xref: /linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Allocation in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* list of entries for the schemata file */
43 LIST_HEAD(resctrl_schema_all);
44 
45 /* Kernel fs node for "info" directory under root */
46 static struct kernfs_node *kn_info;
47 
48 /* Kernel fs node for "mon_groups" directory under root */
49 static struct kernfs_node *kn_mongrp;
50 
51 /* Kernel fs node for "mon_data" directory under root */
52 static struct kernfs_node *kn_mondata;
53 
54 static struct seq_buf last_cmd_status;
55 static char last_cmd_status_buf[512];
56 
57 static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
58 static void rdtgroup_destroy_root(void);
59 
60 struct dentry *debugfs_resctrl;
61 
62 static bool resctrl_debug;
63 
64 void rdt_last_cmd_clear(void)
65 {
66 	lockdep_assert_held(&rdtgroup_mutex);
67 	seq_buf_clear(&last_cmd_status);
68 }
69 
70 void rdt_last_cmd_puts(const char *s)
71 {
72 	lockdep_assert_held(&rdtgroup_mutex);
73 	seq_buf_puts(&last_cmd_status, s);
74 }
75 
76 void rdt_last_cmd_printf(const char *fmt, ...)
77 {
78 	va_list ap;
79 
80 	va_start(ap, fmt);
81 	lockdep_assert_held(&rdtgroup_mutex);
82 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
83 	va_end(ap);
84 }
85 
86 void rdt_staged_configs_clear(void)
87 {
88 	struct rdt_resource *r;
89 	struct rdt_domain *dom;
90 
91 	lockdep_assert_held(&rdtgroup_mutex);
92 
93 	for_each_alloc_capable_rdt_resource(r) {
94 		list_for_each_entry(dom, &r->domains, list)
95 			memset(dom->staged_config, 0, sizeof(dom->staged_config));
96 	}
97 }
98 
99 /*
100  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
101  * we can keep a bitmap of free CLOSIDs in a single integer.
102  *
103  * Using a global CLOSID across all resources has some advantages and
104  * some drawbacks:
105  * + We can simply set "current->closid" to assign a task to a resource
106  *   group.
107  * + Context switch code can avoid extra memory references deciding which
108  *   CLOSID to load into the PQR_ASSOC MSR
109  * - We give up some options in configuring resource groups across multi-socket
110  *   systems.
111  * - Our choices on how to configure each resource become progressively more
112  *   limited as the number of resources grows.
113  */
114 static int closid_free_map;
115 static int closid_free_map_len;
116 
117 int closids_supported(void)
118 {
119 	return closid_free_map_len;
120 }
121 
122 static void closid_init(void)
123 {
124 	struct resctrl_schema *s;
125 	u32 rdt_min_closid = 32;
126 
127 	/* Compute rdt_min_closid across all resources */
128 	list_for_each_entry(s, &resctrl_schema_all, list)
129 		rdt_min_closid = min(rdt_min_closid, s->num_closid);
130 
131 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
132 
133 	/* CLOSID 0 is always reserved for the default group */
134 	closid_free_map &= ~1;
135 	closid_free_map_len = rdt_min_closid;
136 }
137 
138 static int closid_alloc(void)
139 {
140 	u32 closid = ffs(closid_free_map);
141 
142 	if (closid == 0)
143 		return -ENOSPC;
144 	closid--;
145 	closid_free_map &= ~(1 << closid);
146 
147 	return closid;
148 }
149 
150 void closid_free(int closid)
151 {
152 	closid_free_map |= 1 << closid;
153 }
154 
155 /**
156  * closid_allocated - test if provided closid is in use
157  * @closid: closid to be tested
158  *
159  * Return: true if @closid is currently associated with a resource group,
160  * false if @closid is free
161  */
162 static bool closid_allocated(unsigned int closid)
163 {
164 	return (closid_free_map & (1 << closid)) == 0;
165 }
166 
167 /**
168  * rdtgroup_mode_by_closid - Return mode of resource group with closid
169  * @closid: closid if the resource group
170  *
171  * Each resource group is associated with a @closid. Here the mode
172  * of a resource group can be queried by searching for it using its closid.
173  *
174  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
175  */
176 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
177 {
178 	struct rdtgroup *rdtgrp;
179 
180 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
181 		if (rdtgrp->closid == closid)
182 			return rdtgrp->mode;
183 	}
184 
185 	return RDT_NUM_MODES;
186 }
187 
188 static const char * const rdt_mode_str[] = {
189 	[RDT_MODE_SHAREABLE]		= "shareable",
190 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
191 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
192 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
193 };
194 
195 /**
196  * rdtgroup_mode_str - Return the string representation of mode
197  * @mode: the resource group mode as &enum rdtgroup_mode
198  *
199  * Return: string representation of valid mode, "unknown" otherwise
200  */
201 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
202 {
203 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
204 		return "unknown";
205 
206 	return rdt_mode_str[mode];
207 }
208 
209 /* set uid and gid of rdtgroup dirs and files to that of the creator */
210 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
211 {
212 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
213 				.ia_uid = current_fsuid(),
214 				.ia_gid = current_fsgid(), };
215 
216 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
217 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
218 		return 0;
219 
220 	return kernfs_setattr(kn, &iattr);
221 }
222 
223 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
224 {
225 	struct kernfs_node *kn;
226 	int ret;
227 
228 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
229 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
230 				  0, rft->kf_ops, rft, NULL, NULL);
231 	if (IS_ERR(kn))
232 		return PTR_ERR(kn);
233 
234 	ret = rdtgroup_kn_set_ugid(kn);
235 	if (ret) {
236 		kernfs_remove(kn);
237 		return ret;
238 	}
239 
240 	return 0;
241 }
242 
243 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
244 {
245 	struct kernfs_open_file *of = m->private;
246 	struct rftype *rft = of->kn->priv;
247 
248 	if (rft->seq_show)
249 		return rft->seq_show(of, m, arg);
250 	return 0;
251 }
252 
253 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
254 				   size_t nbytes, loff_t off)
255 {
256 	struct rftype *rft = of->kn->priv;
257 
258 	if (rft->write)
259 		return rft->write(of, buf, nbytes, off);
260 
261 	return -EINVAL;
262 }
263 
264 static const struct kernfs_ops rdtgroup_kf_single_ops = {
265 	.atomic_write_len	= PAGE_SIZE,
266 	.write			= rdtgroup_file_write,
267 	.seq_show		= rdtgroup_seqfile_show,
268 };
269 
270 static const struct kernfs_ops kf_mondata_ops = {
271 	.atomic_write_len	= PAGE_SIZE,
272 	.seq_show		= rdtgroup_mondata_show,
273 };
274 
275 static bool is_cpu_list(struct kernfs_open_file *of)
276 {
277 	struct rftype *rft = of->kn->priv;
278 
279 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
280 }
281 
282 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
283 			      struct seq_file *s, void *v)
284 {
285 	struct rdtgroup *rdtgrp;
286 	struct cpumask *mask;
287 	int ret = 0;
288 
289 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
290 
291 	if (rdtgrp) {
292 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
293 			if (!rdtgrp->plr->d) {
294 				rdt_last_cmd_clear();
295 				rdt_last_cmd_puts("Cache domain offline\n");
296 				ret = -ENODEV;
297 			} else {
298 				mask = &rdtgrp->plr->d->cpu_mask;
299 				seq_printf(s, is_cpu_list(of) ?
300 					   "%*pbl\n" : "%*pb\n",
301 					   cpumask_pr_args(mask));
302 			}
303 		} else {
304 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
305 				   cpumask_pr_args(&rdtgrp->cpu_mask));
306 		}
307 	} else {
308 		ret = -ENOENT;
309 	}
310 	rdtgroup_kn_unlock(of->kn);
311 
312 	return ret;
313 }
314 
315 /*
316  * This is safe against resctrl_sched_in() called from __switch_to()
317  * because __switch_to() is executed with interrupts disabled. A local call
318  * from update_closid_rmid() is protected against __switch_to() because
319  * preemption is disabled.
320  */
321 static void update_cpu_closid_rmid(void *info)
322 {
323 	struct rdtgroup *r = info;
324 
325 	if (r) {
326 		this_cpu_write(pqr_state.default_closid, r->closid);
327 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
328 	}
329 
330 	/*
331 	 * We cannot unconditionally write the MSR because the current
332 	 * executing task might have its own closid selected. Just reuse
333 	 * the context switch code.
334 	 */
335 	resctrl_sched_in(current);
336 }
337 
338 /*
339  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
340  *
341  * Per task closids/rmids must have been set up before calling this function.
342  */
343 static void
344 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
345 {
346 	on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
347 }
348 
349 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
350 			  cpumask_var_t tmpmask)
351 {
352 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
353 	struct list_head *head;
354 
355 	/* Check whether cpus belong to parent ctrl group */
356 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
357 	if (!cpumask_empty(tmpmask)) {
358 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
359 		return -EINVAL;
360 	}
361 
362 	/* Check whether cpus are dropped from this group */
363 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
364 	if (!cpumask_empty(tmpmask)) {
365 		/* Give any dropped cpus to parent rdtgroup */
366 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
367 		update_closid_rmid(tmpmask, prgrp);
368 	}
369 
370 	/*
371 	 * If we added cpus, remove them from previous group that owned them
372 	 * and update per-cpu rmid
373 	 */
374 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
375 	if (!cpumask_empty(tmpmask)) {
376 		head = &prgrp->mon.crdtgrp_list;
377 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
378 			if (crgrp == rdtgrp)
379 				continue;
380 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
381 				       tmpmask);
382 		}
383 		update_closid_rmid(tmpmask, rdtgrp);
384 	}
385 
386 	/* Done pushing/pulling - update this group with new mask */
387 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
388 
389 	return 0;
390 }
391 
392 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
393 {
394 	struct rdtgroup *crgrp;
395 
396 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
397 	/* update the child mon group masks as well*/
398 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
399 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
400 }
401 
402 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
403 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
404 {
405 	struct rdtgroup *r, *crgrp;
406 	struct list_head *head;
407 
408 	/* Check whether cpus are dropped from this group */
409 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
410 	if (!cpumask_empty(tmpmask)) {
411 		/* Can't drop from default group */
412 		if (rdtgrp == &rdtgroup_default) {
413 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
414 			return -EINVAL;
415 		}
416 
417 		/* Give any dropped cpus to rdtgroup_default */
418 		cpumask_or(&rdtgroup_default.cpu_mask,
419 			   &rdtgroup_default.cpu_mask, tmpmask);
420 		update_closid_rmid(tmpmask, &rdtgroup_default);
421 	}
422 
423 	/*
424 	 * If we added cpus, remove them from previous group and
425 	 * the prev group's child groups that owned them
426 	 * and update per-cpu closid/rmid.
427 	 */
428 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
429 	if (!cpumask_empty(tmpmask)) {
430 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
431 			if (r == rdtgrp)
432 				continue;
433 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
434 			if (!cpumask_empty(tmpmask1))
435 				cpumask_rdtgrp_clear(r, tmpmask1);
436 		}
437 		update_closid_rmid(tmpmask, rdtgrp);
438 	}
439 
440 	/* Done pushing/pulling - update this group with new mask */
441 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
442 
443 	/*
444 	 * Clear child mon group masks since there is a new parent mask
445 	 * now and update the rmid for the cpus the child lost.
446 	 */
447 	head = &rdtgrp->mon.crdtgrp_list;
448 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
449 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
450 		update_closid_rmid(tmpmask, rdtgrp);
451 		cpumask_clear(&crgrp->cpu_mask);
452 	}
453 
454 	return 0;
455 }
456 
457 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
458 				   char *buf, size_t nbytes, loff_t off)
459 {
460 	cpumask_var_t tmpmask, newmask, tmpmask1;
461 	struct rdtgroup *rdtgrp;
462 	int ret;
463 
464 	if (!buf)
465 		return -EINVAL;
466 
467 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
468 		return -ENOMEM;
469 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
470 		free_cpumask_var(tmpmask);
471 		return -ENOMEM;
472 	}
473 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
474 		free_cpumask_var(tmpmask);
475 		free_cpumask_var(newmask);
476 		return -ENOMEM;
477 	}
478 
479 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
480 	if (!rdtgrp) {
481 		ret = -ENOENT;
482 		goto unlock;
483 	}
484 
485 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
486 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
487 		ret = -EINVAL;
488 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
489 		goto unlock;
490 	}
491 
492 	if (is_cpu_list(of))
493 		ret = cpulist_parse(buf, newmask);
494 	else
495 		ret = cpumask_parse(buf, newmask);
496 
497 	if (ret) {
498 		rdt_last_cmd_puts("Bad CPU list/mask\n");
499 		goto unlock;
500 	}
501 
502 	/* check that user didn't specify any offline cpus */
503 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
504 	if (!cpumask_empty(tmpmask)) {
505 		ret = -EINVAL;
506 		rdt_last_cmd_puts("Can only assign online CPUs\n");
507 		goto unlock;
508 	}
509 
510 	if (rdtgrp->type == RDTCTRL_GROUP)
511 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
512 	else if (rdtgrp->type == RDTMON_GROUP)
513 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
514 	else
515 		ret = -EINVAL;
516 
517 unlock:
518 	rdtgroup_kn_unlock(of->kn);
519 	free_cpumask_var(tmpmask);
520 	free_cpumask_var(newmask);
521 	free_cpumask_var(tmpmask1);
522 
523 	return ret ?: nbytes;
524 }
525 
526 /**
527  * rdtgroup_remove - the helper to remove resource group safely
528  * @rdtgrp: resource group to remove
529  *
530  * On resource group creation via a mkdir, an extra kernfs_node reference is
531  * taken to ensure that the rdtgroup structure remains accessible for the
532  * rdtgroup_kn_unlock() calls where it is removed.
533  *
534  * Drop the extra reference here, then free the rdtgroup structure.
535  *
536  * Return: void
537  */
538 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
539 {
540 	kernfs_put(rdtgrp->kn);
541 	kfree(rdtgrp);
542 }
543 
544 static void _update_task_closid_rmid(void *task)
545 {
546 	/*
547 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
548 	 * Otherwise, the MSR is updated when the task is scheduled in.
549 	 */
550 	if (task == current)
551 		resctrl_sched_in(task);
552 }
553 
554 static void update_task_closid_rmid(struct task_struct *t)
555 {
556 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
557 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
558 	else
559 		_update_task_closid_rmid(t);
560 }
561 
562 static int __rdtgroup_move_task(struct task_struct *tsk,
563 				struct rdtgroup *rdtgrp)
564 {
565 	/* If the task is already in rdtgrp, no need to move the task. */
566 	if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
567 	     tsk->rmid == rdtgrp->mon.rmid) ||
568 	    (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
569 	     tsk->closid == rdtgrp->mon.parent->closid))
570 		return 0;
571 
572 	/*
573 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
574 	 * updated by them.
575 	 *
576 	 * For ctrl_mon groups, move both closid and rmid.
577 	 * For monitor groups, can move the tasks only from
578 	 * their parent CTRL group.
