1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Allocation in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cpu.h> 16 #include <linux/debugfs.h> 17 #include <linux/fs.h> 18 #include <linux/fs_parser.h> 19 #include <linux/sysfs.h> 20 #include <linux/kernfs.h> 21 #include <linux/seq_buf.h> 22 #include <linux/seq_file.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/task.h> 25 #include <linux/slab.h> 26 #include <linux/task_work.h> 27 #include <linux/user_namespace.h> 28 29 #include <uapi/linux/magic.h> 30 31 #include <asm/resctrl.h> 32 #include "internal.h" 33 34 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 35 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 37 38 /* Mutex to protect rdtgroup access. */ 39 DEFINE_MUTEX(rdtgroup_mutex); 40 41 static struct kernfs_root *rdt_root; 42 struct rdtgroup rdtgroup_default; 43 LIST_HEAD(rdt_all_groups); 44 45 /* list of entries for the schemata file */ 46 LIST_HEAD(resctrl_schema_all); 47 48 /* The filesystem can only be mounted once. */ 49 bool resctrl_mounted; 50 51 /* Kernel fs node for "info" directory under root */ 52 static struct kernfs_node *kn_info; 53 54 /* Kernel fs node for "mon_groups" directory under root */ 55 static struct kernfs_node *kn_mongrp; 56 57 /* Kernel fs node for "mon_data" directory under root */ 58 static struct kernfs_node *kn_mondata; 59 60 /* 61 * Used to store the max resource name width to display the schemata names in 62 * a tabular format. 63 */ 64 int max_name_width; 65 66 static struct seq_buf last_cmd_status; 67 static char last_cmd_status_buf[512]; 68 69 static int rdtgroup_setup_root(struct rdt_fs_context *ctx); 70 static void rdtgroup_destroy_root(void); 71 72 struct dentry *debugfs_resctrl; 73 74 /* 75 * Memory bandwidth monitoring event to use for the default CTRL_MON group 76 * and each new CTRL_MON group created by the user. Only relevant when 77 * the filesystem is mounted with the "mba_MBps" option so it does not 78 * matter that it remains uninitialized on systems that do not support 79 * the "mba_MBps" option. 80 */ 81 enum resctrl_event_id mba_mbps_default_event; 82 83 static bool resctrl_debug; 84 85 void rdt_last_cmd_clear(void) 86 { 87 lockdep_assert_held(&rdtgroup_mutex); 88 seq_buf_clear(&last_cmd_status); 89 } 90 91 void rdt_last_cmd_puts(const char *s) 92 { 93 lockdep_assert_held(&rdtgroup_mutex); 94 seq_buf_puts(&last_cmd_status, s); 95 } 96 97 void rdt_last_cmd_printf(const char *fmt, ...) 98 { 99 va_list ap; 100 101 va_start(ap, fmt); 102 lockdep_assert_held(&rdtgroup_mutex); 103 seq_buf_vprintf(&last_cmd_status, fmt, ap); 104 va_end(ap); 105 } 106 107 void rdt_staged_configs_clear(void) 108 { 109 struct rdt_ctrl_domain *dom; 110 struct rdt_resource *r; 111 112 lockdep_assert_held(&rdtgroup_mutex); 113 114 for_each_alloc_capable_rdt_resource(r) { 115 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) 116 memset(dom->staged_config, 0, sizeof(dom->staged_config)); 117 } 118 } 119 120 static bool resctrl_is_mbm_enabled(void) 121 { 122 return (resctrl_arch_is_mbm_total_enabled() || 123 resctrl_arch_is_mbm_local_enabled()); 124 } 125 126 static bool resctrl_is_mbm_event(int e) 127 { 128 return (e >= QOS_L3_MBM_TOTAL_EVENT_ID && 129 e <= QOS_L3_MBM_LOCAL_EVENT_ID); 130 } 131 132 /* 133 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 134 * we can keep a bitmap of free CLOSIDs in a single integer. 135 * 136 * Using a global CLOSID across all resources has some advantages and 137 * some drawbacks: 138 * + We can simply set current's closid to assign a task to a resource 139 * group. 140 * + Context switch code can avoid extra memory references deciding which 141 * CLOSID to load into the PQR_ASSOC MSR 142 * - We give up some options in configuring resource groups across multi-socket 143 * systems. 144 * - Our choices on how to configure each resource become progressively more 145 * limited as the number of resources grows. 146 */ 147 static unsigned long closid_free_map; 148 static int closid_free_map_len; 149 150 int closids_supported(void) 151 { 152 return closid_free_map_len; 153 } 154 155 static void closid_init(void) 156 { 157 struct resctrl_schema *s; 158 u32 rdt_min_closid = 32; 159 160 /* Compute rdt_min_closid across all resources */ 161 list_for_each_entry(s, &resctrl_schema_all, list) 162 rdt_min_closid = min(rdt_min_closid, s->num_closid); 163 164 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 165 166 /* RESCTRL_RESERVED_CLOSID is always reserved for the default group */ 167 __clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map); 168 closid_free_map_len = rdt_min_closid; 169 } 170 171 static int closid_alloc(void) 172 { 173 int cleanest_closid; 174 u32 closid; 175 176 lockdep_assert_held(&rdtgroup_mutex); 177 178 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID) && 179 resctrl_arch_is_llc_occupancy_enabled()) { 180 cleanest_closid = resctrl_find_cleanest_closid(); 181 if (cleanest_closid < 0) 182 return cleanest_closid; 183 closid = cleanest_closid; 184 } else { 185 closid = ffs(closid_free_map); 186 if (closid == 0) 187 return -ENOSPC; 188 closid--; 189 } 190 __clear_bit(closid, &closid_free_map); 191 192 return closid; 