgrp->kn); 3547 rdtgroup_remove(rgrp); 3548 } 3549 3550 /* 3551 * Create a monitor group under "mon_groups" directory of a control 3552 * and monitor group(ctrl_mon). This is a resource group 3553 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 3554 */ 3555 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 3556 const char *name, umode_t mode) 3557 { 3558 struct rdtgroup *rdtgrp, *prgrp; 3559 int ret; 3560 3561 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 3562 if (ret) 3563 return ret; 3564 3565 prgrp = rdtgrp->mon.parent; 3566 rdtgrp->closid = prgrp->closid; 3567 3568 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp); 3569 if (ret) { 3570 mkdir_rdt_prepare_clean(rdtgrp); 3571 goto out_unlock; 3572 } 3573 3574 kernfs_activate(rdtgrp->kn); 3575 3576 /* 3577 * Add the rdtgrp to the list of rdtgrps the parent 3578 * ctrl_mon group has to track. 3579 */ 3580 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 3581 3582 out_unlock: 3583 rdtgroup_kn_unlock(parent_kn); 3584 return ret; 3585 } 3586 3587 /* 3588 * These are rdtgroups created under the root directory. Can be used 3589 * to allocate and monitor resources. 3590 */ 3591 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 3592 const char *name, umode_t mode) 3593 { 3594 struct rdtgroup *rdtgrp; 3595 struct kernfs_node *kn; 3596 u32 closid; 3597 int ret; 3598 3599 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 3600 if (ret) 3601 return ret; 3602 3603 kn = rdtgrp->kn; 3604 ret = closid_alloc(); 3605 if (ret < 0) { 3606 rdt_last_cmd_puts("Out of CLOSIDs\n"); 3607 goto out_common_fail; 3608 } 3609 closid = ret; 3610 ret = 0; 3611 3612 rdtgrp->closid = closid; 3613 3614 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp); 3615 if (ret) 3616 goto out_closid_free; 3617 3618 kernfs_activate(rdtgrp->kn); 3619 3620 ret = rdtgroup_init_alloc(rdtgrp); 3621 if (ret < 0) 3622 goto out_rmid_free; 3623 3624 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 3625 3626 if (resctrl_arch_mon_capable()) { 3627 /* 3628 * Create an empty mon_groups directory to hold the subset 3629 * of tasks and cpus to monitor. 3630 */ 3631 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 3632 if (ret) { 3633 rdt_last_cmd_puts("kernfs subdir error\n"); 3634 goto out_del_list; 3635 } 3636 if (is_mba_sc(NULL)) 3637 rdtgrp->mba_mbps_event = mba_mbps_default_event; 3638 } 3639 3640 goto out_unlock; 3641 3642 out_del_list: 3643 list_del(&rdtgrp->rdtgroup_list); 3644 out_rmid_free: 3645 mkdir_rdt_prepare_rmid_free(rdtgrp); 3646 out_closid_free: 3647 closid_free(closid); 3648 out_common_fail: 3649 mkdir_rdt_prepare_clean(rdtgrp); 3650 out_unlock: 3651 rdtgroup_kn_unlock(parent_kn); 3652 return ret; 3653 } 3654 3655 /* 3656 * We allow creating mon groups only with in a directory called "mon_groups" 3657 * which is present in every ctrl_mon group. Check if this is a valid 3658 * "mon_groups" directory. 3659 * 3660 * 1. The directory should be named "mon_groups". 3661 * 2. The mon group itself should "not" be named "mon_groups". 3662 * This makes sure "mon_groups" directory always has a ctrl_mon group 3663 * as parent. 3664 */ 3665 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 3666 { 3667 return (!strcmp(kn->name, "mon_groups") && 3668 strcmp(name, "mon_groups")); 3669 } 3670 3671 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3672 umode_t mode) 3673 { 3674 /* Do not accept '\n' to avoid unparsable situation. */ 3675 if (strchr(name, '\n')) 3676 return -EINVAL; 3677 3678 /* 3679 * If the parent directory is the root directory and RDT 3680 * allocation is supported, add a control and monitoring 3681 * subdirectory 3682 */ 3683 if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn) 3684 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3685 3686 /* 3687 * If RDT monitoring is supported and the parent directory is a valid 3688 * "mon_groups" directory, add a monitoring subdirectory. 