579 	 */
580 
581 	if (rdtgrp->type == RDTCTRL_GROUP) {
582 		WRITE_ONCE(tsk->closid, rdtgrp->closid);
583 		WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
584 	} else if (rdtgrp->type == RDTMON_GROUP) {
585 		if (rdtgrp->mon.parent->closid == tsk->closid) {
586 			WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
587 		} else {
588 			rdt_last_cmd_puts("Can't move task to different control group\n");
589 			return -EINVAL;
590 		}
591 	}
592 
593 	/*
594 	 * Ensure the task's closid and rmid are written before determining if
595 	 * the task is current that will decide if it will be interrupted.
596 	 * This pairs with the full barrier between the rq->curr update and
597 	 * resctrl_sched_in() during context switch.
598 	 */
599 	smp_mb();
600 
601 	/*
602 	 * By now, the task's closid and rmid are set. If the task is current
603 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
604 	 * group go into effect. If the task is not current, the MSR will be
605 	 * updated when the task is scheduled in.
606 	 */
607 	update_task_closid_rmid(tsk);
608 
609 	return 0;
610 }
611 
612 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
613 {
614 	return (rdt_alloc_capable &&
615 	       (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
616 }
617 
618 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
619 {
620 	return (rdt_mon_capable &&
621 	       (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
622 }
623 
624 /**
625  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
626  * @r: Resource group
627  *
628  * Return: 1 if tasks have been assigned to @r, 0 otherwise
629  */
630 int rdtgroup_tasks_assigned(struct rdtgroup *r)
631 {
632 	struct task_struct *p, *t;
633 	int ret = 0;
634 
635 	lockdep_assert_held(&rdtgroup_mutex);
636 
637 	rcu_read_lock();
638 	for_each_process_thread(p, t) {
639 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
640 			ret = 1;
641 			break;
642 		}
643 	}
644 	rcu_read_unlock();
645 
646 	return ret;
647 }
648 
649 static int rdtgroup_task_write_permission(struct task_struct *task,
650 					  struct kernfs_open_file *of)
651 {
652 	const struct cred *tcred = get_task_cred(task);
653 	const struct cred *cred = current_cred();
654 	int ret = 0;
655 
656 	/*
657 	 * Even if we're attaching all tasks in the thread group, we only
658 	 * need to check permissions on one of them.
659 	 */
660 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
661 	    !uid_eq(cred->euid, tcred->uid) &&
662 	    !uid_eq(cred->euid, tcred->suid)) {
663 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
664 		ret = -EPERM;
665 	}
666 
667 	put_cred(tcred);
668 	return ret;
669 }
670 
671 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
672 			      struct kernfs_open_file *of)
673 {
674 	struct task_struct *tsk;
675 	int ret;
676 
677 	rcu_read_lock();
678 	if (pid) {
679 		tsk = find_task_by_vpid(pid);
680 		if (!tsk) {
681 			rcu_read_unlock();
682 			rdt_last_cmd_printf("No task %d\n", pid);
683 			return -ESRCH;
684 		}
685 	} else {
686 		tsk = current;
687 	}
688 
689 	get_task_struct(tsk);
690 	rcu_read_unlock();
691 
692 	ret = rdtgroup_task_write_permission(tsk, of);
693 	if (!ret)
694 		ret = __rdtgroup_move_task(tsk, rdtgrp);
695 
696 	put_task_struct(tsk);
697 	return ret;
698 }
699 
700 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
701 				    char *buf, size_t nbytes, loff_t off)
702 {
703 	struct rdtgroup *rdtgrp;
704 	char *pid_str;
705 	int ret = 0;
706 	pid_t pid;
707 
708 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
709 	if (!rdtgrp) {
710 		rdtgroup_kn_unlock(of->kn);
711 		return -ENOENT;
712 	}
713 	rdt_last_cmd_clear();
714 
715 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
716 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
717 		ret = -EINVAL;
718 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
719 		goto unlock;
720 	}
721 
722 	while (buf && buf[0] != '\0' && buf[0] != '\n') {
723 		pid_str = strim(strsep(&buf, ","));
724 
725 		if (kstrtoint(pid_str, 0, &pid)) {
726 			rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
727 			ret = -EINVAL;
728 			break;
729 		}
730 
731 		if (pid < 0) {
732 			rdt_last_cmd_printf("Invalid pid %d\n", pid);
733 			ret = -EINVAL;
734 			break;
735 		}
736 
737 		ret = rdtgroup_move_task(pid, rdtgrp, of);
738 		if (ret) {
739 			rdt_last_cmd_printf("Error while processing task %d\n", pid);
740 			break;
741 		}
742 	}
743 
744 unlock:
745 	rdtgroup_kn_unlock(of->kn);
746 
747 	return ret ?: nbytes;
748 }
749 
750 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
751 {
752 	struct task_struct *p, *t;
753 	pid_t pid;
754 
755 	rcu_read_lock();
756 	for_each_process_thread(p, t) {
757 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
758 			pid = task_pid_vnr(t);
759 			if (pid)
760 				seq_printf(s, "%d\n", pid);
761 		}
762 	}
763 	rcu_read_unlock();
764 }
765 
766 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
767 			       struct seq_file *s, void *v)
768 {
769 	struct rdtgroup *rdtgrp;
770 	int ret = 0;
771 
772 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
773 	if (rdtgrp)
774 		show_rdt_tasks(rdtgrp, s);
775 	else
776 		ret = -ENOENT;
777 	rdtgroup_kn_unlock(of->kn);
778 
779 	return ret;
780 }
781 
782 static int rdtgroup_closid_show(struct kernfs_open_file *of,
783 				struct seq_file *s, void *v)
784 {
785 	struct rdtgroup *rdtgrp;
786 	int ret = 0;
787 
788 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
789 	if (rdtgrp)
790 		seq_printf(s, "%u\n", rdtgrp->closid);
791 	else
792 		ret = -ENOENT;
793 	rdtgroup_kn_unlock(of->kn);
794 
795 	return ret;
796 }
797 
798 static int rdtgroup_rmid_show(struct kernfs_open_file *of,
799 			      struct seq_file *s, void *v)
800 {
801 	struct rdtgroup *rdtgrp;
802 	int ret = 0;
803 
804 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
805 	if (rdtgrp)
806 		seq_printf(s, "%u\n", rdtgrp->mon.rmid);
807 	else
808 		ret = -ENOENT;
809 	rdtgroup_kn_unlock(of->kn);
810 
811 	return ret;
812 }
813 
814 #ifdef CONFIG_PROC_CPU_RESCTRL
815 
816 /*
817  * A task can only be part of one resctrl control group and of one monitor
818  * group which is associated to that control group.
819  *
820  * 1)   res:
821  *      mon:
822  *
823  *    resctrl is not available.
824  *
825  * 2)   res:/
826  *      mon:
827  *
828  *    Task is part of the root resctrl control group, and it is not associated
829  *    to any monitor group.
830  *
831  * 3)  res:/
832  *     mon:mon0
833  *
834  *    Task is part of the root resctrl control group and monitor group mon0.
835  *
836  * 4)  res:group0
837  *     mon:
838  *
839  *    Task is part of resctrl control group group0, and it is not associated
840  *    to any monitor group.
841  *
842  * 5) res:group0
843  *    mon:mon1
844  *
845  *    Task is part of resctrl control group group0 and monitor group mon1.
846  */
847 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
848 		      struct pid *pid, struct task_struct *tsk)
849 {
850 	struct rdtgroup *rdtg;
851 	int ret = 0;
852 
853 	mutex_lock(&rdtgroup_mutex);
854 
855 	/* Return empty if resctrl has not been mounted. */
856 	if (!static_branch_unlikely(&rdt_enable_key)) {
857 		seq_puts(s, "res:\nmon:\n");
858 		goto unlock;
859 	}
860 
861 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
862 		struct rdtgroup *crg;
863 
864 		/*
865 		 * Task information is only relevant for shareable
866 		 * and exclusive groups.
867 		 */
868 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
869 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
870 			continue;
871 
872 		if (rdtg->closid != tsk->closid)
873 			continue;
874 
875 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
876 			   rdtg->kn->name);
877 		seq_puts(s, "mon:");
878 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
879 				    mon.crdtgrp_list) {
880 			if (tsk->rmid != crg->mon.rmid)
881 				continue;
882 			seq_printf(s, "%s", crg->kn->name);
883 			break;
884 		}
885 		seq_putc(s, '\n');
886 		goto unlock;
887 	}
888 	/*
889 	 * The above search should succeed. Otherwise return
890 	 * with an error.
891 	 */
892 	ret = -ENOENT;
893 unlock:
894 	mutex_unlock(&rdtgroup_mutex);
895 
896 	return ret;
897 }
898 #endif
899 
900 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
901 				    struct seq_file *seq, void *v)
902 {
903 	int len;
904 
905 	mutex_lock(&rdtgroup_mutex);
906 	len = seq_buf_used(&last_cmd_status);
907 	if (len)
908 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
909 	else
910 		seq_puts(seq, "ok\n");
911 	mutex_unlock(&rdtgroup_mutex);
912 	return 0;
913 }
914 
915 static int rdt_num_closids_show(struct kernfs_open_file *of,
916 				struct seq_file *seq, void *v)
917 {
918 	struct resctrl_schema *s = of->kn->parent->priv;
919 
920 	seq_printf(seq, "%u\n", s->num_closid);
921 	return 0;
922 }
923 
924 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
925 			     struct seq_file *seq, void *v)
926 {
927 	struct resctrl_schema *s = of->kn->parent->priv;
928 	struct rdt_resource *r = s->res;
929 
930 	seq_printf(seq, "%x\n", r->default_ctrl);
931 	return 0;
932 }
933 
934 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
935 			     struct seq_file *seq, void *v)
936 {
937 	struct resctrl_schema *s = of->kn->parent->priv;
938 	struct rdt_resource *r = s->res;
939 
940 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
941 	return 0;
942 }
943 
944 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
945 				   struct seq_file *seq, void *v)
946 {
947 	struct resctrl_schema *s = of->kn->parent->priv;
948 	struct rdt_resource *r = s->res;
949 
950 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
951 	return 0;
952 }
953 
954 /*
955  * rdt_bit_usage_show - Display current usage of resources
956  *
957  * A domain is a shared resource that can now be allocated differently. Here
958  * we display the current regions of the domain as an annotated bitmask.
959  * For each domain of this resource its allocation bitmask
960  * is annotated as below to indicate the current usage of the corresponding bit:
961  *   0 - currently unused
962  *   X - currently available for sharing and used by software and hardware
963  *   H - currently used by hardware only but available for software use
964  *   S - currently used and shareable by software only
965  *   E - currently used exclusively by one resource group
966  *   P - currently pseudo-locked by one resource group
967  */
968 static int rdt_bit_usage_show(struct kernfs_open_file *of,
969 			      struct seq_file *seq, void *v)
970 {
971 	struct resctrl_schema *s = of->kn->parent->priv;
972 	/*
973 	 * Use unsigned long even though only 32 bits are used to ensure
974 	 * test_bit() is used safely.
975 	 */
976 	unsigned long sw_shareable = 0, hw_shareable = 0;
977 	unsigned long exclusive = 0, pseudo_locked = 0;
978 	struct rdt_resource *r = s->res;
979 	struct rdt_domain *dom;
980 	int i, hwb, swb, excl, psl;
981 	enum rdtgrp_mode mode;
982 	bool sep = false;
983 	u32 ctrl_val;
984 
985 	mutex_lock(&rdtgroup_mutex);
986 	hw_shareable = r->cache.shareable_bits;
987 	list_for_each_entry(dom, &r->domains, list) {
988 		if (sep)
989 			seq_putc(seq, ';');
990 		sw_shareable = 0;
991 		exclusive = 0;
992 		seq_printf(seq, "%d=", dom->id);
993 		for (i = 0; i < closids_supported(); i++) {
994 			if (!closid_allocated(i))
995 				continue;
996 			ctrl_val = resctrl_arch_get_config(r, dom, i,
997 							   s->conf_type);
998 			mode = rdtgroup_mode_by_closid(i);
999 			switch (mode) {
1000 			case RDT_MODE_SHAREABLE:
1001 				sw_shareable |= ctrl_val;
1002 				break;
1003 			case RDT_MODE_EXCLUSIVE:
1004 				exclusive |= ctrl_val;
1005 				break;
1006 			case RDT_MODE_PSEUDO_LOCKSETUP:
1007 			/*
1008 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1009 			 * here but not included since the CBM
1010 			 * associated with this CLOSID in this mode
1011 			 * is not initialized and no task or cpu can be
1012 			 * assigned this CLOSID.