193 } 194 195 void closid_free(int closid) 196 { 197 lockdep_assert_held(&rdtgroup_mutex); 198 199 __set_bit(closid, &closid_free_map); 200 } 201 202 /** 203 * closid_allocated - test if provided closid is in use 204 * @closid: closid to be tested 205 * 206 * Return: true if @closid is currently associated with a resource group, 207 * false if @closid is free 208 */ 209 bool closid_allocated(unsigned int closid) 210 { 211 lockdep_assert_held(&rdtgroup_mutex); 212 213 return !test_bit(closid, &closid_free_map); 214 } 215 216 /** 217 * rdtgroup_mode_by_closid - Return mode of resource group with closid 218 * @closid: closid if the resource group 219 * 220 * Each resource group is associated with a @closid. Here the mode 221 * of a resource group can be queried by searching for it using its closid. 222 * 223 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 224 */ 225 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 226 { 227 struct rdtgroup *rdtgrp; 228 229 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 230 if (rdtgrp->closid == closid) 231 return rdtgrp->mode; 232 } 233 234 return RDT_NUM_MODES; 235 } 236 237 static const char * const rdt_mode_str[] = { 238 [RDT_MODE_SHAREABLE] = "shareable", 239 [RDT_MODE_EXCLUSIVE] = "exclusive", 240 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 241 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 242 }; 243 244 /** 245 * rdtgroup_mode_str - Return the string representation of mode 246 * @mode: the resource group mode as &enum rdtgroup_mode 247 * 248 * Return: string representation of valid mode, "unknown" otherwise 249 */ 250 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 251 { 252 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 253 return "unknown"; 254 255 return rdt_mode_str[mode]; 256 } 257 258 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 259 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 260 { 261 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 262 .ia_uid = current_fsuid(), 263 .ia_gid = current_fsgid(), }; 264 265 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 266 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 267 return 0; 268 269 return kernfs_setattr(kn, &iattr); 270 } 271 272 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 273 { 274 struct kernfs_node *kn; 275 int ret; 276 277 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 278 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 279 0, rft->kf_ops, rft, NULL, NULL); 280 if (IS_ERR(kn)) 281 return PTR_ERR(kn); 282 283 ret = rdtgroup_kn_set_ugid(kn); 284 if (ret) { 285 kernfs_remove(kn); 286 return ret; 287 } 288 289 return 0; 290 } 291 292 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 293 { 294 struct kernfs_open_file *of = m->private; 295 struct rftype *rft = of->kn->priv; 296 297 if (rft->seq_show) 298 return rft->seq_show(of, m, arg); 299 return 0; 300 } 301 302 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 303 size_t nbytes, loff_t off) 304 { 305 struct rftype *rft = of->kn->priv; 306 307 if (rft->write) 308 return rft->write(of, buf, nbytes, off); 309 310 return -EINVAL; 311 } 312 313 static const struct kernfs_ops rdtgroup_kf_single_ops = { 314 .atomic_write_len = PAGE_SIZE, 315 .write = rdtgroup_file_write, 316 .seq_show = rdtgroup_seqfile_show, 317 }; 318 319 static const struct kernfs_ops kf_mondata_ops = { 320 .atomic_write_len = PAGE_SIZE, 321 .seq_show = rdtgroup_mondata_show, 322 }; 323 324 static bool is_cpu_list(struct kernfs_open_file *of) 325 { 326 struct rftype *rft = of->kn->priv; 327 328 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 329 } 330 331 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 332 struct seq_file *s, void *v) 333 { 334 struct rdtgroup *rdtgrp; 335 struct cpumask *mask; 336 int ret = 0; 337 338 rdtgrp = rdtgroup_kn_lock_live(of->kn); 339 340 if (rdtgrp) { 341 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 342 if (!rdtgrp->plr->d) { 343 rdt_last_cmd_clear(); 344 rdt_last_cmd_puts("Cache domain offline\n"); 345 ret = -ENODEV; 346 } else { 347 mask = &rdtgrp->plr->d->hdr.cpu_mask; 348 seq_printf(s, is_cpu_list(of) ? 349 "%*pbl\n" : "%*pb\n", 350 cpumask_pr_args(mask)); 351 } 352 } else { 353 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 354 cpumask_pr_args(&rdtgrp->cpu_mask)); 355 } 356 } else { 357 ret = -ENOENT; 358 } 359 rdtgroup_kn_unlock(of->kn); 360 361 return ret; 362 } 363 364 /* 365 * This is safe against resctrl_sched_in() called from __switch_to() 366 * because __switch_to() is executed with interrupts disabled. A local call 367 * from update_closid_rmid() is protected against __switch_to() because 368 * preemption is disabled. 369 */ 370 void resctrl_arch_sync_cpu_closid_rmid(void *info) 371 { 372 struct resctrl_cpu_defaults *r = info; 373 374 if (r) { 375 this_cpu_write(pqr_state.default_closid, r->closid); 376 this_cpu_write(pqr_state.default_rmid, r->rmid); 377 } 378 379 /* 380 * We cannot unconditionally write the MSR because the current 381 * executing task might have its own closid selected. Just reuse 382 * the context switch code. 383 */ 384 resctrl_sched_in(current); 385 } 386 387 /* 388 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 389 * 390 * Per task closids/rmids must have been set up before calling this function. 