3689 */ 3690 if (resctrl_arch_mon_capable() && is_mon_groups(parent_kn, name)) 3691 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3692 3693 return -EPERM; 3694 } 3695 3696 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3697 { 3698 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3699 int cpu; 3700 3701 /* Give any tasks back to the parent group */ 3702 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3703 3704 /* Update per cpu rmid of the moved CPUs first */ 3705 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3706 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 3707 /* 3708 * Update the MSR on moved CPUs and CPUs which have moved 3709 * task running on them. 3710 */ 3711 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3712 update_closid_rmid(tmpmask, NULL); 3713 3714 rdtgrp->flags = RDT_DELETED; 3715 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3716 3717 /* 3718 * Remove the rdtgrp from the parent ctrl_mon group's list 3719 */ 3720 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3721 list_del(&rdtgrp->mon.crdtgrp_list); 3722 3723 kernfs_remove(rdtgrp->kn); 3724 3725 return 0; 3726 } 3727 3728 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3729 { 3730 rdtgrp->flags = RDT_DELETED; 3731 list_del(&rdtgrp->rdtgroup_list); 3732 3733 kernfs_remove(rdtgrp->kn); 3734 return 0; 3735 } 3736 3737 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3738 { 3739 int cpu; 3740 3741 /* Give any tasks back to the default group */ 3742 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3743 3744 /* Give any CPUs back to the default group */ 3745 cpumask_or(&rdtgroup_default.cpu_mask, 3746 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3747 3748 /* Update per cpu closid and rmid of the moved CPUs first */ 3749 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3750 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3751 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3752 } 3753 3754 /* 3755 * Update the MSR on moved CPUs and CPUs which have moved 3756 * task running on them. 3757 */ 3758 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3759 update_closid_rmid(tmpmask, NULL); 3760 3761 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3762 closid_free(rdtgrp->closid); 3763 3764 rdtgroup_ctrl_remove(rdtgrp); 3765 3766 /* 3767 * Free all the child monitor group rmids. 3768 */ 3769 free_all_child_rdtgrp(rdtgrp); 3770 3771 return 0; 3772 } 3773 3774 static int rdtgroup_rmdir(struct kernfs_node *kn) 3775 { 3776 struct kernfs_node *parent_kn = kn->parent; 3777 struct rdtgroup *rdtgrp; 3778 cpumask_var_t tmpmask; 3779 int ret = 0; 3780 3781 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3782 return -ENOMEM; 3783 3784 rdtgrp = rdtgroup_kn_lock_live(kn); 3785 if (!rdtgrp) { 3786 ret = -EPERM; 3787 goto out; 3788 } 3789 3790 /* 3791 * If the rdtgroup is a ctrl_mon group and parent directory 3792 * is the root directory, remove the ctrl_mon group. 3793 * 3794 * If the rdtgroup is a mon group and parent directory 3795 * is a valid "mon_groups" directory, remove the mon group. 3796 */ 3797 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3798 rdtgrp != &rdtgroup_default) { 3799 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3800 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3801 ret = rdtgroup_ctrl_remove(rdtgrp); 3802 } else { 3803 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 3804 } 3805 } else if (rdtgrp->type == RDTMON_GROUP && 3806 is_mon_groups(parent_kn, kn->name)) { 3807 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 3808 } else { 3809 ret = -EPERM; 3810 } 3811 3812 out: 3813 rdtgroup_kn_unlock(kn); 3814 free_cpumask_var(tmpmask); 3815 return ret; 3816 } 3817 3818 /** 3819 * mongrp_reparent() - replace parent CTRL_MON group of a MON group 3820 * @rdtgrp: the MON group whose parent should be replaced 3821 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp 3822 * @cpus: cpumask provided by the caller for use during this call 3823 * 3824 * Replaces the parent CTRL_MON group for a MON group, resulting in all member 3825 * tasks' CLOSID immediately changing to that of the new parent group. 3826 * Monitoring data for the group is unaffected by this operation. 