1013 			 */
1014 				break;
1015 			case RDT_MODE_PSEUDO_LOCKED:
1016 			case RDT_NUM_MODES:
1017 				WARN(1,
1018 				     "invalid mode for closid %d\n", i);
1019 				break;
1020 			}
1021 		}
1022 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1023 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1024 			hwb = test_bit(i, &hw_shareable);
1025 			swb = test_bit(i, &sw_shareable);
1026 			excl = test_bit(i, &exclusive);
1027 			psl = test_bit(i, &pseudo_locked);
1028 			if (hwb && swb)
1029 				seq_putc(seq, 'X');
1030 			else if (hwb && !swb)
1031 				seq_putc(seq, 'H');
1032 			else if (!hwb && swb)
1033 				seq_putc(seq, 'S');
1034 			else if (excl)
1035 				seq_putc(seq, 'E');
1036 			else if (psl)
1037 				seq_putc(seq, 'P');
1038 			else /* Unused bits remain */
1039 				seq_putc(seq, '0');
1040 		}
1041 		sep = true;
1042 	}
1043 	seq_putc(seq, '\n');
1044 	mutex_unlock(&rdtgroup_mutex);
1045 	return 0;
1046 }
1047 
1048 static int rdt_min_bw_show(struct kernfs_open_file *of,
1049 			     struct seq_file *seq, void *v)
1050 {
1051 	struct resctrl_schema *s = of->kn->parent->priv;
1052 	struct rdt_resource *r = s->res;
1053 
1054 	seq_printf(seq, "%u\n", r->membw.min_bw);
1055 	return 0;
1056 }
1057 
1058 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1059 			      struct seq_file *seq, void *v)
1060 {
1061 	struct rdt_resource *r = of->kn->parent->priv;
1062 
1063 	seq_printf(seq, "%d\n", r->num_rmid);
1064 
1065 	return 0;
1066 }
1067 
1068 static int rdt_mon_features_show(struct kernfs_open_file *of,
1069 				 struct seq_file *seq, void *v)
1070 {
1071 	struct rdt_resource *r = of->kn->parent->priv;
1072 	struct mon_evt *mevt;
1073 
1074 	list_for_each_entry(mevt, &r->evt_list, list) {
1075 		seq_printf(seq, "%s\n", mevt->name);
1076 		if (mevt->configurable)
1077 			seq_printf(seq, "%s_config\n", mevt->name);
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1084 			     struct seq_file *seq, void *v)
1085 {
1086 	struct resctrl_schema *s = of->kn->parent->priv;
1087 	struct rdt_resource *r = s->res;
1088 
1089 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1090 	return 0;
1091 }
1092 
1093 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1094 			     struct seq_file *seq, void *v)
1095 {
1096 	struct resctrl_schema *s = of->kn->parent->priv;
1097 	struct rdt_resource *r = s->res;
1098 
1099 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1100 	return 0;
1101 }
1102 
1103 static int max_threshold_occ_show(struct kernfs_open_file *of,
1104 				  struct seq_file *seq, void *v)
1105 {
1106 	seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1107 
1108 	return 0;
1109 }
1110 
1111 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1112 					 struct seq_file *seq, void *v)
1113 {
1114 	struct resctrl_schema *s = of->kn->parent->priv;
1115 	struct rdt_resource *r = s->res;
1116 
1117 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1118 		seq_puts(seq, "per-thread\n");
1119 	else
1120 		seq_puts(seq, "max\n");
1121 
1122 	return 0;
1123 }
1124 
1125 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1126 				       char *buf, size_t nbytes, loff_t off)
1127 {
1128 	unsigned int bytes;
1129 	int ret;
1130 
1131 	ret = kstrtouint(buf, 0, &bytes);
1132 	if (ret)
1133 		return ret;
1134 
1135 	if (bytes > resctrl_rmid_realloc_limit)
1136 		return -EINVAL;
1137 
1138 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1139 
1140 	return nbytes;
1141 }
1142 
1143 /*
1144  * rdtgroup_mode_show - Display mode of this resource group
1145  */
1146 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1147 			      struct seq_file *s, void *v)
1148 {
1149 	struct rdtgroup *rdtgrp;
1150 
1151 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1152 	if (!rdtgrp) {
1153 		rdtgroup_kn_unlock(of->kn);
1154 		return -ENOENT;
1155 	}
1156 
1157 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1158 
1159 	rdtgroup_kn_unlock(of->kn);
1160 	return 0;
1161 }
1162 
1163 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1164 {
1165 	switch (my_type) {
1166 	case CDP_CODE:
1167 		return CDP_DATA;
1168 	case CDP_DATA:
1169 		return CDP_CODE;
1170 	default:
1171 	case CDP_NONE:
1172 		return CDP_NONE;
1173 	}
1174 }
1175 
1176 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1177 					struct seq_file *seq, void *v)
1178 {
1179 	struct resctrl_schema *s = of->kn->parent->priv;
1180 	struct rdt_resource *r = s->res;
1181 
1182 	seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1183 
1184 	return 0;
1185 }
1186 
1187 /**
1188  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1189  * @r: Resource to which domain instance @d belongs.
1190  * @d: The domain instance for which @closid is being tested.
1191  * @cbm: Capacity bitmask being tested.
1192  * @closid: Intended closid for @cbm.
1193  * @type: CDP type of @r.
1194  * @exclusive: Only check if overlaps with exclusive resource groups
1195  *
1196  * Checks if provided @cbm intended to be used for @closid on domain
1197  * @d overlaps with any other closids or other hardware usage associated
1198  * with this domain. If @exclusive is true then only overlaps with
1199  * resource groups in exclusive mode will be considered. If @exclusive
1200  * is false then overlaps with any resource group or hardware entities
1201  * will be considered.
1202  *
1203  * @cbm is unsigned long, even if only 32 bits are used, to make the
1204  * bitmap functions work correctly.
1205  *
1206  * Return: false if CBM does not overlap, true if it does.
1207  */
1208 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1209 				    unsigned long cbm, int closid,
1210 				    enum resctrl_conf_type type, bool exclusive)
1211 {
1212 	enum rdtgrp_mode mode;
1213 	unsigned long ctrl_b;
1214 	int i;
1215 
1216 	/* Check for any overlap with regions used by hardware directly */
1217 	if (!exclusive) {
1218 		ctrl_b = r->cache.shareable_bits;
1219 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1220 			return true;
1221 	}
1222 
1223 	/* Check for overlap with other resource groups */
1224 	for (i = 0; i < closids_supported(); i++) {
1225 		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1226 		mode = rdtgroup_mode_by_closid(i);
1227 		if (closid_allocated(i) && i != closid &&
1228 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1229 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1230 				if (exclusive) {
1231 					if (mode == RDT_MODE_EXCLUSIVE)
1232 						return true;
1233 					continue;
1234 				}
1235 				return true;
1236 			}
1237 		}
1238 	}
1239 
1240 	return false;
1241 }
1242 
1243 /**
1244  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1245  * @s: Schema for the resource to which domain instance @d belongs.
1246  * @d: The domain instance for which @closid is being tested.
1247  * @cbm: Capacity bitmask being tested.
1248  * @closid: Intended closid for @cbm.
1249  * @exclusive: Only check if overlaps with exclusive resource groups
1250  *
1251  * Resources that can be allocated using a CBM can use the CBM to control
1252  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1253  * for overlap. Overlap test is not limited to the specific resource for
1254  * which the CBM is intended though - when dealing with CDP resources that
1255  * share the underlying hardware the overlap check should be performed on
1256  * the CDP resource sharing the hardware also.
1257  *
1258  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1259  * overlap test.
1260  *
1261  * Return: true if CBM overlap detected, false if there is no overlap
1262  */
1263 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1264 			   unsigned long cbm, int closid, bool exclusive)
1265 {
1266 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1267 	struct rdt_resource *r = s->res;
1268 
1269 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1270 				    exclusive))
1271 		return true;
1272 
1273 	if (!resctrl_arch_get_cdp_enabled(r->rid))
1274 		return false;
1275 	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1276 }
1277 
1278 /**
1279  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1280  * @rdtgrp: Resource group identified through its closid.
1281  *
1282  * An exclusive resource group implies that there should be no sharing of
1283  * its allocated resources. At the time this group is considered to be
1284  * exclusive this test can determine if its current schemata supports this
1285  * setting by testing for overlap with all other resource groups.
1286  *
1287  * Return: true if resource group can be exclusive, false if there is overlap
1288  * with allocations of other resource groups and thus this resource group
1289  * cannot be exclusive.
1290  */
1291 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1292 {
1293 	int closid = rdtgrp->closid;
1294 	struct resctrl_schema *s;
1295 	struct rdt_resource *r;
1296 	bool has_cache = false;
1297 	struct rdt_domain *d;
1298 	u32 ctrl;
1299 
1300 	list_for_each_entry(s, &resctrl_schema_all, list) {
1301 		r = s->res;
1302 		if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1303 			continue;
1304 		has_cache = true;
1305 		list_for_each_entry(d, &r->domains, list) {
1306 			ctrl = resctrl_arch_get_config(r, d, closid,
1307 						       s->conf_type);
1308 			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1309 				rdt_last_cmd_puts("Schemata overlaps\n");
1310 				return false;
1311 			}
1312 		}
1313 	}
1314 
1315 	if (!has_cache) {
1316 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1317 		return false;
1318 	}
1319 
1320 	return true;
1321 }
1322 
1323 /*
1324  * rdtgroup_mode_write - Modify the resource group's mode
1325  */
1326 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1327 				   char *buf, size_t nbytes, loff_t off)
1328 {
1329 	struct rdtgroup *rdtgrp;
1330 	enum rdtgrp_mode mode;
1331 	int ret = 0;
1332 
1333 	/* Valid input requires a trailing newline */
1334 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1335 		return -EINVAL;
1336 	buf[nbytes - 1] = '\0';
1337 
1338 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1339 	if (!rdtgrp) {
1340 		rdtgroup_kn_unlock(of->kn);
1341 		return -ENOENT;
1342 	}
1343 
1344 	rdt_last_cmd_clear();
1345 
1346 	mode = rdtgrp->mode;
1347 
1348 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1349 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1350 	    (!strcmp(buf, "pseudo-locksetup") &&
1351 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1352 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1353 		goto out;
1354 
1355 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1356 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1357 		ret = -EINVAL;
1358 		goto out;
1359 	}
1360 
1361 	if (!strcmp(buf, "shareable")) {
1362 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1363 			ret = rdtgroup_locksetup_exit(rdtgrp);
1364 			if (ret)
1365 				goto out;
1366 		}
1367 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1368 	} else if (!strcmp(buf, "exclusive")) {
1369 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1370 			ret = -EINVAL;
1371 			goto out;
1372 		}
1373 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1374 			ret = rdtgroup_locksetup_exit(rdtgrp);
1375 			if (ret)
1376 				goto out;
1377 		}
1378 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1379 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1380 		ret = rdtgroup_locksetup_enter(rdtgrp);
1381 		if (ret)
1382 			goto out;
1383 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1384 	} else {
1385 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1386 		ret = -EINVAL;
1387 	}
1388 
1389 out:
1390 	rdtgroup_kn_unlock(of->kn);
1391 	return ret ?: nbytes;
1392 }
1393 
1394 /**
1395  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1396  * @r: RDT resource to which @d belongs.
1397  * @d: RDT domain instance.
1398  * @cbm: bitmask for which the size should be computed.
1399  *
1400  * The bitmask provided associated with the RDT domain instance @d will be
1401  * translated into how many bytes it represents. The size in bytes is
1402  * computed by first dividing the total cache size by the CBM length to
1403  * determine how many bytes each bit in the bitmask represents. The result
1404  * is multiplied with the number of bits set in the bitmask.
1405  *
1406  * @cbm is unsigned long, even if only 32 bits are used to make the
1407  * bitmap functions work correctly.
1408  */
1409 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1410 				  struct rdt_domain *d, unsigned long cbm)
1411 {
1412 	struct cpu_cacheinfo *ci;
1413 	unsigned int size = 0;
1414 	int num_b, i;
1415 
1416 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1417 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1418 	for (i = 0; i < ci->num_leaves; i++) {
1419 		if (ci->info_list[i].level == r->cache_level) {
1420 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1421 			break;
1422 		}
1423 	}
1424 
1425 	return size;
1426 }
1427 
1428 /*
1429  * rdtgroup_size_show - Display size in bytes of allocated regions
1430  *
1431  * The "size" file mirrors the layout of the "schemata" file, printing the
1432  * size in bytes of each region instead of the capacity bitmask.
1433  */
1434 static int rdtgroup_size_show(struct kernfs_open_file *of,
1435 			      struct seq_file *s, void *v)
1436 {
1437 	struct resctrl_schema *schema;
1438 	enum resctrl_conf_type type;
1439 	struct rdtgroup *rdtgrp;
1440 	struct rdt_resource *r;
1441 	struct rdt_domain *d;
1442 	unsigned int size;
1443 	int ret = 0;
1444 	u32 closid;
1445 	bool sep;
1446 	u32 ctrl;
1447 
1448 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1449 	if (!rdtgrp) {
1450 		rdtgroup_kn_unlock(of->kn);
1451 		return -ENOENT;
1452 	}
1453 
1454 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1455 		if (!rdtgrp->plr->d) {
1456 			rdt_last_cmd_clear();
1457 			rdt_last_cmd_puts("Cache domain offline\n");
1458 			ret = -ENODEV;
1459 		} else {
1460 			seq_printf(s, "%*s:", max_name_width,
1461 				   rdtgrp->plr->s->name);
1462 			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1463 						    rdtgrp->plr->d,
1464 						    rdtgrp->plr->cbm);
1465 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1466 		}
1467 		goto out;
1468 	}
1469 
1470 	closid = rdtgrp->closid;
1471 
1472 	list_for_each_entry(schema, &resctrl_schema_all, list) {
1473 		r = schema->res;
1474 		type = schema->conf_type;
1475 		sep = false;
1476 		seq_printf(s, "%*s:", max_name_width, schema->name);
1477 		list_for_each_entry(d, &r->domains, list) {
1478 			if (sep)
1479 				seq_putc(s, ';');
1480 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1481 				size = 0;
1482 			} else {
1483 				if (is_mba_sc(r))
1484 					ctrl = d->mbps_val[closid];
1485 				else
1486 					ctrl = resctrl_arch_get_config(r, d,
1487 								       closid,
1488 								       type);
1489 				if (r->rid == RDT_RESOURCE_MBA ||
1490 				    r->rid == RDT_RESOURCE_SMBA)
1491 					size = ctrl;
1492 				else
1493 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1494 			}
1495 			seq_printf(s, "%d=%u", d->id, size);
1496 			sep = true;
1497 		}
1498 		seq_putc(s, '\n');
1499 	}
1500 
1501 out:
1502 	rdtgroup_kn_unlock(of->kn);
1503 
1504 	return ret;
1505 }
1506 
1507 struct mon_config_info {
1508 	u32 evtid;
1509 	u32 mon_config;
1510 };
1511 
1512 #define INVALID_CONFIG_INDEX   UINT_MAX
1513 
1514 /**
1515  * mon_event_config_index_get - get the hardware index for the
1516  *                              configurable event
1517  * @evtid: event id.
1518  *
1519  * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1520  *         1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1521  *         INVALID_CONFIG_INDEX for invalid evtid
1522  */
1523 static inline unsigned int mon_event_config_index_get(u32 evtid)
1524 {
1525 	switch (evtid) {
1526 	case QOS_L3_MBM_TOTAL_EVENT_ID:
1527 		return 0;
1528 	case QOS_L3_MBM_LOCAL_EVENT_ID:
1529 		return 1;
1530 	default:
1531 		/* Should never reach here */
1532 		return INVALID_CONFIG_INDEX;
1533 	}
1534 }
1535 
1536 static void mon_event_config_read(void *info)
1537 {
1538 	struct mon_config_info *mon_info = info;
1539 	unsigned int index;
1540 	u64 msrval;
1541 
1542 	index = mon_event_config_index_get(mon_info->evtid);
1543 	if (index == INVALID_CONFIG_INDEX) {
1544 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1545 		return;
1546 	}
1547 	rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1548 
1549 	/* Report only the valid event configuration bits */
1550 	mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1551 }
1552 
1553 static void mondata_config_read(struct rdt_domain *d, struct mon_config_info *mon_info)
1554 {
1555 	smp_call_function_any(&d->cpu_mask, mon_event_config_read, mon_info, 1);
1556 }
1557 
1558 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1559 {
1560 	struct mon_config_info mon_info = {0};
1561 	struct rdt_domain *dom;
1562 	bool sep = false;
1563 
1564 	mutex_lock(&rdtgroup_mutex);
1565 
1566 	list_for_each_entry(dom, &r->domains, list) {
1567 		if (sep)
1568 			seq_puts(s, ";");
1569 
1570 		memset(&mon_info, 0, sizeof(struct mon_config_info));
1571 		mon_info.evtid = evtid;
1572 		mondata_config_read(dom, &mon_info);
1573 
1574 		seq_printf(s, "%d=0x%02x", dom->id, mon_info.mon_config);
1575 		sep = true;
1576 	}
1577 	seq_puts(s, "\n");
1578 
1579 	mutex_unlock(&rdtgroup_mutex);
1580 
1581 	return 0;
1582 }
1583 
1584 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1585 				       struct seq_file *seq, void *v)
1586 {
1587 	struct rdt_resource *r = of->kn->parent->priv;
1588 
1589 	mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1590 
1591 	return 0;
1592 }
1593 
1594 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1595 				       struct seq_file *seq, void *v)
1596 {
1597 	struct rdt_resource *r = of->kn->parent->priv;
1598 
1599 	mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1600 
1601 	return 0;
1602 }
1603 
1604 static void mon_event_config_write(void *info)
1605 {
1606 	struct mon_config_info *mon_info = info;
1607 	unsigned int index;
1608 
1609 	index = mon_event_config_index_get(mon_info->evtid);
1610 	if (index == INVALID_CONFIG_INDEX) {
1611 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1612 		return;
1613 	}
1614 	wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1615 }
1616 
1617 static int mbm_config_write_domain(struct rdt_resource *r,
1618 				   struct rdt_domain *d, u32 evtid, u32 val)
1619 {
1620 	struct mon_config_info mon_info = {0};
1621 	int ret = 0;
1622 
1623 	/* mon_config cannot be more than the supported set of events */
1624 	if (val > MAX_EVT_CONFIG_BITS) {
1625 		rdt_last_cmd_puts("Invalid event configuration\n");
1626 		return -EINVAL;
1627 	}
1628 
1629 	/*
1630 	 * Read the current config value first. If both are the same then
1631 	 * no need to write it again.