391 * @r may be NULL. 392 */ 393 static void 394 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 395 { 396 struct resctrl_cpu_defaults defaults, *p = NULL; 397 398 if (r) { 399 defaults.closid = r->closid; 400 defaults.rmid = r->mon.rmid; 401 p = &defaults; 402 } 403 404 on_each_cpu_mask(cpu_mask, resctrl_arch_sync_cpu_closid_rmid, p, 1); 405 } 406 407 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 408 cpumask_var_t tmpmask) 409 { 410 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 411 struct list_head *head; 412 413 /* Check whether cpus belong to parent ctrl group */ 414 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 415 if (!cpumask_empty(tmpmask)) { 416 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 417 return -EINVAL; 418 } 419 420 /* Check whether cpus are dropped from this group */ 421 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 422 if (!cpumask_empty(tmpmask)) { 423 /* Give any dropped cpus to parent rdtgroup */ 424 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 425 update_closid_rmid(tmpmask, prgrp); 426 } 427 428 /* 429 * If we added cpus, remove them from previous group that owned them 430 * and update per-cpu rmid 431 */ 432 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 433 if (!cpumask_empty(tmpmask)) { 434 head = &prgrp->mon.crdtgrp_list; 435 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 436 if (crgrp == rdtgrp) 437 continue; 438 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 439 tmpmask); 440 } 441 update_closid_rmid(tmpmask, rdtgrp); 442 } 443 444 /* Done pushing/pulling - update this group with new mask */ 445 cpumask_copy(&rdtgrp->cpu_mask, newmask); 446 447 return 0; 448 } 449 450 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 451 { 452 struct rdtgroup *crgrp; 453 454 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 455 /* update the child mon group masks as well*/ 456 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 457 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 458 } 459 460 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 461 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 462 { 463 struct rdtgroup *r, *crgrp; 464 struct list_head *head; 465 466 /* Check whether cpus are dropped from this group */ 467 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 468 if (!cpumask_empty(tmpmask)) { 469 /* Can't drop from default group */ 470 if (rdtgrp == &rdtgroup_default) { 471 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 472 return -EINVAL; 473 } 474 475 /* Give any dropped cpus to rdtgroup_default */ 476 cpumask_or(&rdtgroup_default.cpu_mask, 477 &rdtgroup_default.cpu_mask, tmpmask); 478 update_closid_rmid(tmpmask, &rdtgroup_default); 479 } 480 481 /* 482 * If we added cpus, remove them from previous group and 483 * the prev group's child groups that owned them 484 * and update per-cpu closid/rmid. 485 */ 486 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 487 if (!cpumask_empty(tmpmask)) { 488 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 489 if (r == rdtgrp) 490 continue; 491 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 492 if (!cpumask_empty(tmpmask1)) 493 cpumask_rdtgrp_clear(r, tmpmask1); 494 } 495 update_closid_rmid(tmpmask, rdtgrp); 496 } 497 498 /* Done pushing/pulling - update this group with new mask */ 499 cpumask_copy(&rdtgrp->cpu_mask, newmask); 500 501 /* 502 * Clear child mon group masks since there is a new parent mask 503 * now and update the rmid for the cpus the child lost. 504 */ 505 head = &rdtgrp->mon.crdtgrp_list; 506 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 507 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 508 update_closid_rmid(tmpmask, rdtgrp); 509 cpumask_clear(&crgrp->cpu_mask); 510 } 511 512 return 0; 513 } 514 515 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 516 char *buf, size_t nbytes, loff_t off) 517 { 518 cpumask_var_t tmpmask, newmask, tmpmask1; 519 struct rdtgroup *rdtgrp; 520 int ret; 521 522 if (!buf) 523 return -EINVAL; 524 525 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 526 return -ENOMEM; 527 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 528 free_cpumask_var(tmpmask); 529 return -ENOMEM; 530 } 531 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 532 free_cpumask_var(tmpmask); 533 free_cpumask_var(newmask); 534 return -ENOMEM; 535 } 536 537 rdtgrp = rdtgroup_kn_lock_live(of->kn); 538 if (!rdtgrp) { 539 ret = -ENOENT; 540 goto unlock; 541 } 542 543 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 544 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 545 ret = -EINVAL; 546 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 547 goto unlock; 548 } 549 550 if (is_cpu_list(of)) 551 ret = cpulist_parse(buf, newmask); 552 else 553 ret = cpumask_parse(buf, newmask); 554 555 if (ret) { 556 rdt_last_cmd_puts("Bad CPU list/mask\n"); 557 goto unlock; 558 } 559 560 /* check that user didn't specify any offline cpus */ 561 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 562 if (!cpumask_empty(tmpmask)) { 