3827 */ 3828 static void mongrp_reparent(struct rdtgroup *rdtgrp, 3829 struct rdtgroup *new_prdtgrp, 3830 cpumask_var_t cpus) 3831 { 3832 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3833 3834 WARN_ON(rdtgrp->type != RDTMON_GROUP); 3835 WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP); 3836 3837 /* Nothing to do when simply renaming a MON group. */ 3838 if (prdtgrp == new_prdtgrp) 3839 return; 3840 3841 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3842 list_move_tail(&rdtgrp->mon.crdtgrp_list, 3843 &new_prdtgrp->mon.crdtgrp_list); 3844 3845 rdtgrp->mon.parent = new_prdtgrp; 3846 rdtgrp->closid = new_prdtgrp->closid; 3847 3848 /* Propagate updated closid to all tasks in this group. */ 3849 rdt_move_group_tasks(rdtgrp, rdtgrp, cpus); 3850 3851 update_closid_rmid(cpus, NULL); 3852 } 3853 3854 static int rdtgroup_rename(struct kernfs_node *kn, 3855 struct kernfs_node *new_parent, const char *new_name) 3856 { 3857 struct rdtgroup *new_prdtgrp; 3858 struct rdtgroup *rdtgrp; 3859 cpumask_var_t tmpmask; 3860 int ret; 3861 3862 rdtgrp = kernfs_to_rdtgroup(kn); 3863 new_prdtgrp = kernfs_to_rdtgroup(new_parent); 3864 if (!rdtgrp || !new_prdtgrp) 3865 return -ENOENT; 3866 3867 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */ 3868 rdtgroup_kn_get(rdtgrp, kn); 3869 rdtgroup_kn_get(new_prdtgrp, new_parent); 3870 3871 mutex_lock(&rdtgroup_mutex); 3872 3873 rdt_last_cmd_clear(); 3874 3875 /* 3876 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if 3877 * either kernfs_node is a file. 3878 */ 3879 if (kernfs_type(kn) != KERNFS_DIR || 3880 kernfs_type(new_parent) != KERNFS_DIR) { 3881 rdt_last_cmd_puts("Source and destination must be directories"); 3882 ret = -EPERM; 3883 goto out; 3884 } 3885 3886 if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) { 3887 ret = -ENOENT; 3888 goto out; 3889 } 3890 3891 if (rdtgrp->type != RDTMON_GROUP || !kn->parent || 3892 !is_mon_groups(kn->parent, kn->name)) { 3893 rdt_last_cmd_puts("Source must be a MON group\n"); 3894 ret = -EPERM; 3895 goto out; 3896 } 3897 3898 if (!is_mon_groups(new_parent, new_name)) { 3899 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n"); 3900 ret = -EPERM; 3901 goto out; 3902 } 3903 3904 /* 3905 * If the MON group is monitoring CPUs, the CPUs must be assigned to the 3906 * current parent CTRL_MON group and therefore cannot be assigned to 3907 * the new parent, making the move illegal. 3908 */ 3909 if (!cpumask_empty(&rdtgrp->cpu_mask) && 3910 rdtgrp->mon.parent != new_prdtgrp) { 3911 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n"); 3912 ret = -EPERM; 3913 goto out; 3914 } 3915 3916 /* 3917 * Allocate the cpumask for use in mongrp_reparent() to avoid the 3918 * possibility of failing to allocate it after kernfs_rename() has 3919 * succeeded. 3920 */ 3921 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) { 3922 ret = -ENOMEM; 3923 goto out; 3924 } 3925 3926 /* 3927 * Perform all input validation and allocations needed to ensure 3928 * mongrp_reparent() will succeed before calling kernfs_rename(), 3929 * otherwise it would be necessary to revert this call if 3930 * mongrp_reparent() failed. 3931 */ 3932 ret = kernfs_rename(kn, new_parent, new_name); 3933 if (!ret) 3934 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask); 3935 3936 free_cpumask_var(tmpmask); 3937 3938 out: 3939 mutex_unlock(&rdtgroup_mutex); 3940 rdtgroup_kn_put(rdtgrp, kn); 3941 rdtgroup_kn_put(new_prdtgrp, new_parent); 3942 return ret; 3943 } 3944 3945 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3946 { 3947 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 3948 seq_puts(seq, ",cdp"); 3949 3950 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 3951 seq_puts(seq, ",cdpl2"); 3952 3953 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl)) 3954 seq_puts(seq, ",mba_MBps"); 3955 3956 if (resctrl_debug) 3957 seq_puts(seq, ",debug"); 3958 3959 return 0; 3960 } 3961 3962 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3963 .mkdir = rdtgroup_mkdir, 3964 .rmdir = rdtgroup_rmdir, 3965 .rename = rdtgroup_rename, 3966 .show_options = rdtgroup_show_options, 3967 }; 3968 3969 static int