1632 	 */
1633 	mon_info.evtid = evtid;
1634 	mondata_config_read(d, &mon_info);
1635 	if (mon_info.mon_config == val)
1636 		goto out;
1637 
1638 	mon_info.mon_config = val;
1639 
1640 	/*
1641 	 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1642 	 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1643 	 * are scoped at the domain level. Writing any of these MSRs
1644 	 * on one CPU is observed by all the CPUs in the domain.
1645 	 */
1646 	smp_call_function_any(&d->cpu_mask, mon_event_config_write,
1647 			      &mon_info, 1);
1648 
1649 	/*
1650 	 * When an Event Configuration is changed, the bandwidth counters
1651 	 * for all RMIDs and Events will be cleared by the hardware. The
1652 	 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1653 	 * every RMID on the next read to any event for every RMID.
1654 	 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1655 	 * cleared while it is tracked by the hardware. Clear the
1656 	 * mbm_local and mbm_total counts for all the RMIDs.
1657 	 */
1658 	resctrl_arch_reset_rmid_all(r, d);
1659 
1660 out:
1661 	return ret;
1662 }
1663 
1664 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1665 {
1666 	char *dom_str = NULL, *id_str;
1667 	unsigned long dom_id, val;
1668 	struct rdt_domain *d;
1669 	int ret = 0;
1670 
1671 next:
1672 	if (!tok || tok[0] == '\0')
1673 		return 0;
1674 
1675 	/* Start processing the strings for each domain */
1676 	dom_str = strim(strsep(&tok, ";"));
1677 	id_str = strsep(&dom_str, "=");
1678 
1679 	if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1680 		rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1681 		return -EINVAL;
1682 	}
1683 
1684 	if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1685 		rdt_last_cmd_puts("Non-numeric event configuration value\n");
1686 		return -EINVAL;
1687 	}
1688 
1689 	list_for_each_entry(d, &r->domains, list) {
1690 		if (d->id == dom_id) {
1691 			ret = mbm_config_write_domain(r, d, evtid, val);
1692 			if (ret)
1693 				return -EINVAL;
1694 			goto next;
1695 		}
1696 	}
1697 
1698 	return -EINVAL;
1699 }
1700 
1701 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1702 					    char *buf, size_t nbytes,
1703 					    loff_t off)
1704 {
1705 	struct rdt_resource *r = of->kn->parent->priv;
1706 	int ret;
1707 
1708 	/* Valid input requires a trailing newline */
1709 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1710 		return -EINVAL;
1711 
1712 	mutex_lock(&rdtgroup_mutex);
1713 
1714 	rdt_last_cmd_clear();
1715 
1716 	buf[nbytes - 1] = '\0';
1717 
1718 	ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1719 
1720 	mutex_unlock(&rdtgroup_mutex);
1721 
1722 	return ret ?: nbytes;
1723 }
1724 
1725 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1726 					    char *buf, size_t nbytes,
1727 					    loff_t off)
1728 {
1729 	struct rdt_resource *r = of->kn->parent->priv;
1730 	int ret;
1731 
1732 	/* Valid input requires a trailing newline */
1733 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1734 		return -EINVAL;
1735 
1736 	mutex_lock(&rdtgroup_mutex);
1737 
1738 	rdt_last_cmd_clear();
1739 
1740 	buf[nbytes - 1] = '\0';
1741 
1742 	ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1743 
1744 	mutex_unlock(&rdtgroup_mutex);
1745 
1746 	return ret ?: nbytes;
1747 }
1748 
1749 /* rdtgroup information files for one cache resource. */
1750 static struct rftype res_common_files[] = {
1751 	{
1752 		.name		= "last_cmd_status",
1753 		.mode		= 0444,
1754 		.kf_ops		= &rdtgroup_kf_single_ops,
1755 		.seq_show	= rdt_last_cmd_status_show,
1756 		.fflags		= RFTYPE_TOP_INFO,
1757 	},
1758 	{
1759 		.name		= "num_closids",
1760 		.mode		= 0444,
1761 		.kf_ops		= &rdtgroup_kf_single_ops,
1762 		.seq_show	= rdt_num_closids_show,
1763 		.fflags		= RFTYPE_CTRL_INFO,
1764 	},
1765 	{
1766 		.name		= "mon_features",
1767 		.mode		= 0444,
1768 		.kf_ops		= &rdtgroup_kf_single_ops,
1769 		.seq_show	= rdt_mon_features_show,
1770 		.fflags		= RFTYPE_MON_INFO,
1771 	},
1772 	{
1773 		.name		= "num_rmids",
1774 		.mode		= 0444,
1775 		.kf_ops		= &rdtgroup_kf_single_ops,
1776 		.seq_show	= rdt_num_rmids_show,
1777 		.fflags		= RFTYPE_MON_INFO,
1778 	},
1779 	{
1780 		.name		= "cbm_mask",
1781 		.mode		= 0444,
1782 		.kf_ops		= &rdtgroup_kf_single_ops,
1783 		.seq_show	= rdt_default_ctrl_show,
1784 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1785 	},
1786 	{
1787 		.name		= "min_cbm_bits",
1788 		.mode		= 0444,
1789 		.kf_ops		= &rdtgroup_kf_single_ops,
1790 		.seq_show	= rdt_min_cbm_bits_show,
1791 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1792 	},
1793 	{
1794 		.name		= "shareable_bits",
1795 		.mode		= 0444,
1796 		.kf_ops		= &rdtgroup_kf_single_ops,
1797 		.seq_show	= rdt_shareable_bits_show,
1798 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1799 	},
1800 	{
1801 		.name		= "bit_usage",
1802 		.mode		= 0444,
1803 		.kf_ops		= &rdtgroup_kf_single_ops,
1804 		.seq_show	= rdt_bit_usage_show,
1805 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1806 	},
1807 	{
1808 		.name		= "min_bandwidth",
1809 		.mode		= 0444,
1810 		.kf_ops		= &rdtgroup_kf_single_ops,
1811 		.seq_show	= rdt_min_bw_show,
1812 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1813 	},
1814 	{
1815 		.name		= "bandwidth_gran",
1816 		.mode		= 0444,
1817 		.kf_ops		= &rdtgroup_kf_single_ops,
1818 		.seq_show	= rdt_bw_gran_show,
1819 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1820 	},
1821 	{
1822 		.name		= "delay_linear",
1823 		.mode		= 0444,
1824 		.kf_ops		= &rdtgroup_kf_single_ops,
1825 		.seq_show	= rdt_delay_linear_show,
1826 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1827 	},
1828 	/*
1829 	 * Platform specific which (if any) capabilities are provided by
1830 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1831 	 * discovery.
1832 	 */
1833 	{
1834 		.name		= "thread_throttle_mode",
1835 		.mode		= 0444,
1836 		.kf_ops		= &rdtgroup_kf_single_ops,
1837 		.seq_show	= rdt_thread_throttle_mode_show,
1838 	},
1839 	{
1840 		.name		= "max_threshold_occupancy",
1841 		.mode		= 0644,
1842 		.kf_ops		= &rdtgroup_kf_single_ops,
1843 		.write		= max_threshold_occ_write,
1844 		.seq_show	= max_threshold_occ_show,
1845 		.fflags		= RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1846 	},
1847 	{
1848 		.name		= "mbm_total_bytes_config",
1849 		.mode		= 0644,
1850 		.kf_ops		= &rdtgroup_kf_single_ops,
1851 		.seq_show	= mbm_total_bytes_config_show,
1852 		.write		= mbm_total_bytes_config_write,
1853 	},
1854 	{
1855 		.name		= "mbm_local_bytes_config",
1856 		.mode		= 0644,
1857 		.kf_ops		= &rdtgroup_kf_single_ops,
1858 		.seq_show	= mbm_local_bytes_config_show,
1859 		.write		= mbm_local_bytes_config_write,
1860 	},
1861 	{
1862 		.name		= "cpus",
1863 		.mode		= 0644,
1864 		.kf_ops		= &rdtgroup_kf_single_ops,
1865 		.write		= rdtgroup_cpus_write,
1866 		.seq_show	= rdtgroup_cpus_show,
1867 		.fflags		= RFTYPE_BASE,
1868 	},
1869 	{
1870 		.name		= "cpus_list",
1871 		.mode		= 0644,
1872 		.kf_ops		= &rdtgroup_kf_single_ops,
1873 		.write		= rdtgroup_cpus_write,
1874 		.seq_show	= rdtgroup_cpus_show,
1875 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1876 		.fflags		= RFTYPE_BASE,
1877 	},
1878 	{
1879 		.name		= "tasks",
1880 		.mode		= 0644,
1881 		.kf_ops		= &rdtgroup_kf_single_ops,
1882 		.write		= rdtgroup_tasks_write,
1883 		.seq_show	= rdtgroup_tasks_show,
1884 		.fflags		= RFTYPE_BASE,
1885 	},
1886 	{
1887 		.name		= "mon_hw_id",
1888 		.mode		= 0444,
1889 		.kf_ops		= &rdtgroup_kf_single_ops,
1890 		.seq_show	= rdtgroup_rmid_show,
1891 		.fflags		= RFTYPE_MON_BASE | RFTYPE_DEBUG,
1892 	},
1893 	{
1894 		.name		= "schemata",
1895 		.mode		= 0644,
1896 		.kf_ops		= &rdtgroup_kf_single_ops,
1897 		.write		= rdtgroup_schemata_write,
1898 		.seq_show	= rdtgroup_schemata_show,
1899 		.fflags		= RFTYPE_CTRL_BASE,
1900 	},
1901 	{
1902 		.name		= "mode",
1903 		.mode		= 0644,
1904 		.kf_ops		= &rdtgroup_kf_single_ops,
1905 		.write		= rdtgroup_mode_write,
1906 		.seq_show	= rdtgroup_mode_show,
1907 		.fflags		= RFTYPE_CTRL_BASE,
1908 	},
1909 	{
1910 		.name		= "size",
1911 		.mode		= 0444,
1912 		.kf_ops		= &rdtgroup_kf_single_ops,
1913 		.seq_show	= rdtgroup_size_show,
1914 		.fflags		= RFTYPE_CTRL_BASE,
1915 	},
1916 	{
1917 		.name		= "sparse_masks",
1918 		.mode		= 0444,
1919 		.kf_ops		= &rdtgroup_kf_single_ops,
1920 		.seq_show	= rdt_has_sparse_bitmasks_show,
1921 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1922 	},
1923 	{
1924 		.name		= "ctrl_hw_id",
1925 		.mode		= 0444,
1926 		.kf_ops		= &rdtgroup_kf_single_ops,
1927 		.seq_show	= rdtgroup_closid_show,
1928 		.fflags		= RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
1929 	},
1930 
1931 };
1932 
1933 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1934 {
1935 	struct rftype *rfts, *rft;
1936 	int ret, len;
1937 
1938 	rfts = res_common_files;
1939 	len = ARRAY_SIZE(res_common_files);
1940 
1941 	lockdep_assert_held(&rdtgroup_mutex);
1942 
1943 	if (resctrl_debug)
1944 		fflags |= RFTYPE_DEBUG;
1945 
1946 	for (rft = rfts; rft < rfts + len; rft++) {
1947 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1948 			ret = rdtgroup_add_file(kn, rft);
1949 			if (ret)
1950 				goto error;
1951 		}
1952 	}
1953 
1954 	return 0;
1955 error:
1956 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1957 	while (--rft >= rfts) {
1958 		if ((fflags & rft->fflags) == rft->fflags)
1959 			kernfs_remove_by_name(kn, rft->name);
1960 	}
1961 	return ret;
1962 }
1963 
1964 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1965 {
1966 	struct rftype *rfts, *rft;
1967 	int len;
1968 
1969 	rfts = res_common_files;
1970 	len = ARRAY_SIZE(res_common_files);
1971 
1972 	for (rft = rfts; rft < rfts + len; rft++) {
1973 		if (!strcmp(rft->name, name))
1974 			return rft;
1975 	}
1976 
1977 	return NULL;
1978 }
1979 
1980 void __init thread_throttle_mode_init(void)
1981 {
1982 	struct rftype *rft;
1983 
1984 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1985 	if (!rft)
1986 		return;
1987 
1988 	rft->fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB;
1989 }
1990 
1991 void __init mbm_config_rftype_init(const char *config)
1992 {
1993 	struct rftype *rft;
1994 
1995 	rft = rdtgroup_get_rftype_by_name(config);
1996 	if (rft)
1997 		rft->fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE;
1998 }
1999 
2000 /**
2001  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2002  * @r: The resource group with which the file is associated.
2003  * @name: Name of the file
2004  *
2005  * The permissions of named resctrl file, directory, or link are modified
2006  * to not allow read, write, or execute by any user.
2007  *
2008  * WARNING: This function is intended to communicate to the user that the
2009  * resctrl file has been locked down - that it is not relevant to the
2010  * particular state the system finds itself in. It should not be relied
2011  * on to protect from user access because after the file's permissions
2012  * are restricted the user can still change the permissions using chmod
2013  * from the command line.
2014  *
2015  * Return: 0 on success, <0 on failure.
2016  */
2017 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2018 {
2019 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2020 	struct kernfs_node *kn;
2021 	int ret = 0;
2022 
2023 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2024 	if (!kn)
2025 		return -ENOENT;
2026 
2027 	switch (kernfs_type(kn)) {
2028 	case KERNFS_DIR:
2029 		iattr.ia_mode = S_IFDIR;
2030 		break;
2031 	case KERNFS_FILE:
2032 		iattr.ia_mode = S_IFREG;
2033 		break;
2034 	case KERNFS_LINK:
2035 		iattr.ia_mode = S_IFLNK;
2036 		break;
2037 	}
2038 
2039 	ret = kernfs_setattr(kn, &iattr);
2040 	kernfs_put(kn);
2041 	return ret;
2042 }
2043 
2044 /**
2045  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2046  * @r: The resource group with which the file is associated.