563 ret = -EINVAL; 564 rdt_last_cmd_puts("Can only assign online CPUs\n"); 565 goto unlock; 566 } 567 568 if (rdtgrp->type == RDTCTRL_GROUP) 569 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 570 else if (rdtgrp->type == RDTMON_GROUP) 571 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 572 else 573 ret = -EINVAL; 574 575 unlock: 576 rdtgroup_kn_unlock(of->kn); 577 free_cpumask_var(tmpmask); 578 free_cpumask_var(newmask); 579 free_cpumask_var(tmpmask1); 580 581 return ret ?: nbytes; 582 } 583 584 /** 585 * rdtgroup_remove - the helper to remove resource group safely 586 * @rdtgrp: resource group to remove 587 * 588 * On resource group creation via a mkdir, an extra kernfs_node reference is 589 * taken to ensure that the rdtgroup structure remains accessible for the 590 * rdtgroup_kn_unlock() calls where it is removed. 591 * 592 * Drop the extra reference here, then free the rdtgroup structure. 593 * 594 * Return: void 595 */ 596 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 597 { 598 kernfs_put(rdtgrp->kn); 599 kfree(rdtgrp); 600 } 601 602 static void _update_task_closid_rmid(void *task) 603 { 604 /* 605 * If the task is still current on this CPU, update PQR_ASSOC MSR. 606 * Otherwise, the MSR is updated when the task is scheduled in. 607 */ 608 if (task == current) 609 resctrl_sched_in(task); 610 } 611 612 static void update_task_closid_rmid(struct task_struct *t) 613 { 614 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 615 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 616 else 617 _update_task_closid_rmid(t); 618 } 619 620 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp) 621 { 622 u32 closid, rmid = rdtgrp->mon.rmid; 623 624 if (rdtgrp->type == RDTCTRL_GROUP) 625 closid = rdtgrp->closid; 626 else if (rdtgrp->type == RDTMON_GROUP) 627 closid = rdtgrp->mon.parent->closid; 628 else 629 return false; 630 631 return resctrl_arch_match_closid(tsk, closid) && 632 resctrl_arch_match_rmid(tsk, closid, rmid); 633 } 634 635 static int __rdtgroup_move_task(struct task_struct *tsk, 636 struct rdtgroup *rdtgrp) 637 { 638 /* If the task is already in rdtgrp, no need to move the task. */ 639 if (task_in_rdtgroup(tsk, rdtgrp)) 640 return 0; 641 642 /* 643 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 644 * updated by them. 645 * 646 * For ctrl_mon groups, move both closid and rmid. 647 * For monitor groups, can move the tasks only from 648 * their parent CTRL group. 649 */ 650 if (rdtgrp->type == RDTMON_GROUP && 651 !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) { 652 rdt_last_cmd_puts("Can't move task to different control group\n"); 653 return -EINVAL; 654 } 655 656 if (rdtgrp->type == RDTMON_GROUP) 657 resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid, 658 rdtgrp->mon.rmid); 659 else 660 resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid, 661 rdtgrp->mon.rmid); 662 663 /* 664 * Ensure the task's closid and rmid are written before determining if 665 * the task is current that will decide if it will be interrupted. 666 * This pairs with the full barrier between the rq->curr update and 667 * resctrl_sched_in() during context switch. 668 */ 669 smp_mb(); 670 671 /* 672 * By now, the task's closid and rmid are set. If the task is current 673 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 674 * group go into effect. If the task is not current, the MSR will be 675 * updated when the task is scheduled in. 676 */ 677 update_task_closid_rmid(tsk); 678 679 return 0; 680 } 681 682 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 683 { 684 return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) && 685 resctrl_arch_match_closid(t, r->closid)); 686 } 687 688 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 689 { 690 return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) && 691 resctrl_arch_match_rmid(t, r->mon.parent->closid, 692 r->mon.rmid)); 693 } 694 695 /** 696 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 697 * @r: Resource group 698 * 699 * Return: 1 if tasks have been assigned to @r, 0 otherwise 700 */ 701 int rdtgroup_tasks_assigned(struct rdtgroup *r) 702 { 703 struct task_struct *p, *t; 704 int ret = 0; 705 706 lockdep_assert_held(&rdtgroup_mutex); 707 708 rcu_read_lock(); 709 for_each_process_thread(p, t) { 710 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 711 ret = 1; 712 break; 713 } 714 } 715 rcu_read_unlock(); 716 717 return ret; 718 } 719 720 static int rdtgroup_task_write_permission(struct task_struct *task, 721 struct kernfs_open_file *of) 722 { 723 const struct cred *tcred = get_task_cred(task); 724 const struct cred *cred = current_cred(); 725 int ret = 0; 726 727 /* 728 * Even if we're attaching all tasks in the thread group, we only 729 * need to check permissions on one of them. 730 */ 731 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 732 !uid_eq(cred->euid, tcred->uid) && 733 !uid_eq(cred->euid, tcred->suid)) { 734 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 735 ret = -EPERM; 736 } 737 738 put_cred(tcred); 739 return ret; 740 } 741 742 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 743 struct kernfs_open_file *of) 744 { 745 struct task_struct *tsk; 746 int ret; 747 748 rcu_read_lock(); 749 if (pid) { 750 tsk = find_task_by_vpid(pid); 751 if (!tsk) { 752 rcu_read_unlock(); 753 rdt_last_cmd_printf("No task %d\n", pid); 754 return -ESRCH; 755 } 756 } else { 757 tsk = current; 758 } 759 760 get_task_struct(tsk); 761 rcu_read_unlock(); 762 763 ret = rdtgroup_task_write_permission(tsk, of); 764 if (!ret) 765 ret = __rdtgroup_move_task(tsk, rdtgrp); 766 767 put_task_struct(tsk); 768 return ret; 769 } 770 771 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 772 char *buf, size_t nbytes, loff_t off) 773 { 774 struct rdtgroup *rdtgrp; 775 char *pid_str; 776 int ret = 0; 777 pid_t pid; 778 779 rdtgrp = rdtgroup_kn_lock_live(of->kn); 780 if (!rdtgrp) { 781 rdtgroup_kn_unlock(of->kn); 782 return -ENOENT; 783 } 784 rdt_last_cmd_clear(); 785 786 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 787 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 788 ret = -EINVAL; 789 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 790 goto unlock; 791 } 792 793 while (buf && buf[0] != '\0' && buf[0] != '\n') { 794 pid_str = strim(strsep(&buf, ",")); 795 796 if (kstrtoint(pid_str, 0, &pid)) { 797 rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str); 798 ret = -EINVAL; 799 break; 800 } 801 802 if (pid < 0) { 803 rdt_last_cmd_printf("Invalid pid %d\n", pid); 804 ret = -EINVAL; 805 break; 806 } 807 808 ret = rdtgroup_move_task(pid, rdtgrp, of); 809 if (ret) { 810 rdt_last_cmd_printf("Error while processing task %d\n", pid); 811 break; 812 } 813 } 814 815 unlock: 816 rdtgroup_kn_unlock(of->kn); 817 818 return ret ?: nbytes; 819 } 820 821 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 822 { 823 struct task_struct *p, *t; 824 pid_t pid; 825 826 rcu_read_lock(); 827 for_each_process_thread(p, t) { 828 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 829 pid = task_pid_vnr(t); 830 if (pid) 831 seq_printf(s, "%d\n", pid); 832 } 833 } 834 rcu_read_unlock(); 835 } 836 837 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 838 struct seq_file *s, void *v) 839 { 840 struct rdtgroup *rdtgrp; 841 int ret = 0; 842 843 rdtgrp = rdtgroup_kn_lock_live(of->kn); 844 if (rdtgrp) 845 show_rdt_tasks(rdtgrp, s); 846 else 847 ret = -ENOENT; 848 rdtgroup_kn_unlock(of->kn); 849 850 return ret; 851 } 852 853 static int rdtgroup_closid_show(struct kernfs_open_file *of, 854 struct seq_file *s, void *v) 855 { 856 struct rdtgroup *rdtgrp; 857 int ret = 0; 858 859 rdtgrp = rdtgroup_kn_lock_live(of->kn); 860 if (rdtgrp) 861 seq_printf(s, "%u\n", rdtgrp->closid); 862 else 863 ret = -ENOENT; 864 rdtgroup_kn_unlock(of->kn); 865 866 return ret; 867 } 868 869 static int rdtgroup_rmid_show(struct kernfs_open_file *of, 870 struct seq_file *s, void *v) 871 { 872 struct rdtgroup *rdtgrp; 873 int ret = 0; 874 875 rdtgrp = rdtgroup_kn_lock_live(of->kn); 876 if (rdtgrp) 877 seq_printf(s, "%u\n", rdtgrp->mon.rmid); 878 else 879 ret = -ENOENT; 880 rdtgroup_kn_unlock(of->kn); 881 882 return ret; 883 } 884 885 #ifdef CONFIG_PROC_CPU_RESCTRL 886 887 /* 888 * A task can only be part of one resctrl control group and of one monitor 889 * group which is associated to that control group. 890 * 891 * 1) res: 892 * mon: 893 * 894 * resctrl is not available. 895 * 896 * 2) res:/ 897 * mon: 898 * 899 * Task is part of the root resctrl control group, and it is not associated 900 * to any monitor group. 901 * 902 * 3) res:/ 903 * mon:mon0 904 * 905 * Task is part of the root resctrl control group and monitor group mon0. 906 * 907 * 4) res:group0 908 * mon: 909 * 910 * Task is part of resctrl control group group0, and it is not associated 911 * to any monitor group. 912 * 913 * 5) res:group0 914 * mon:mon1 915 * 916 * Task is part of resctrl control group group0 and monitor group mon1. 917 */ 918 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 919 struct pid *pid, struct task_struct *tsk) 920 { 921 struct rdtgroup *rdtg; 922 int ret = 0; 923 924 mutex_lock(&rdtgroup_mutex); 925 926 /* Return empty if resctrl has not been mounted. */ 927 if (!resctrl_mounted) { 928 seq_puts(s, "res:\nmon:\n"); 929 goto unlock; 930 } 931 932 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 933 struct rdtgroup *crg; 934 935 /* 936 * Task information is only relevant for shareable 937 * and exclusive groups. 938 */ 939 if (rdtg->mode != RDT_MODE_SHAREABLE && 940 rdtg->mode != RDT_MODE_EXCLUSIVE) 941 continue; 942 943 if (!resctrl_arch_match_closid(tsk, rdtg->closid)) 944 continue; 945 946 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 947 rdt_kn_name(rdtg->kn)); 948 seq_puts(s, "mon:"); 949 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 950 mon.crdtgrp_list) { 951 if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid, 952 crg->mon.rmid)) 953 continue; 954 seq_printf(s, "%s", rdt_kn_name(crg->kn)); 955 break; 956 } 957 seq_putc(s, '\n'); 958 goto unlock; 959 } 960 /* 961 * The above search should succeed. Otherwise return 962 * with an error. 