rdtgroup_setup_root(struct rdt_fs_context *ctx) 3970 { 3971 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3972 KERNFS_ROOT_CREATE_DEACTIVATED | 3973 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3974 &rdtgroup_default); 3975 if (IS_ERR(rdt_root)) 3976 return PTR_ERR(rdt_root); 3977 3978 ctx->kfc.root = rdt_root; 3979 rdtgroup_default.kn = kernfs_root_to_node(rdt_root); 3980 3981 return 0; 3982 } 3983 3984 static void rdtgroup_destroy_root(void) 3985 { 3986 kernfs_destroy_root(rdt_root); 3987 rdtgroup_default.kn = NULL; 3988 } 3989 3990 static void __init rdtgroup_setup_default(void) 3991 { 3992 mutex_lock(&rdtgroup_mutex); 3993 3994 rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID; 3995 rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID; 3996 rdtgroup_default.type = RDTCTRL_GROUP; 3997 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3998 3999 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 4000 4001 mutex_unlock(&rdtgroup_mutex); 4002 } 4003 4004 static void domain_destroy_mon_state(struct rdt_mon_domain *d) 4005 { 4006 bitmap_free(d->rmid_busy_llc); 4007 kfree(d->mbm_total); 4008 kfree(d->mbm_local); 4009 } 4010 4011 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d) 4012 { 4013 mutex_lock(&rdtgroup_mutex); 4014 4015 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 4016 mba_sc_domain_destroy(r, d); 4017 4018 mutex_unlock(&rdtgroup_mutex); 4019 } 4020 4021 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d) 4022 { 4023 mutex_lock(&rdtgroup_mutex); 4024 4025 /* 4026 * If resctrl is mounted, remove all the 4027 * per domain monitor data directories. 4028 */ 4029 if (resctrl_mounted && resctrl_arch_mon_capable()) 4030 rmdir_mondata_subdir_allrdtgrp(r, d); 4031 4032 if (is_mbm_enabled()) 4033 cancel_delayed_work(&d->mbm_over); 4034 if (is_llc_occupancy_enabled() && has_busy_rmid(d)) { 4035 /* 4036 * When a package is going down, forcefully 4037 * decrement rmid->ebusy. There is no way to know 4038 * that the L3 was flushed and hence may lead to 4039 * incorrect counts in rare scenarios, but leaving 4040 * the RMID as busy creates RMID leaks if the 4041 * package never comes back. 4042 */ 4043 __check_limbo(d, true); 4044 cancel_delayed_work(&d->cqm_limbo); 4045 } 4046 4047 domain_destroy_mon_state(d); 4048 4049 mutex_unlock(&rdtgroup_mutex); 4050 } 4051 4052 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d) 4053 { 4054 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 4055 size_t tsize; 4056 4057 if (is_llc_occupancy_enabled()) { 4058 d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL); 4059 if (!d->rmid_busy_llc) 4060 return -ENOMEM; 4061 } 4062 if (is_mbm_total_enabled()) { 4063 tsize = sizeof(*d->mbm_total); 4064 d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL); 4065 if (!d->mbm_total) { 4066 bitmap_free(d->rmid_busy_llc); 4067 return -ENOMEM; 4068 } 4069 } 4070 if (is_mbm_local_enabled()) { 4071 tsize = sizeof(*d->mbm_local); 4072 d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL); 4073 if (!d->mbm_local) { 4074 bitmap_free(d->rmid_busy_llc); 4075 kfree(d->mbm_total); 4076 return -ENOMEM; 4077 } 4078 } 4079 4080 return 0; 4081 } 4082 4083 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d) 4084 { 4085 int err = 0; 4086 4087 mutex_lock(&rdtgroup_mutex); 4088 4089 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) { 4090 /* RDT_RESOURCE_MBA is never mon_capable */ 4091 err = mba_sc_domain_allocate(r, d); 4092 } 4093 4094 mutex_unlock(&rdtgroup_mutex); 4095 4096 return err; 4097 } 4098 4099 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d) 4100 { 4101 int err; 4102 4103 mutex_lock(&rdtgroup_mutex); 4104 4105 err = domain_setup_mon_state(r, d); 4106 if (err) 4107 goto out_unlock; 4108 4109 if (is_mbm_enabled()) { 4110 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); 4111 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL, 4112 RESCTRL_PICK_ANY_CPU); 4113 } 4114 4115 if (is_llc_occupancy_enabled()) 4116 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); 4117 4118 /* 4119 * If the filesystem is not mounted then only the default resource group 4120 * exists. Creation of its directories is deferred until mount time 4121 * by rdt_get_tree() calling mkdir_mondata_all(). 