2047  * @name: Name of the file
2048  * @mask: Mask of permissions that should be restored
2049  *
2050  * Restore the permissions of the named file. If @name is a directory the
2051  * permissions of its parent will be used.
2052  *
2053  * Return: 0 on success, <0 on failure.
2054  */
2055 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2056 			     umode_t mask)
2057 {
2058 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2059 	struct kernfs_node *kn, *parent;
2060 	struct rftype *rfts, *rft;
2061 	int ret, len;
2062 
2063 	rfts = res_common_files;
2064 	len = ARRAY_SIZE(res_common_files);
2065 
2066 	for (rft = rfts; rft < rfts + len; rft++) {
2067 		if (!strcmp(rft->name, name))
2068 			iattr.ia_mode = rft->mode & mask;
2069 	}
2070 
2071 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2072 	if (!kn)
2073 		return -ENOENT;
2074 
2075 	switch (kernfs_type(kn)) {
2076 	case KERNFS_DIR:
2077 		parent = kernfs_get_parent(kn);
2078 		if (parent) {
2079 			iattr.ia_mode |= parent->mode;
2080 			kernfs_put(parent);
2081 		}
2082 		iattr.ia_mode |= S_IFDIR;
2083 		break;
2084 	case KERNFS_FILE:
2085 		iattr.ia_mode |= S_IFREG;
2086 		break;
2087 	case KERNFS_LINK:
2088 		iattr.ia_mode |= S_IFLNK;
2089 		break;
2090 	}
2091 
2092 	ret = kernfs_setattr(kn, &iattr);
2093 	kernfs_put(kn);
2094 	return ret;
2095 }
2096 
2097 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2098 				      unsigned long fflags)
2099 {
2100 	struct kernfs_node *kn_subdir;
2101 	int ret;
2102 
2103 	kn_subdir = kernfs_create_dir(kn_info, name,
2104 				      kn_info->mode, priv);
2105 	if (IS_ERR(kn_subdir))
2106 		return PTR_ERR(kn_subdir);
2107 
2108 	ret = rdtgroup_kn_set_ugid(kn_subdir);
2109 	if (ret)
2110 		return ret;
2111 
2112 	ret = rdtgroup_add_files(kn_subdir, fflags);
2113 	if (!ret)
2114 		kernfs_activate(kn_subdir);
2115 
2116 	return ret;
2117 }
2118 
2119 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2120 {
2121 	struct resctrl_schema *s;
2122 	struct rdt_resource *r;
2123 	unsigned long fflags;
2124 	char name[32];
2125 	int ret;
2126 
2127 	/* create the directory */
2128 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2129 	if (IS_ERR(kn_info))
2130 		return PTR_ERR(kn_info);
2131 
2132 	ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2133 	if (ret)
2134 		goto out_destroy;
2135 
2136 	/* loop over enabled controls, these are all alloc_capable */
2137 	list_for_each_entry(s, &resctrl_schema_all, list) {
2138 		r = s->res;
2139 		fflags = r->fflags | RFTYPE_CTRL_INFO;
2140 		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2141 		if (ret)
2142 			goto out_destroy;
2143 	}
2144 
2145 	for_each_mon_capable_rdt_resource(r) {
2146 		fflags = r->fflags | RFTYPE_MON_INFO;
2147 		sprintf(name, "%s_MON", r->name);
2148 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2149 		if (ret)
2150 			goto out_destroy;
2151 	}
2152 
2153 	ret = rdtgroup_kn_set_ugid(kn_info);
2154 	if (ret)
2155 		goto out_destroy;
2156 
2157 	kernfs_activate(kn_info);
2158 
2159 	return 0;
2160 
2161 out_destroy:
2162 	kernfs_remove(kn_info);
2163 	return ret;
2164 }
2165 
2166 static int
2167 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2168 		    char *name, struct kernfs_node **dest_kn)
2169 {
2170 	struct kernfs_node *kn;
2171 	int ret;
2172 
2173 	/* create the directory */
2174 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2175 	if (IS_ERR(kn))
2176 		return PTR_ERR(kn);
2177 
2178 	if (dest_kn)
2179 		*dest_kn = kn;
2180 
2181 	ret = rdtgroup_kn_set_ugid(kn);
2182 	if (ret)
2183 		goto out_destroy;
2184 
2185 	kernfs_activate(kn);
2186 
2187 	return 0;
2188 
2189 out_destroy:
2190 	kernfs_remove(kn);
2191 	return ret;
2192 }
2193 
2194 static void l3_qos_cfg_update(void *arg)
2195 {
2196 	bool *enable = arg;
2197 
2198 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2199 }
2200 
2201 static void l2_qos_cfg_update(void *arg)
2202 {
2203 	bool *enable = arg;
2204 
2205 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2206 }
2207 
2208 static inline bool is_mba_linear(void)
2209 {
2210 	return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2211 }
2212 
2213 static int set_cache_qos_cfg(int level, bool enable)
2214 {
2215 	void (*update)(void *arg);
2216 	struct rdt_resource *r_l;
2217 	cpumask_var_t cpu_mask;
2218 	struct rdt_domain *d;
2219 	int cpu;
2220 
2221 	if (level == RDT_RESOURCE_L3)
2222 		update = l3_qos_cfg_update;
2223 	else if (level == RDT_RESOURCE_L2)
2224 		update = l2_qos_cfg_update;
2225 	else
2226 		return -EINVAL;
2227 
2228 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2229 		return -ENOMEM;
2230 
2231 	r_l = &rdt_resources_all[level].r_resctrl;
2232 	list_for_each_entry(d, &r_l->domains, list) {
2233 		if (r_l->cache.arch_has_per_cpu_cfg)
2234 			/* Pick all the CPUs in the domain instance */
2235 			for_each_cpu(cpu, &d->cpu_mask)
2236 				cpumask_set_cpu(cpu, cpu_mask);
2237 		else
2238 			/* Pick one CPU from each domain instance to update MSR */
2239 			cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2240 	}
2241 
2242 	/* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2243 	on_each_cpu_mask(cpu_mask, update, &enable, 1);
2244 
2245 	free_cpumask_var(cpu_mask);
2246 
2247 	return 0;
2248 }
2249 
2250 /* Restore the qos cfg state when a domain comes online */
2251 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2252 {
2253 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2254 
2255 	if (!r->cdp_capable)
2256 		return;
2257 
2258 	if (r->rid == RDT_RESOURCE_L2)
2259 		l2_qos_cfg_update(&hw_res->cdp_enabled);
2260 
2261 	if (r->rid == RDT_RESOURCE_L3)
2262 		l3_qos_cfg_update(&hw_res->cdp_enabled);
2263 }
2264 
2265 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
2266 {
2267 	u32 num_closid = resctrl_arch_get_num_closid(r);
2268 	int cpu = cpumask_any(&d->cpu_mask);
2269 	int i;
2270 
2271 	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2272 				   GFP_KERNEL, cpu_to_node(cpu));
2273 	if (!d->mbps_val)
2274 		return -ENOMEM;
2275 
2276 	for (i = 0; i < num_closid; i++)
2277 		d->mbps_val[i] = MBA_MAX_MBPS;
2278 
2279 	return 0;
2280 }
2281 
2282 static void mba_sc_domain_destroy(struct rdt_resource *r,
2283 				  struct rdt_domain *d)
2284 {
2285 	kfree(d->mbps_val);
2286 	d->mbps_val = NULL;
2287 }
2288 
2289 /*
2290  * MBA software controller is supported only if
2291  * MBM is supported and MBA is in linear scale.
2292  */
2293 static bool supports_mba_mbps(void)
2294 {
2295 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2296 
2297 	return (is_mbm_local_enabled() &&
2298 		r->alloc_capable && is_mba_linear());
2299 }
2300 
2301 /*
2302  * Enable or disable the MBA software controller
2303  * which helps user specify bandwidth in MBps.
2304  */
2305 static int set_mba_sc(bool mba_sc)
2306 {
2307 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2308 	u32 num_closid = resctrl_arch_get_num_closid(r);
2309 	struct rdt_domain *d;
2310 	int i;
2311 
2312 	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2313 		return -EINVAL;
2314 
2315 	r->membw.mba_sc = mba_sc;
2316 
2317 	list_for_each_entry(d, &r->domains, list) {
2318 		for (i = 0; i < num_closid; i++)
2319 			d->mbps_val[i] = MBA_MAX_MBPS;
2320 	}
2321 
2322 	return 0;
2323 }
2324 
2325 static int cdp_enable(int level)
2326 {
2327 	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2328 	int ret;
2329 
2330 	if (!r_l->alloc_capable)
2331 		return -EINVAL;
2332 
2333 	ret = set_cache_qos_cfg(level, true);
2334 	if (!ret)
2335 		rdt_resources_all[level].cdp_enabled = true;
2336 
2337 	return ret;
2338 }
2339 
2340 static void cdp_disable(int level)
2341 {
2342 	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2343 
2344 	if (r_hw->cdp_enabled) {
2345 		set_cache_qos_cfg(level, false);
2346 		r_hw->cdp_enabled = false;
2347 	}
2348 }
2349 
2350 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2351 {
2352 	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2353 
2354 	if (!hw_res->r_resctrl.cdp_capable)
2355 		return -EINVAL;
2356 
2357 	if (enable)
2358 		return cdp_enable(l);
2359 
2360 	cdp_disable(l);
2361 
2362 	return 0;
2363 }
2364 
2365 /*
2366  * We don't allow rdtgroup directories to be created anywhere
2367  * except the root directory. Thus when looking for the rdtgroup
2368  * structure for a kernfs node we are either looking at a directory,
2369  * in which case the rdtgroup structure is pointed at by the "priv"
2370  * field, otherwise we have a file, and need only look to the parent
2371  * to find the rdtgroup.
2372  */
2373 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2374 {
2375 	if (kernfs_type(kn) == KERNFS_DIR) {
2376 		/*
2377 		 * All the resource directories use "kn->priv"
2378 		 * to point to the "struct rdtgroup" for the
2379 		 * resource. "info" and its subdirectories don't
2380 		 * have rdtgroup structures, so return NULL here.
2381 		 */
2382 		if (kn == kn_info || kn->parent == kn_info)
2383 			return NULL;
2384 		else
2385 			return kn->priv;
2386 	} else {
2387 		return kn->parent->priv;
2388 	}
2389 }
2390 
2391 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2392 {
2393 	atomic_inc(&rdtgrp->waitcount);
2394 	kernfs_break_active_protection(kn);
2395 }
2396 
2397 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2398 {
2399 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2400 	    (rdtgrp->flags & RDT_DELETED)) {
2401 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2402 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2403 			rdtgroup_pseudo_lock_remove(rdtgrp);
2404 		kernfs_unbreak_active_protection(kn);
2405 		rdtgroup_remove(rdtgrp);
2406 	} else {
2407 		kernfs_unbreak_active_protection(kn);
2408 	}
2409 }
2410 
2411 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2412 {
2413 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2414 
2415 	if (!rdtgrp)
2416 		return NULL;
2417 
2418 	rdtgroup_kn_get(rdtgrp, kn);
2419 
2420 	mutex_lock(&rdtgroup_mutex);
2421 
2422 	/* Was this group deleted while we waited? */
2423 	if (rdtgrp->flags & RDT_DELETED)
2424 		return NULL;
2425 
2426 	return rdtgrp;
2427 }
2428 
2429 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2430 {
2431 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2432 
2433 	if (!rdtgrp)
2434 		return;
2435 
2436 	mutex_unlock(&rdtgroup_mutex);
2437 	rdtgroup_kn_put(rdtgrp, kn);
2438 }
2439 
2440 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2441 			     struct rdtgroup *prgrp,
2442 			     struct kernfs_node **mon_data_kn);
2443 
2444 static void rdt_disable_ctx(void)
2445 {
2446 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2447 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2448 	set_mba_sc(false);
2449 
2450 	resctrl_debug = false;
2451 }
2452 
2453 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2454 {
2455 	int ret = 0;
2456 
2457 	if (ctx->enable_cdpl2) {
2458 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2459 		if (ret)
2460 			goto out_done;
2461 	}
2462 
2463 	if (ctx->enable_cdpl3) {
2464 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2465 		if (ret)
2466 			goto out_cdpl2;
2467 	}
2468 
2469 	if (ctx->enable_mba_mbps) {
2470 		ret = set_mba_sc(true);
2471 		if (ret)
2472 			goto out_cdpl3;
2473 	}
2474 
2475 	if (ctx->enable_debug)
2476 		resctrl_debug = true;
2477 
2478 	return 0;
2479 
2480 out_cdpl3:
2481 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2482 out_cdpl2:
2483 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2484 out_done:
2485 	return ret;
2486 }
2487 
2488 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2489 {
2490 	struct resctrl_schema *s;
2491 	const char *suffix = "";
2492 	int ret, cl;
2493 
2494 	s = kzalloc(sizeof(*s), GFP_KERNEL);
2495 	if (!s)
2496 		return -ENOMEM;
2497 
2498 	s->res = r;
2499 	s->num_closid = resctrl_arch_get_num_closid(r);
2500 	if (resctrl_arch_get_cdp_enabled(r->rid))
2501 		s->num_closid /= 2;
2502 
2503 	s->conf_type = type;
2504 	switch (type) {
2505 	case CDP_CODE:
2506 		suffix = "CODE";
2507 		break;
2508 	case CDP_DATA:
2509 		suffix = "DATA";
2510 		break;
2511 	case CDP_NONE:
2512 		suffix = "";
2513 		break;
2514 	}
2515 
2516 	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2517 	if (ret >= sizeof(s->name)) {
2518 		kfree(s);
2519 		return -EINVAL;
2520 	}
2521 
2522 	cl = strlen(s->name);
2523 
2524 	/*
2525 	 * If CDP is supported by this resource, but not enabled,
2526 	 * include the suffix. This ensures the tabular format of the
2527 	 * schemata file does not change between mounts of the filesystem.