963 */ 964 ret = -ENOENT; 965 unlock: 966 mutex_unlock(&rdtgroup_mutex); 967 968 return ret; 969 } 970 #endif 971 972 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 973 struct seq_file *seq, void *v) 974 { 975 int len; 976 977 mutex_lock(&rdtgroup_mutex); 978 len = seq_buf_used(&last_cmd_status); 979 if (len) 980 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 981 else 982 seq_puts(seq, "ok\n"); 983 mutex_unlock(&rdtgroup_mutex); 984 return 0; 985 } 986 987 static void *rdt_kn_parent_priv(struct kernfs_node *kn) 988 { 989 /* 990 * The parent pointer is only valid within RCU section since it can be 991 * replaced. 992 */ 993 guard(rcu)(); 994 return rcu_dereference(kn->__parent)->priv; 995 } 996 997 static int rdt_num_closids_show(struct kernfs_open_file *of, 998 struct seq_file *seq, void *v) 999 { 1000 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1001 1002 seq_printf(seq, "%u\n", s->num_closid); 1003 return 0; 1004 } 1005 1006 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 1007 struct seq_file *seq, void *v) 1008 { 1009 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1010 struct rdt_resource *r = s->res; 1011 1012 seq_printf(seq, "%x\n", resctrl_get_default_ctrl(r)); 1013 return 0; 1014 } 1015 1016 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 1017 struct seq_file *seq, void *v) 1018 { 1019 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1020 struct rdt_resource *r = s->res; 1021 1022 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 1023 return 0; 1024 } 1025 1026 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 1027 struct seq_file *seq, void *v) 1028 { 1029 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1030 struct rdt_resource *r = s->res; 1031 1032 seq_printf(seq, "%x\n", r->cache.shareable_bits); 1033 return 0; 1034 } 1035 1036 /* 1037 * rdt_bit_usage_show - Display current usage of resources 1038 * 1039 * A domain is a shared resource that can now be allocated differently. Here 1040 * we display the current regions of the domain as an annotated bitmask. 1041 * For each domain of this resource its allocation bitmask 1042 * is annotated as below to indicate the current usage of the corresponding bit: 1043 * 0 - currently unused 1044 * X - currently available for sharing and used by software and hardware 1045 * H - currently used by hardware only but available for software use 1046 * S - currently used and shareable by software only 1047 * E - currently used exclusively by one resource group 1048 * P - currently pseudo-locked by one resource group 1049 */ 1050 static int rdt_bit_usage_show(struct kernfs_open_file *of, 1051 struct seq_file *seq, void *v) 1052 { 1053 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1054 /* 1055 * Use unsigned long even though only 32 bits are used to ensure 1056 * test_bit() is used safely. 1057 */ 1058 unsigned long sw_shareable = 0, hw_shareable = 0; 1059 unsigned long exclusive = 0, pseudo_locked = 0; 1060 struct rdt_resource *r = s->res; 1061 struct rdt_ctrl_domain *dom; 1062 int i, hwb, swb, excl, psl; 1063 enum rdtgrp_mode mode; 1064 bool sep = false; 1065 u32 ctrl_val; 1066 1067 cpus_read_lock(); 1068 mutex_lock(&rdtgroup_mutex); 1069 hw_shareable = r->cache.shareable_bits; 1070 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) { 1071 if (sep) 1072 seq_putc(seq, ';'); 1073 sw_shareable = 0; 1074 exclusive = 0; 1075 seq_printf(seq, "%d=", dom->hdr.id); 1076 for (i = 0; i < closids_supported(); i++) { 1077 if (!closid_allocated(i)) 1078 continue; 1079 ctrl_val = resctrl_arch_get_config(r, dom, i, 1080 s->conf_type); 1081 mode = rdtgroup_mode_by_closid(i); 1082 switch (mode) { 1083 case RDT_MODE_SHAREABLE: 1084 sw_shareable |= ctrl_val; 1085 break; 1086 case RDT_MODE_EXCLUSIVE: 1087 exclusive |= ctrl_val; 1088 break; 1089 case RDT_MODE_PSEUDO_LOCKSETUP: 1090 /* 1091 * RDT_MODE_PSEUDO_LOCKSETUP is possible 1092 * here but not included since the CBM 1093 * associated with this CLOSID in this mode 1094 * is not initialized and no task or cpu can be 1095 * assigned this CLOSID. 1096 */ 1097 break; 1098 case RDT_MODE_PSEUDO_LOCKED: 1099 case RDT_NUM_MODES: 1100 WARN(1, 1101 "invalid mode for closid %d\n", i); 1102 break; 1103 } 1104 } 1105 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 1106 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 1107 hwb = test_bit(i, &hw_shareable); 1108 swb = test_bit(i, &sw_shareable); 1109 excl = test_bit(i, &exclusive); 1110 psl = test_bit(i, &pseudo_locked); 1111 if (hwb && swb) 1112 seq_putc(seq, 'X'); 1113 else if (hwb && !swb) 1114 seq_putc(seq, 'H'); 1115 else if (!hwb && swb) 1116 seq_putc(seq, 'S'); 1117 else if (excl) 1118 seq_putc(seq, 'E'); 1119 else if (psl) 1120 seq_putc(seq, 'P'); 1121 else /* Unused bits remain */ 1122 seq_putc(seq, '0'); 1123 } 1124 sep = true; 1125 } 1126 seq_putc(seq, '\n'); 1127 mutex_unlock(&rdtgroup_mutex); 1128 cpus_read_unlock(); 1129 return 0; 1130 } 1131 1132 static int rdt_min_bw_show(struct kernfs_open_file *of, 1133 struct seq_file *seq, void *v) 1134 { 1135 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1136 struct rdt_resource *r = s->res; 1137 1138 seq_printf(seq, "%u\n", r->membw.min_bw); 1139 return 0; 1140 } 1141 1142 static int rdt_num_rmids_show(struct kernfs_open_file *of, 1143 struct seq_file *seq, void *v) 1144 { 1145 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1146 1147 seq_printf(seq, "%d\n", r->num_rmid); 