4122 * If resctrl is mounted, add per domain monitor data directories. 4123 */ 4124 if (resctrl_mounted && resctrl_arch_mon_capable()) 4125 mkdir_mondata_subdir_allrdtgrp(r, d); 4126 4127 out_unlock: 4128 mutex_unlock(&rdtgroup_mutex); 4129 4130 return err; 4131 } 4132 4133 void resctrl_online_cpu(unsigned int cpu) 4134 { 4135 mutex_lock(&rdtgroup_mutex); 4136 /* The CPU is set in default rdtgroup after online. */ 4137 cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask); 4138 mutex_unlock(&rdtgroup_mutex); 4139 } 4140 4141 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu) 4142 { 4143 struct rdtgroup *cr; 4144 4145 list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) { 4146 if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask)) 4147 break; 4148 } 4149 } 4150 4151 void resctrl_offline_cpu(unsigned int cpu) 4152 { 4153 struct rdt_resource *l3 = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 4154 struct rdt_mon_domain *d; 4155 struct rdtgroup *rdtgrp; 4156 4157 mutex_lock(&rdtgroup_mutex); 4158 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 4159 if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) { 4160 clear_childcpus(rdtgrp, cpu); 4161 break; 4162 } 4163 } 4164 4165 if (!l3->mon_capable) 4166 goto out_unlock; 4167 4168 d = get_mon_domain_from_cpu(cpu, l3); 4169 if (d) { 4170 if (is_mbm_enabled() && cpu == d->mbm_work_cpu) { 4171 cancel_delayed_work(&d->mbm_over); 4172 mbm_setup_overflow_handler(d, 0, cpu); 4173 } 4174 if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu && 4175 has_busy_rmid(d)) { 4176 cancel_delayed_work(&d->cqm_limbo); 4177 cqm_setup_limbo_handler(d, 0, cpu); 4178 } 4179 } 4180 4181 out_unlock: 4182 mutex_unlock(&rdtgroup_mutex); 4183 } 4184 4185 /* 4186 * rdtgroup_init - rdtgroup initialization 4187 * 4188 * Setup resctrl file system including set up root, create mount point, 4189 * register rdtgroup filesystem, and initialize files under root directory. 4190 * 4191 * Return: 0 on success or -errno 4192 */ 4193 int __init rdtgroup_init(void) 4194 { 4195 int ret = 0; 4196 4197 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 4198 sizeof(last_cmd_status_buf)); 4199 4200 rdtgroup_setup_default(); 4201 4202 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 4203 if (ret) 4204 return ret; 4205 4206 ret = register_filesystem(&rdt_fs_type); 4207 if (ret) 4208 goto cleanup_mountpoint; 4209 4210 /* 4211 * Adding the resctrl debugfs directory here may not be ideal since 4212 * it would let the resctrl debugfs directory appear on the debugfs 4213 * filesystem before the resctrl filesystem is mounted. 4214 * It may also be ok since that would enable debugging of RDT before 4215 * resctrl is mounted. 4216 * The reason why the debugfs directory is created here and not in 4217 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 4218 * during the debugfs directory creation also &sb->s_type->i_mutex_key 4219 * (the lockdep class of inode->i_rwsem). Other filesystem 4220 * interactions (eg. SyS_getdents) have the lock ordering: 4221 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 4222 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 4223 * is taken, thus creating dependency: 4224 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 4225 * issues considering the other two lock dependencies. 4226 * By creating the debugfs directory here we avoid a dependency 4227 * that may cause deadlock (even though file operations cannot 4228 * occur until the filesystem is mounted, but I do not know how to 4229 * tell lockdep that). 4230 */ 4231 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 4232 4233 return 0; 4234 4235 cleanup_mountpoint: 4236 sysfs_remove_mount_point(fs_kobj, "resctrl"); 4237 4238 return ret; 4239 } 4240 4241 void __exit rdtgroup_exit(void) 4242 { 4243 debugfs_remove_recursive(debugfs_resctrl); 4244 unregister_filesystem(&rdt_fs_type); 4245 sysfs_remove_mount_point(fs_kobj, "resctrl"); 4246 } 4247