2528 	 */
2529 	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2530 		cl += 4;
2531 
2532 	if (cl > max_name_width)
2533 		max_name_width = cl;
2534 
2535 	INIT_LIST_HEAD(&s->list);
2536 	list_add(&s->list, &resctrl_schema_all);
2537 
2538 	return 0;
2539 }
2540 
2541 static int schemata_list_create(void)
2542 {
2543 	struct rdt_resource *r;
2544 	int ret = 0;
2545 
2546 	for_each_alloc_capable_rdt_resource(r) {
2547 		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2548 			ret = schemata_list_add(r, CDP_CODE);
2549 			if (ret)
2550 				break;
2551 
2552 			ret = schemata_list_add(r, CDP_DATA);
2553 		} else {
2554 			ret = schemata_list_add(r, CDP_NONE);
2555 		}
2556 
2557 		if (ret)
2558 			break;
2559 	}
2560 
2561 	return ret;
2562 }
2563 
2564 static void schemata_list_destroy(void)
2565 {
2566 	struct resctrl_schema *s, *tmp;
2567 
2568 	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2569 		list_del(&s->list);
2570 		kfree(s);
2571 	}
2572 }
2573 
2574 static int rdt_get_tree(struct fs_context *fc)
2575 {
2576 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2577 	unsigned long flags = RFTYPE_CTRL_BASE;
2578 	struct rdt_domain *dom;
2579 	struct rdt_resource *r;
2580 	int ret;
2581 
2582 	cpus_read_lock();
2583 	mutex_lock(&rdtgroup_mutex);
2584 	/*
2585 	 * resctrl file system can only be mounted once.
2586 	 */
2587 	if (static_branch_unlikely(&rdt_enable_key)) {
2588 		ret = -EBUSY;
2589 		goto out;
2590 	}
2591 
2592 	ret = rdtgroup_setup_root(ctx);
2593 	if (ret)
2594 		goto out;
2595 
2596 	ret = rdt_enable_ctx(ctx);
2597 	if (ret)
2598 		goto out_root;
2599 
2600 	ret = schemata_list_create();
2601 	if (ret) {
2602 		schemata_list_destroy();
2603 		goto out_ctx;
2604 	}
2605 
2606 	closid_init();
2607 
2608 	if (rdt_mon_capable)
2609 		flags |= RFTYPE_MON;
2610 
2611 	ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2612 	if (ret)
2613 		goto out_schemata_free;
2614 
2615 	kernfs_activate(rdtgroup_default.kn);
2616 
2617 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2618 	if (ret < 0)
2619 		goto out_schemata_free;
2620 
2621 	if (rdt_mon_capable) {
2622 		ret = mongroup_create_dir(rdtgroup_default.kn,
2623 					  &rdtgroup_default, "mon_groups",
2624 					  &kn_mongrp);
2625 		if (ret < 0)
2626 			goto out_info;
2627 
2628 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2629 					&rdtgroup_default, &kn_mondata);
2630 		if (ret < 0)
2631 			goto out_mongrp;
2632 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2633 	}
2634 
2635 	ret = rdt_pseudo_lock_init();
2636 	if (ret)
2637 		goto out_mondata;
2638 
2639 	ret = kernfs_get_tree(fc);
2640 	if (ret < 0)
2641 		goto out_psl;
2642 
2643 	if (rdt_alloc_capable)
2644 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2645 	if (rdt_mon_capable)
2646 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2647 
2648 	if (rdt_alloc_capable || rdt_mon_capable)
2649 		static_branch_enable_cpuslocked(&rdt_enable_key);
2650 
2651 	if (is_mbm_enabled()) {
2652 		r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2653 		list_for_each_entry(dom, &r->domains, list)
2654 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2655 	}
2656 
2657 	goto out;
2658 
2659 out_psl:
2660 	rdt_pseudo_lock_release();
2661 out_mondata:
2662 	if (rdt_mon_capable)
2663 		kernfs_remove(kn_mondata);
2664 out_mongrp:
2665 	if (rdt_mon_capable)
2666 		kernfs_remove(kn_mongrp);
2667 out_info:
2668 	kernfs_remove(kn_info);
2669 out_schemata_free:
2670 	schemata_list_destroy();
2671 out_ctx:
2672 	rdt_disable_ctx();
2673 out_root:
2674 	rdtgroup_destroy_root();
2675 out:
2676 	rdt_last_cmd_clear();
2677 	mutex_unlock(&rdtgroup_mutex);
2678 	cpus_read_unlock();
2679 	return ret;
2680 }
2681 
2682 enum rdt_param {
2683 	Opt_cdp,
2684 	Opt_cdpl2,
2685 	Opt_mba_mbps,
2686 	Opt_debug,
2687 	nr__rdt_params
2688 };
2689 
2690 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2691 	fsparam_flag("cdp",		Opt_cdp),
2692 	fsparam_flag("cdpl2",		Opt_cdpl2),
2693 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2694 	fsparam_flag("debug",		Opt_debug),
2695 	{}
2696 };
2697 
2698 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2699 {
2700 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2701 	struct fs_parse_result result;
2702 	int opt;
2703 
2704 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2705 	if (opt < 0)
2706 		return opt;
2707 
2708 	switch (opt) {
2709 	case Opt_cdp:
2710 		ctx->enable_cdpl3 = true;
2711 		return 0;
2712 	case Opt_cdpl2:
2713 		ctx->enable_cdpl2 = true;
2714 		return 0;
2715 	case Opt_mba_mbps:
2716 		if (!supports_mba_mbps())
2717 			return -EINVAL;
2718 		ctx->enable_mba_mbps = true;
2719 		return 0;
2720 	case Opt_debug:
2721 		ctx->enable_debug = true;
2722 		return 0;
2723 	}
2724 
2725 	return -EINVAL;
2726 }
2727 
2728 static void rdt_fs_context_free(struct fs_context *fc)
2729 {
2730 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2731 
2732 	kernfs_free_fs_context(fc);
2733 	kfree(ctx);
2734 }
2735 
2736 static const struct fs_context_operations rdt_fs_context_ops = {
2737 	.free		= rdt_fs_context_free,
2738 	.parse_param	= rdt_parse_param,
2739 	.get_tree	= rdt_get_tree,
2740 };
2741 
2742 static int rdt_init_fs_context(struct fs_context *fc)
2743 {
2744 	struct rdt_fs_context *ctx;
2745 
2746 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2747 	if (!ctx)
2748 		return -ENOMEM;
2749 
2750 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2751 	fc->fs_private = &ctx->kfc;
2752 	fc->ops = &rdt_fs_context_ops;
2753 	put_user_ns(fc->user_ns);
2754 	fc->user_ns = get_user_ns(&init_user_ns);
2755 	fc->global = true;
2756 	return 0;
2757 }
2758 
2759 static int reset_all_ctrls(struct rdt_resource *r)
2760 {
2761 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2762 	struct rdt_hw_domain *hw_dom;
2763 	struct msr_param msr_param;
2764 	cpumask_var_t cpu_mask;
2765 	struct rdt_domain *d;
2766 	int i;
2767 
2768 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2769 		return -ENOMEM;
2770 
2771 	msr_param.res = r;
2772 	msr_param.low = 0;
2773 	msr_param.high = hw_res->num_closid;
2774 
2775 	/*
2776 	 * Disable resource control for this resource by setting all
2777 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2778 	 * from each domain to update the MSRs below.
2779 	 */
2780 	list_for_each_entry(d, &r->domains, list) {
2781 		hw_dom = resctrl_to_arch_dom(d);
2782 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2783 
2784 		for (i = 0; i < hw_res->num_closid; i++)
2785 			hw_dom->ctrl_val[i] = r->default_ctrl;
2786 	}
2787 
2788 	/* Update CBM on all the CPUs in cpu_mask */
2789 	on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2790 
2791 	free_cpumask_var(cpu_mask);
2792 
2793 	return 0;
2794 }
2795 
2796 /*
2797  * Move tasks from one to the other group. If @from is NULL, then all tasks
2798  * in the systems are moved unconditionally (used for teardown).
2799  *
2800  * If @mask is not NULL the cpus on which moved tasks are running are set
2801  * in that mask so the update smp function call is restricted to affected
2802  * cpus.
2803  */
2804 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2805 				 struct cpumask *mask)
2806 {
2807 	struct task_struct *p, *t;
2808 
2809 	read_lock(&tasklist_lock);
2810 	for_each_process_thread(p, t) {
2811 		if (!from || is_closid_match(t, from) ||
2812 		    is_rmid_match(t, from)) {
2813 			WRITE_ONCE(t->closid, to->closid);
2814 			WRITE_ONCE(t->rmid, to->mon.rmid);
2815 
2816 			/*
2817 			 * Order the closid/rmid stores above before the loads
2818 			 * in task_curr(). This pairs with the full barrier
2819 			 * between the rq->curr update and resctrl_sched_in()
2820 			 * during context switch.
2821 			 */
2822 			smp_mb();
2823 
2824 			/*
2825 			 * If the task is on a CPU, set the CPU in the mask.
2826 			 * The detection is inaccurate as tasks might move or
2827 			 * schedule before the smp function call takes place.
2828 			 * In such a case the function call is pointless, but
2829 			 * there is no other side effect.
2830 			 */
2831 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2832 				cpumask_set_cpu(task_cpu(t), mask);
2833 		}
2834 	}
2835 	read_unlock(&tasklist_lock);
2836 }
2837 
2838 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2839 {
2840 	struct rdtgroup *sentry, *stmp;
2841 	struct list_head *head;
2842 
2843 	head = &rdtgrp->mon.crdtgrp_list;
2844 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2845 		free_rmid(sentry->mon.rmid);
2846 		list_del(&sentry->mon.crdtgrp_list);
2847 
2848 		if (atomic_read(&sentry->waitcount) != 0)
2849 			sentry->flags = RDT_DELETED;
2850 		else
2851 			rdtgroup_remove(sentry);
2852 	}
2853 }
2854 
2855 /*
2856  * Forcibly remove all of subdirectories under root.
2857  */
2858 static void rmdir_all_sub(void)
2859 {
2860 	struct rdtgroup *rdtgrp, *tmp;
2861 
2862 	/* Move all tasks to the default resource group */
2863 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2864 
2865 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2866 		/* Free any child rmids */
2867 		free_all_child_rdtgrp(rdtgrp);
2868 
2869 		/* Remove each rdtgroup other than root */
2870 		if (rdtgrp == &rdtgroup_default)
2871 			continue;
2872 
2873 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2874 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2875 			rdtgroup_pseudo_lock_remove(rdtgrp);
2876 
2877 		/*
2878 		 * Give any CPUs back to the default group. We cannot copy
2879 		 * cpu_online_mask because a CPU might have executed the
2880 		 * offline callback already, but is still marked online.
2881 		 */
2882 		cpumask_or(&rdtgroup_default.cpu_mask,
2883 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2884 
2885 		free_rmid(rdtgrp->mon.rmid);
2886 
2887 		kernfs_remove(rdtgrp->kn);
2888 		list_del(&rdtgrp->rdtgroup_list);
2889 
2890 		if (atomic_read(&rdtgrp->waitcount) != 0)
2891 			rdtgrp->flags = RDT_DELETED;
2892 		else
2893 			rdtgroup_remove(rdtgrp);
2894 	}
2895 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2896 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2897 
2898 	kernfs_remove(kn_info);
2899 	kernfs_remove(kn_mongrp);
2900 	kernfs_remove(kn_mondata);
2901 }
2902 
2903 static void rdt_kill_sb(struct super_block *sb)
2904 {
2905 	struct rdt_resource *r;
2906 
2907 	cpus_read_lock();
2908 	mutex_lock(&rdtgroup_mutex);
2909 
2910 	rdt_disable_ctx();
2911 
2912 	/*Put everything back to default values. */
2913 	for_each_alloc_capable_rdt_resource(r)
2914 		reset_all_ctrls(r);
2915 	rmdir_all_sub();
2916 	rdt_pseudo_lock_release();
2917 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2918 	schemata_list_destroy();
2919 	rdtgroup_destroy_root();
2920 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2921 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2922 	static_branch_disable_cpuslocked(&rdt_enable_key);
2923 	kernfs_kill_sb(sb);
2924 	mutex_unlock(&rdtgroup_mutex);
2925 	cpus_read_unlock();
2926 }
2927 
2928 static struct file_system_type rdt_fs_type = {
2929 	.name			= "resctrl",
2930 	.init_fs_context	= rdt_init_fs_context,
2931 	.parameters		= rdt_fs_parameters,
2932 	.kill_sb		= rdt_kill_sb,
2933 };
2934 
2935 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2936 		       void *priv)
2937 {
2938 	struct kernfs_node *kn;
2939 	int ret = 0;
2940 
2941 	kn = __kernfs_create_file(parent_kn, name, 0444,
2942 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2943 				  &kf_mondata_ops, priv, NULL, NULL);
2944 	if (IS_ERR(kn))
2945 		return PTR_ERR(kn);
2946 
2947 	ret = rdtgroup_kn_set_ugid(kn);
2948 	if (ret) {
2949 		kernfs_remove(kn);
2950 		return ret;
2951 	}
2952 
2953 	return ret;
2954 }
2955 
2956 /*
2957  * Remove all subdirectories of mon_data of ctrl_mon groups
2958  * and monitor groups with given domain id.
2959  */
2960 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2961 					   unsigned int dom_id)
2962 {
2963 	struct rdtgroup *prgrp, *crgrp;
2964 	char name[32];
2965 
2966 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2967 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2968 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2969 
2970 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2971 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2972 	}
2973 }
2974 
2975 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2976 				struct rdt_domain *d,
2977 				struct rdt_resource *r, struct rdtgroup *prgrp)
2978 {
2979 	union mon_data_bits priv;
2980 	struct kernfs_node *kn;
2981 	struct mon_evt *mevt;
2982 	struct rmid_read rr;
2983 	char name[32];
2984 	int ret;
2985 
2986 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2987 	/* create the directory */
2988 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2989 	if (IS_ERR(kn))
2990 		return PTR_ERR(kn);
2991 
2992 	ret = rdtgroup_kn_set_ugid(kn);
2993 	if (ret)
2994 		goto out_destroy;
2995 
2996 	if (WARN_ON(list_empty(&r->evt_list))) {
2997 		ret = -EPERM;
2998 		goto out_destroy;
2999 	}
3000 
3001 	priv.u.rid = r->rid;
3002 	priv.u.domid = d->id;
3003 	list_for_each_entry(mevt, &r->evt_list, list) {
3004 		priv.u.evtid = mevt->evtid;
3005 		ret = mon_addfile(kn, mevt->name, priv.priv);
3006 		if (ret)
3007 			goto out_destroy;
3008 
3009 		if (is_mbm_event(mevt->evtid))
3010 			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
3011 	}
3012 	kernfs_activate(kn);
3013 	return 0;
3014 
3015 out_destroy:
3016 	kernfs_remove(kn);
3017 	return ret;
3018 }
3019 
3020 /*
3021  * Add all subdirectories of mon_data for "ctrl_mon" groups
3022  * and "monitor" groups with given domain id.
3023  */
3024 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3025 					   struct rdt_domain *d)
3026 {
3027 	struct kernfs_node *parent_kn;
3028 	struct rdtgroup *prgrp, *crgrp;
3029 	struct list_head *head;
3030 
3031 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3032 		parent_kn = prgrp->mon.mon_data_kn;
3033 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3034 
3035 		head = &prgrp->mon.crdtgrp_list;
3036 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3037 			parent_kn = crgrp->mon.mon_data_kn;
3038 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3039 		}
3040 	}
3041 }
3042 
3043 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3044 				       struct rdt_resource *r,
3045 				       struct rdtgroup *prgrp)
3046 {
3047 	struct rdt_domain *dom;
3048 	int ret;
3049 
3050 	list_for_each_entry(dom, &r->domains, list) {
3051 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3052 		if (ret)
3053 			return ret;
3054 	}
3055 
3056 	return 0;
3057 }
3058 
3059 /*
3060  * This creates a directory mon_data which contains the monitored data.