1148 1149 return 0; 1150 } 1151 1152 static int rdt_mon_features_show(struct kernfs_open_file *of, 1153 struct seq_file *seq, void *v) 1154 { 1155 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1156 struct mon_evt *mevt; 1157 1158 list_for_each_entry(mevt, &r->evt_list, list) { 1159 seq_printf(seq, "%s\n", mevt->name); 1160 if (mevt->configurable) 1161 seq_printf(seq, "%s_config\n", mevt->name); 1162 } 1163 1164 return 0; 1165 } 1166 1167 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1168 struct seq_file *seq, void *v) 1169 { 1170 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1171 struct rdt_resource *r = s->res; 1172 1173 seq_printf(seq, "%u\n", r->membw.bw_gran); 1174 return 0; 1175 } 1176 1177 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1178 struct seq_file *seq, void *v) 1179 { 1180 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1181 struct rdt_resource *r = s->res; 1182 1183 seq_printf(seq, "%u\n", r->membw.delay_linear); 1184 return 0; 1185 } 1186 1187 static int max_threshold_occ_show(struct kernfs_open_file *of, 1188 struct seq_file *seq, void *v) 1189 { 1190 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold); 1191 1192 return 0; 1193 } 1194 1195 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1196 struct seq_file *seq, void *v) 1197 { 1198 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1199 struct rdt_resource *r = s->res; 1200 1201 switch (r->membw.throttle_mode) { 1202 case THREAD_THROTTLE_PER_THREAD: 1203 seq_puts(seq, "per-thread\n"); 1204 return 0; 1205 case THREAD_THROTTLE_MAX: 1206 seq_puts(seq, "max\n"); 1207 return 0; 1208 case THREAD_THROTTLE_UNDEFINED: 1209 seq_puts(seq, "undefined\n"); 1210 return 0; 1211 } 1212 1213 WARN_ON_ONCE(1); 1214 1215 return 0; 1216 } 1217 1218 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1219 char *buf, size_t nbytes, loff_t off) 1220 { 1221 unsigned int bytes; 1222 int ret; 1223 1224 ret = kstrtouint(buf, 0, &bytes); 1225 if (ret) 1226 return ret; 1227 1228 if (bytes > resctrl_rmid_realloc_limit) 1229 return -EINVAL; 1230 1231 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes); 1232 1233 return nbytes; 1234 } 1235 1236 /* 1237 * rdtgroup_mode_show - Display mode of this resource group 1238 */ 1239 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1240 struct seq_file *s, void *v) 1241 { 1242 struct rdtgroup *rdtgrp; 1243 1244 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1245 if (!rdtgrp) { 1246 rdtgroup_kn_unlock(of->kn); 1247 return -ENOENT; 1248 } 1249 1250 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1251 1252 rdtgroup_kn_unlock(of->kn); 1253 return 0; 1254 } 1255 1256 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type) 1257 { 1258 switch (my_type) { 1259 case CDP_CODE: 1260 return CDP_DATA; 1261 case CDP_DATA: 1262 return CDP_CODE; 1263 default: 1264 case CDP_NONE: 1265 return CDP_NONE; 1266 } 1267 } 1268 1269 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of, 1270 struct seq_file *seq, void *v) 1271 { 1272 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1273 struct rdt_resource *r = s->res; 1274 1275 seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks); 1276 1277 return 0; 1278 } 1279 1280 /** 1281 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1282 * @r: Resource to which domain instance @d belongs. 1283 * @d: The domain instance for which @closid is being tested. 1284 * @cbm: Capacity bitmask being tested. 1285 * @closid: Intended closid for @cbm. 1286 * @type: CDP type of @r. 1287 * @exclusive: Only check if overlaps with exclusive resource groups 1288 * 1289 * Checks if provided @cbm intended to be used for @closid on domain 1290 * @d overlaps with any other closids or other hardware usage associated 1291 * with this domain. If @exclusive is true then only overlaps with 1292 * resource groups in exclusive mode will be considered. If @exclusive 1293 * is false then overlaps with any resource group or hardware entities 1294 * will be considered. 1295 * 1296 * @cbm is unsigned long, even if only 32 bits are used, to make the 1297 * bitmap functions work correctly. 1298 * 1299 * Return: false if CBM does not overlap, true if it does. 1300 */ 1301 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d, 1302 unsigned long cbm, int closid, 1303 enum resctrl_conf_type type, bool exclusive) 1304 { 1305 enum rdtgrp_mode mode; 1306 unsigned long ctrl_b; 1307 int i; 1308 1309 /* Check for any overlap with regions used by hardware directly */ 1310 if (!exclusive) { 1311 ctrl_b = r->cache.shareable_bits; 1312 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1313 return true; 1314 } 1315 1316 /* Check for overlap with other resource groups */ 1317 for (i = 0; i < closids_supported(); i++) { 1318 ctrl_b = resctrl_arch_get_config(r, d, i, type); 1319 mode = rdtgroup_mode_by_closid(i); 1320 if (closid_allocated(i) && i != closid && 1321 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1322 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1323 if (exclusive) { 1324 if (mode == RDT_MODE_EXCLUSIVE) 1325 return true; 1326 continue; 1327 } 1328 return true; 1329 } 1330 } 1331 } 1332 1333 return false; 1334 } 1335 1336 /** 1337 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1338 * @s: Schema for the resource to which domain instance @d belongs. 