3061  *
3062  * mon_data has one directory for each domain which are named
3063  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3064  * with L3 domain looks as below:
3065  * ./mon_data:
3066  * mon_L3_00
3067  * mon_L3_01
3068  * mon_L3_02
3069  * ...
3070  *
3071  * Each domain directory has one file per event:
3072  * ./mon_L3_00/:
3073  * llc_occupancy
3074  *
3075  */
3076 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3077 			     struct rdtgroup *prgrp,
3078 			     struct kernfs_node **dest_kn)
3079 {
3080 	struct rdt_resource *r;
3081 	struct kernfs_node *kn;
3082 	int ret;
3083 
3084 	/*
3085 	 * Create the mon_data directory first.
3086 	 */
3087 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3088 	if (ret)
3089 		return ret;
3090 
3091 	if (dest_kn)
3092 		*dest_kn = kn;
3093 
3094 	/*
3095 	 * Create the subdirectories for each domain. Note that all events
3096 	 * in a domain like L3 are grouped into a resource whose domain is L3
3097 	 */
3098 	for_each_mon_capable_rdt_resource(r) {
3099 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3100 		if (ret)
3101 			goto out_destroy;
3102 	}
3103 
3104 	return 0;
3105 
3106 out_destroy:
3107 	kernfs_remove(kn);
3108 	return ret;
3109 }
3110 
3111 /**
3112  * cbm_ensure_valid - Enforce validity on provided CBM
3113  * @_val:	Candidate CBM
3114  * @r:		RDT resource to which the CBM belongs
3115  *
3116  * The provided CBM represents all cache portions available for use. This
3117  * may be represented by a bitmap that does not consist of contiguous ones
3118  * and thus be an invalid CBM.
3119  * Here the provided CBM is forced to be a valid CBM by only considering
3120  * the first set of contiguous bits as valid and clearing all bits.
3121  * The intention here is to provide a valid default CBM with which a new
3122  * resource group is initialized. The user can follow this with a
3123  * modification to the CBM if the default does not satisfy the
3124  * requirements.
3125  */
3126 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3127 {
3128 	unsigned int cbm_len = r->cache.cbm_len;
3129 	unsigned long first_bit, zero_bit;
3130 	unsigned long val = _val;
3131 
3132 	if (!val)
3133 		return 0;
3134 
3135 	first_bit = find_first_bit(&val, cbm_len);
3136 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3137 
3138 	/* Clear any remaining bits to ensure contiguous region */
3139 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3140 	return (u32)val;
3141 }
3142 
3143 /*
3144  * Initialize cache resources per RDT domain
3145  *
3146  * Set the RDT domain up to start off with all usable allocations. That is,
3147  * all shareable and unused bits. All-zero CBM is invalid.
3148  */
3149 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
3150 				 u32 closid)
3151 {
3152 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3153 	enum resctrl_conf_type t = s->conf_type;
3154 	struct resctrl_staged_config *cfg;
3155 	struct rdt_resource *r = s->res;
3156 	u32 used_b = 0, unused_b = 0;
3157 	unsigned long tmp_cbm;
3158 	enum rdtgrp_mode mode;
3159 	u32 peer_ctl, ctrl_val;
3160 	int i;
3161 
3162 	cfg = &d->staged_config[t];
3163 	cfg->have_new_ctrl = false;
3164 	cfg->new_ctrl = r->cache.shareable_bits;
3165 	used_b = r->cache.shareable_bits;
3166 	for (i = 0; i < closids_supported(); i++) {
3167 		if (closid_allocated(i) && i != closid) {
3168 			mode = rdtgroup_mode_by_closid(i);
3169 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3170 				/*
3171 				 * ctrl values for locksetup aren't relevant
3172 				 * until the schemata is written, and the mode
3173 				 * becomes RDT_MODE_PSEUDO_LOCKED.
3174 				 */
3175 				continue;
3176 			/*
3177 			 * If CDP is active include peer domain's
3178 			 * usage to ensure there is no overlap
3179 			 * with an exclusive group.
3180 			 */
3181 			if (resctrl_arch_get_cdp_enabled(r->rid))
3182 				peer_ctl = resctrl_arch_get_config(r, d, i,
3183 								   peer_type);
3184 			else
3185 				peer_ctl = 0;
3186 			ctrl_val = resctrl_arch_get_config(r, d, i,
3187 							   s->conf_type);
3188 			used_b |= ctrl_val | peer_ctl;
3189 			if (mode == RDT_MODE_SHAREABLE)
3190 				cfg->new_ctrl |= ctrl_val | peer_ctl;
3191 		}
3192 	}
3193 	if (d->plr && d->plr->cbm > 0)
3194 		used_b |= d->plr->cbm;
3195 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3196 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3197 	cfg->new_ctrl |= unused_b;
3198 	/*
3199 	 * Force the initial CBM to be valid, user can
3200 	 * modify the CBM based on system availability.
3201 	 */
3202 	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3203 	/*
3204 	 * Assign the u32 CBM to an unsigned long to ensure that
3205 	 * bitmap_weight() does not access out-of-bound memory.
3206 	 */
3207 	tmp_cbm = cfg->new_ctrl;
3208 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3209 		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
3210 		return -ENOSPC;
3211 	}
3212 	cfg->have_new_ctrl = true;
3213 
3214 	return 0;
3215 }
3216 
3217 /*
3218  * Initialize cache resources with default values.
3219  *
3220  * A new RDT group is being created on an allocation capable (CAT)
3221  * supporting system. Set this group up to start off with all usable
3222  * allocations.
3223  *
3224  * If there are no more shareable bits available on any domain then
3225  * the entire allocation will fail.
3226  */
3227 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3228 {
3229 	struct rdt_domain *d;
3230 	int ret;
3231 
3232 	list_for_each_entry(d, &s->res->domains, list) {
3233 		ret = __init_one_rdt_domain(d, s, closid);
3234 		if (ret < 0)
3235 			return ret;
3236 	}
3237 
3238 	return 0;
3239 }
3240 
3241 /* Initialize MBA resource with default values. */
3242 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3243 {
3244 	struct resctrl_staged_config *cfg;
3245 	struct rdt_domain *d;
3246 
3247 	list_for_each_entry(d, &r->domains, list) {
3248 		if (is_mba_sc(r)) {
3249 			d->mbps_val[closid] = MBA_MAX_MBPS;
3250 			continue;
3251 		}
3252 
3253 		cfg = &d->staged_config[CDP_NONE];
3254 		cfg->new_ctrl = r->default_ctrl;
3255 		cfg->have_new_ctrl = true;
3256 	}
3257 }
3258 
3259 /* Initialize the RDT group's allocations. */
3260 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3261 {
3262 	struct resctrl_schema *s;
3263 	struct rdt_resource *r;
3264 	int ret = 0;
3265 
3266 	rdt_staged_configs_clear();
3267 
3268 	list_for_each_entry(s, &resctrl_schema_all, list) {
3269 		r = s->res;
3270 		if (r->rid == RDT_RESOURCE_MBA ||
3271 		    r->rid == RDT_RESOURCE_SMBA) {
3272 			rdtgroup_init_mba(r, rdtgrp->closid);
3273 			if (is_mba_sc(r))
3274 				continue;
3275 		} else {
3276 			ret = rdtgroup_init_cat(s, rdtgrp->closid);
3277 			if (ret < 0)
3278 				goto out;
3279 		}
3280 
3281 		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3282 		if (ret < 0) {
3283 			rdt_last_cmd_puts("Failed to initialize allocations\n");
3284 			goto out;
3285 		}
3286 
3287 	}
3288 
3289 	rdtgrp->mode = RDT_MODE_SHAREABLE;
3290 
3291 out:
3292 	rdt_staged_configs_clear();
3293 	return ret;
3294 }
3295 
3296 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3297 			     const char *name, umode_t mode,
3298 			     enum rdt_group_type rtype, struct rdtgroup **r)
3299 {
3300 	struct rdtgroup *prdtgrp, *rdtgrp;
3301 	unsigned long files = 0;
3302 	struct kernfs_node *kn;
3303 	int ret;
3304 
3305 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3306 	if (!prdtgrp) {
3307 		ret = -ENODEV;
3308 		goto out_unlock;
3309 	}
3310 
3311 	if (rtype == RDTMON_GROUP &&
3312 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3313 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3314 		ret = -EINVAL;
3315 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
3316 		goto out_unlock;
3317 	}
3318 
3319 	/* allocate the rdtgroup. */
3320 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3321 	if (!rdtgrp) {
3322 		ret = -ENOSPC;
3323 		rdt_last_cmd_puts("Kernel out of memory\n");
3324 		goto out_unlock;
3325 	}
3326 	*r = rdtgrp;
3327 	rdtgrp->mon.parent = prdtgrp;
3328 	rdtgrp->type = rtype;
3329 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3330 
3331 	/* kernfs creates the directory for rdtgrp */
3332 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3333 	if (IS_ERR(kn)) {
3334 		ret = PTR_ERR(kn);
3335 		rdt_last_cmd_puts("kernfs create error\n");
3336 		goto out_free_rgrp;
3337 	}
3338 	rdtgrp->kn = kn;
3339 
3340 	/*
3341 	 * kernfs_remove() will drop the reference count on "kn" which
3342 	 * will free it. But we still need it to stick around for the
3343 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3344 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
3345 	 */
3346 	kernfs_get(kn);
3347 
3348 	ret = rdtgroup_kn_set_ugid(kn);
3349 	if (ret) {
3350 		rdt_last_cmd_puts("kernfs perm error\n");
3351 		goto out_destroy;
3352 	}
3353 
3354 	if (rtype == RDTCTRL_GROUP) {
3355 		files = RFTYPE_BASE | RFTYPE_CTRL;
3356 		if (rdt_mon_capable)
3357 			files |= RFTYPE_MON;
3358 	} else {
3359 		files = RFTYPE_BASE | RFTYPE_MON;
3360 	}
3361 
3362 	ret = rdtgroup_add_files(kn, files);
3363 	if (ret) {
3364 		rdt_last_cmd_puts("kernfs fill error\n");
3365 		goto out_destroy;
3366 	}
3367 
3368 	if (rdt_mon_capable) {
3369 		ret = alloc_rmid();
3370 		if (ret < 0) {
3371 			rdt_last_cmd_puts("Out of RMIDs\n");
3372 			goto out_destroy;
3373 		}
3374 		rdtgrp->mon.rmid = ret;
3375 
3376 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3377 		if (ret) {
3378 			rdt_last_cmd_puts("kernfs subdir error\n");
3379 			goto out_idfree;
3380 		}
3381 	}
3382 	kernfs_activate(kn);
3383 
3384 	/*
3385 	 * The caller unlocks the parent_kn upon success.
3386 	 */
3387 	return 0;
3388 
3389 out_idfree:
3390 	free_rmid(rdtgrp->mon.rmid);
3391 out_destroy:
3392 	kernfs_put(rdtgrp->kn);
3393 	kernfs_remove(rdtgrp->kn);
3394 out_free_rgrp:
3395 	kfree(rdtgrp);
3396 out_unlock:
3397 	rdtgroup_kn_unlock(parent_kn);
3398 	return ret;
3399 }
3400 
3401 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3402 {
3403 	kernfs_remove(rgrp->kn);
3404 	free_rmid(rgrp->mon.rmid);
3405 	rdtgroup_remove(rgrp);
3406 }
3407 
3408 /*
3409  * Create a monitor group under "mon_groups" directory of a control
3410  * and monitor group(ctrl_mon). This is a resource group
3411  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3412  */
3413 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3414 			      const char *name, umode_t mode)
3415 {
3416 	struct rdtgroup *rdtgrp, *prgrp;
3417 	int ret;
3418 
3419 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3420 	if (ret)
3421 		return ret;
3422 
3423 	prgrp = rdtgrp->mon.parent;
3424 	rdtgrp->closid = prgrp->closid;
3425 
3426 	/*
3427 	 * Add the rdtgrp to the list of rdtgrps the parent
3428 	 * ctrl_mon group has to track.
3429 	 */
3430 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3431 
3432 	rdtgroup_kn_unlock(parent_kn);
3433 	return ret;
3434 }
3435 
3436 /*
3437  * These are rdtgroups created under the root directory. Can be used
3438  * to allocate and monitor resources.
3439  */
3440 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3441 				   const char *name, umode_t mode)
3442 {
3443 	struct rdtgroup *rdtgrp;
3444 	struct kernfs_node *kn;
3445 	u32 closid;
3446 	int ret;
3447 
3448 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3449 	if (ret)
3450 		return ret;
3451 
3452 	kn = rdtgrp->kn;
3453 	ret = closid_alloc();
3454 	if (ret < 0) {
3455 		rdt_last_cmd_puts("Out of CLOSIDs\n");
3456 		goto out_common_fail;
3457 	}
3458 	closid = ret;
3459 	ret = 0;
3460 
3461 	rdtgrp->closid = closid;
3462 	ret = rdtgroup_init_alloc(rdtgrp);
3463 	if (ret < 0)
3464 		goto out_id_free;
3465 
3466 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3467 
3468 	if (rdt_mon_capable) {
3469 		/*
3470 		 * Create an empty mon_groups directory to hold the subset
3471 		 * of tasks and cpus to monitor.
3472 		 */
3473 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3474 		if (ret) {
3475 			rdt_last_cmd_puts("kernfs subdir error\n");
3476 			goto out_del_list;
3477 		}
3478 	}
3479 
3480 	goto out_unlock;
3481 
3482 out_del_list:
3483 	list_del(&rdtgrp->rdtgroup_list);
3484 out_id_free:
3485 	closid_free(closid);
3486 out_common_fail:
3487 	mkdir_rdt_prepare_clean(rdtgrp);
3488 out_unlock:
3489 	rdtgroup_kn_unlock(parent_kn);
3490 	return ret;
3491 }
3492 
3493 /*
3494  * We allow creating mon groups only with in a directory called "mon_groups"
3495  * which is present in every ctrl_mon group. Check if this is a valid
3496  * "mon_groups" directory.
3497  *
3498  * 1. The directory should be named "mon_groups".
3499  * 2. The mon group itself should "not" be named "mon_groups".
3500  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3501  *   as parent.
3502  */
3503 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3504 {
3505 	return (!strcmp(kn->name, "mon_groups") &&
3506 		strcmp(name, "mon_groups"));
3507 }
3508 
3509 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3510 			  umode_t mode)
3511 {
3512 	/* Do not accept '\n' to avoid unparsable situation. */
3513 	if (strchr(name, '\n'))
3514 		return -EINVAL;
3515 
3516 	/*
3517 	 * If the parent directory is the root directory and RDT
3518 	 * allocation is supported, add a control and monitoring
3519 	 * subdirectory
3520 	 */
3521 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3522 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3523 
3524 	/*
3525 	 * If RDT monitoring is supported and the parent directory is a valid
3526 	 * "mon_groups" directory, add a monitoring subdirectory.
3527 	 */
3528 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3529 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3530 
3531 	return -EPERM;
3532 }
3533 
3534 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3535 {
3536 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3537 	int cpu;
3538 
3539 	/* Give any tasks back to the parent group */
3540 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3541 
3542 	/* Update per cpu rmid of the moved CPUs first */
3543 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3544 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3545 	/*
3546 	 * Update the MSR on moved CPUs and CPUs which have moved
3547 	 * task running on them.
3548 	 */
3549 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3550 	update_closid_rmid(tmpmask, NULL);
3551 
3552 	rdtgrp->flags = RDT_DELETED;
3553 	free_rmid(rdtgrp->mon.rmid);
3554 
3555 	/*
3556 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3557 	 */
3558 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3559 	list_del(&rdtgrp->mon.crdtgrp_list);
3560 
3561 	kernfs_remove(rdtgrp->kn);
3562 
3563 	return 0;
3564 }
3565 
3566 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3567 {
3568 	rdtgrp->flags = RDT_DELETED;
3569 	list_del(&rdtgrp->rdtgroup_list);
3570 
3571 	kernfs_remove(rdtgrp->kn);
3572 	return 0;
3573 }
3574 
3575 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3576 {
3577 	int cpu;
3578 
3579 	/* Give any tasks back to the default group */
3580 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3581 
3582 	/* Give any CPUs back to the default group */
3583 	cpumask_or(&rdtgroup_default.cpu_mask,
3584 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3585 
3586 	/* Update per cpu closid and rmid of the moved CPUs first */
3587 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3588 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3589 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3590 	}
3591 
3592 	/*
3593 	 * Update the MSR on moved CPUs and CPUs which have moved
3594 	 * task running on them.
3595 	 */
3596 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3597 	update_closid_rmid(tmpmask, NULL);
3598 
3599 	closid_free(rdtgrp->closid);
3600 	free_rmid(rdtgrp->mon.rmid);
3601 
3602 	rdtgroup_ctrl_remove(rdtgrp);
3603 
3604 	/*
3605 	 * Free all the child monitor group rmids.
3606 	 */
3607 	free_all_child_rdtgrp(rdtgrp);
3608 
3609 	return 0;
3610 }
3611 
3612 static int rdtgroup_rmdir(struct kernfs_node *kn)
3613 {
3614 	struct kernfs_node *parent_kn = kn->parent;
3615 	struct rdtgroup *rdtgrp;
3616 	cpumask_var_t tmpmask;
3617 	int ret = 0;
3618 
3619 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3620 		return -ENOMEM;
3621 
3622 	rdtgrp = rdtgroup_kn_lock_live(kn);
3623 	if (!rdtgrp) {
3624 		ret = -EPERM;
3625 		goto out;
3626 	}
3627 
3628 	/*
3629 	 * If the rdtgroup is a ctrl_mon group and parent directory
3630 	 * is the root directory, remove the ctrl_mon group.
3631 	 *
3632 	 * If the rdtgroup is a mon group and parent directory
3633 	 * is a valid "mon_groups" directory, remove the mon group.
3634 	 */
3635 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3636 	    rdtgrp != &rdtgroup_default) {
3637 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3638 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3639 			ret = rdtgroup_ctrl_remove(rdtgrp);
3640 		} else {
3641 			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3642 		}
3643 	} else if (rdtgrp->type == RDTMON_GROUP &&
3644 		 is_mon_groups(parent_kn, kn->name)) {
3645 		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3646 	} else {
3647 		ret = -EPERM;
3648 	}
3649 
3650 out:
3651 	rdtgroup_kn_unlock(kn);
3652 	free_cpumask_var(tmpmask);
3653 	return ret;
3654 }
3655 
3656 /**
3657  * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3658  * @rdtgrp:		the MON group whose parent should be replaced
3659  * @new_prdtgrp:	replacement parent CTRL_MON group for @rdtgrp
3660  * @cpus:		cpumask provided by the caller for use during this call
3661  *
3662  * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3663  * tasks' CLOSID immediately changing to that of the new parent group.
3664  * Monitoring data for the group is unaffected by this operation.
3665  */
3666 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3667 			    struct rdtgroup *new_prdtgrp,
3668 			    cpumask_var_t cpus)
3669 {
3670 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3671 
3672 	WARN_ON(rdtgrp->type != RDTMON_GROUP);
3673 	WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3674 
3675 	/* Nothing to do when simply renaming a MON group. */
3676 	if (prdtgrp == new_prdtgrp)
3677 		return;
3678 
3679 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3680 	list_move_tail(&rdtgrp->mon.crdtgrp_list,
3681 		       &new_prdtgrp->mon.crdtgrp_list);
3682 
3683 	rdtgrp->mon.parent = new_prdtgrp;
3684 	rdtgrp->closid = new_prdtgrp->closid;
3685 
3686 	/* Propagate updated closid to all tasks in this group. */
3687 	rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3688 
3689 	update_closid_rmid(cpus, NULL);
3690 }
3691 
3692 static int rdtgroup_rename(struct kernfs_node *kn,
3693 			   struct kernfs_node *new_parent, const char *new_name)
3694 {
3695 	struct rdtgroup *new_prdtgrp;
3696 	struct rdtgroup *rdtgrp;
3697 	cpumask_var_t tmpmask;
3698 	int ret;
3699 
3700 	rdtgrp = kernfs_to_rdtgroup(kn);
3701 	new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3702 	if (!rdtgrp || !new_prdtgrp)
3703 		return -ENOENT;
3704 
3705 	/* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3706 	rdtgroup_kn_get(rdtgrp, kn);
3707 	rdtgroup_kn_get(new_prdtgrp, new_parent);
3708 
3709 	mutex_lock(&rdtgroup_mutex);
3710 
3711 	rdt_last_cmd_clear();
3712 
3713 	/*
3714 	 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3715 	 * either kernfs_node is a file.
3716 	 */
3717 	if (kernfs_type(kn) != KERNFS_DIR ||
3718 	    kernfs_type(new_parent) != KERNFS_DIR) {
3719 		rdt_last_cmd_puts("Source and destination must be directories");
3720 		ret = -EPERM;
3721 		goto out;
3722 	}
3723 
3724 	if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3725 		ret = -ENOENT;
3726 		goto out;
3727 	}
3728 
3729 	if (rdtgrp->type != RDTMON_GROUP || !kn->parent ||
3730 	    !is_mon_groups(kn->parent, kn->name)) {
3731 		rdt_last_cmd_puts("Source must be a MON group\n");
3732 		ret = -EPERM;
3733 		goto out;
3734 	}
3735 
3736 	if (!is_mon_groups(new_parent, new_name)) {
3737 		rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3738 		ret = -EPERM;
3739 		goto out;
3740 	}
3741 
3742 	/*
3743 	 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3744 	 * current parent CTRL_MON group and therefore cannot be assigned to
3745 	 * the new parent, making the move illegal.
3746 	 */
3747 	if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3748 	    rdtgrp->mon.parent != new_prdtgrp) {
3749 		rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3750 		ret = -EPERM;
3751 		goto out;
3752 	}
3753 
3754 	/*
3755 	 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3756 	 * possibility of failing to allocate it after kernfs_rename() has
3757 	 * succeeded.
3758 	 */
3759 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3760 		ret = -ENOMEM;
3761 		goto out;
3762 	}
3763 
3764 	/*
3765 	 * Perform all input validation and allocations needed to ensure
3766 	 * mongrp_reparent() will succeed before calling kernfs_rename(),
3767 	 * otherwise it would be necessary to revert this call if
3768 	 * mongrp_reparent() failed.
3769 	 */
3770 	ret = kernfs_rename(kn, new_parent, new_name);
3771 	if (!ret)
3772 		mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3773 
3774 	free_cpumask_var(tmpmask);
3775 
3776 out:
3777 	mutex_unlock(&rdtgroup_mutex);
3778 	rdtgroup_kn_put(rdtgrp, kn);
3779 	rdtgroup_kn_put(new_prdtgrp, new_parent);
3780 	return ret;
3781 }
3782 
3783 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3784 {
3785 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3786 		seq_puts(seq, ",cdp");
3787 
3788 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3789 		seq_puts(seq, ",cdpl2");
3790 
3791 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3792 		seq_puts(seq, ",mba_MBps");
3793 
3794 	if (resctrl_debug)
3795 		seq_puts(seq, ",debug");
3796 
3797 	return 0;
3798 }
3799 
3800 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3801 	.mkdir		= rdtgroup_mkdir,
3802 	.rmdir		= rdtgroup_rmdir,
3803 	.rename		= rdtgroup_rename,
3804 	.show_options	= rdtgroup_show_options,
3805 };
3806 
3807 static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
3808 {
3809 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3810 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3811 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3812 				      &rdtgroup_default);
3813 	if (IS_ERR(rdt_root))
3814 		return PTR_ERR(rdt_root);
3815 
3816 	ctx->kfc.root = rdt_root;
3817 	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3818 
3819 	return 0;
3820 }
3821 
3822 static void rdtgroup_destroy_root(void)
3823 {
3824 	kernfs_destroy_root(rdt_root);
3825 	rdtgroup_default.kn = NULL;
3826 }
3827 
3828 static void __init rdtgroup_setup_default(void)
3829 {
3830 	mutex_lock(&rdtgroup_mutex);
3831 
3832 	rdtgroup_default.closid = 0;
3833 	rdtgroup_default.mon.rmid = 0;
3834 	rdtgroup_default.type = RDTCTRL_GROUP;
3835 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3836 
3837 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3838 
3839 	mutex_unlock(&rdtgroup_mutex);
3840 }
3841 
3842 static void domain_destroy_mon_state(struct rdt_domain *d)
3843 {
3844 	bitmap_free(d->rmid_busy_llc);
3845 	kfree(d->mbm_total);
3846 	kfree(d->mbm_local);
3847 }
3848 
3849 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3850 {
3851 	lockdep_assert_held(&rdtgroup_mutex);
3852 
3853 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3854 		mba_sc_domain_destroy(r, d);
3855 
3856 	if (!r->mon_capable)
3857 		return;
3858 
3859 	/*
3860 	 * If resctrl is mounted, remove all the
3861 	 * per domain monitor data directories.
3862 	 */
3863 	if (static_branch_unlikely(&rdt_mon_enable_key))
3864 		rmdir_mondata_subdir_allrdtgrp(r, d->id);
3865 
3866 	if (is_mbm_enabled())
3867 		cancel_delayed_work(&d->mbm_over);
3868 	if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
3869 		/*
3870 		 * When a package is going down, forcefully
3871 		 * decrement rmid->ebusy. There is no way to know
3872 		 * that the L3 was flushed and hence may lead to
3873 		 * incorrect counts in rare scenarios, but leaving
3874 		 * the RMID as busy creates RMID leaks if the
3875 		 * package never comes back.
3876 		 */
3877 		__check_limbo(d, true);
3878 		cancel_delayed_work(&d->cqm_limbo);
3879 	}
3880 
3881 	domain_destroy_mon_state(d);
3882 }
3883 
3884 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3885 {
3886 	size_t tsize;
3887 
3888 	if (is_llc_occupancy_enabled()) {
3889 		d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL);
3890 		if (!d->rmid_busy_llc)
3891 			return -ENOMEM;
3892 	}
3893 	if (is_mbm_total_enabled()) {
3894 		tsize = sizeof(*d->mbm_total);
3895 		d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3896 		if (!d->mbm_total) {
3897 			bitmap_free(d->rmid_busy_llc);
3898 			return -ENOMEM;
3899 		}
3900 	}
3901 	if (is_mbm_local_enabled()) {
3902 		tsize = sizeof(*d->mbm_local);
3903 		d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3904 		if (!d->mbm_local) {
3905 			bitmap_free(d->rmid_busy_llc);
3906 			kfree(d->mbm_total);
3907 			return -ENOMEM;
3908 		}
3909 	}
3910 
3911 	return 0;
3912 }
3913 
3914 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
3915 {
3916 	int err;
3917 
3918 	lockdep_assert_held(&rdtgroup_mutex);
3919 
3920 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3921 		/* RDT_RESOURCE_MBA is never mon_capable */
3922 		return mba_sc_domain_allocate(r, d);
3923 
3924 	if (!r->mon_capable)
3925 		return 0;
3926 
3927 	err = domain_setup_mon_state(r, d);
3928 	if (err)
3929 		return err;
3930 
3931 	if (is_mbm_enabled()) {
3932 		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
3933 		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
3934 	}
3935 
3936 	if (is_llc_occupancy_enabled())
3937 		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
3938 
3939 	/* If resctrl is mounted, add per domain monitor data directories. */
3940 	if (static_branch_unlikely(&rdt_mon_enable_key))
3941 		mkdir_mondata_subdir_allrdtgrp(r, d);
3942 
3943 	return 0;
3944 }
3945 
3946 /*
3947  * rdtgroup_init - rdtgroup initialization
3948  *
3949  * Setup resctrl file system including set up root, create mount point,
3950  * register rdtgroup filesystem, and initialize files under root directory.
3951  *
3952  * Return: 0 on success or -errno
3953  */
3954 int __init rdtgroup_init(void)
3955 {
3956 	int ret = 0;
3957 
3958 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3959 		     sizeof(last_cmd_status_buf));
3960 
3961 	rdtgroup_setup_default();
3962 
3963 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3964 	if (ret)
3965 		return ret;
3966 
3967 	ret = register_filesystem(&rdt_fs_type);
3968 	if (ret)
3969 		goto cleanup_mountpoint;
3970 
3971 	/*
3972 	 * Adding the resctrl debugfs directory here may not be ideal since
3973 	 * it would let the resctrl debugfs directory appear on the debugfs
3974 	 * filesystem before the resctrl filesystem is mounted.
3975 	 * It may also be ok since that would enable debugging of RDT before
3976 	 * resctrl is mounted.
3977 	 * The reason why the debugfs directory is created here and not in
3978 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3979 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3980 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3981 	 * interactions (eg. SyS_getdents) have the lock ordering:
3982 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3983 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3984 	 * is taken, thus creating dependency:
3985 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3986 	 * issues considering the other two lock dependencies.
3987 	 * By creating the debugfs directory here we avoid a dependency
3988 	 * that may cause deadlock (even though file operations cannot
3989 	 * occur until the filesystem is mounted, but I do not know how to
3990 	 * tell lockdep that).
3991 	 */
3992 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3993 
3994 	return 0;
3995 
3996 cleanup_mountpoint:
3997 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3998 
3999 	return ret;
4000 }
4001 
4002 void __exit rdtgroup_exit(void)
4003 {
4004 	debugfs_remove_recursive(debugfs_resctrl);
4005 	unregister_filesystem(&rdt_fs_type);
4006 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4007 }
4008