1339 * @d: The domain instance for which @closid is being tested. 1340 * @cbm: Capacity bitmask being tested. 1341 * @closid: Intended closid for @cbm. 1342 * @exclusive: Only check if overlaps with exclusive resource groups 1343 * 1344 * Resources that can be allocated using a CBM can use the CBM to control 1345 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1346 * for overlap. Overlap test is not limited to the specific resource for 1347 * which the CBM is intended though - when dealing with CDP resources that 1348 * share the underlying hardware the overlap check should be performed on 1349 * the CDP resource sharing the hardware also. 1350 * 1351 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1352 * overlap test. 1353 * 1354 * Return: true if CBM overlap detected, false if there is no overlap 1355 */ 1356 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d, 1357 unsigned long cbm, int closid, bool exclusive) 1358 { 1359 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 1360 struct rdt_resource *r = s->res; 1361 1362 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type, 1363 exclusive)) 1364 return true; 1365 1366 if (!resctrl_arch_get_cdp_enabled(r->rid)) 1367 return false; 1368 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive); 1369 } 1370 1371 /** 1372 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1373 * @rdtgrp: Resource group identified through its closid. 1374 * 1375 * An exclusive resource group implies that there should be no sharing of 1376 * its allocated resources. At the time this group is considered to be 1377 * exclusive this test can determine if its current schemata supports this 1378 * setting by testing for overlap with all other resource groups. 1379 * 1380 * Return: true if resource group can be exclusive, false if there is overlap 1381 * with allocations of other resource groups and thus this resource group 1382 * cannot be exclusive. 1383 */ 1384 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1385 { 1386 int closid = rdtgrp->closid; 1387 struct rdt_ctrl_domain *d; 1388 struct resctrl_schema *s; 1389 struct rdt_resource *r; 1390 bool has_cache = false; 1391 u32 ctrl; 1392 1393 /* Walking r->domains, ensure it can't race with cpuhp */ 1394 lockdep_assert_cpus_held(); 1395 1396 list_for_each_entry(s, &resctrl_schema_all, list) { 1397 r = s->res; 1398 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA) 1399 continue; 1400 has_cache = true; 1401 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 1402 ctrl = resctrl_arch_get_config(r, d, closid, 1403 s->conf_type); 1404 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) { 1405 rdt_last_cmd_puts("Schemata overlaps\n"); 1406 return false; 1407 } 1408 } 1409 } 1410 1411 if (!has_cache) { 1412 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1413 return false; 1414 } 1415 1416 return true; 1417 } 1418 1419 /* 1420 * rdtgroup_mode_write - Modify the resource group's mode 1421 */ 1422 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1423 char *buf, size_t nbytes, loff_t off) 1424 { 1425 struct rdtgroup *rdtgrp; 1426 enum rdtgrp_mode mode; 1427 int ret = 0; 1428 1429 /* Valid input requires a trailing newline */ 1430 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1431 return -EINVAL; 1432 buf[nbytes - 1] = '\0'; 1433 1434 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1435 if (!rdtgrp) { 1436 rdtgroup_kn_unlock(of->kn); 1437 return -ENOENT; 1438 } 1439 1440 rdt_last_cmd_clear(); 1441 1442 mode = rdtgrp->mode; 1443 1444 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1445 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1446 (!strcmp(buf, "pseudo-locksetup") && 1447 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1448 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1449 goto out; 1450 1451 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1452 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1453 ret = -EINVAL; 1454 goto out; 1455 } 1456 1457 if (!strcmp(buf, "shareable")) { 1458 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1459 ret = rdtgroup_locksetup_exit(rdtgrp); 1460 if (ret) 1461 goto out; 1462 } 1463 rdtgrp->mode = RDT_MODE_SHAREABLE; 1464 } else if (!strcmp(buf, "exclusive")) { 1465 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1466 ret = -EINVAL; 1467 goto out; 1468 } 1469 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1470 ret = rdtgroup_locksetup_exit(rdtgrp); 1471 if (ret) 1472 goto out; 1473 } 1474 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1475 } else if (IS_ENABLED(CONFIG_RESCTRL_FS_PSEUDO_LOCK) && 1476 !strcmp(buf, "pseudo-locksetup")) { 1477 ret = rdtgroup_locksetup_enter(rdtgrp); 1478 if (ret) 1479 goto out; 1480 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1481 } else { 1482 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1483 ret = -EINVAL; 1484 } 1485 1486 out: 1487 rdtgroup_kn_unlock(of->kn); 1488 return ret ?: nbytes; 1489 } 1490 1491 /** 1492 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1493 * @r: RDT resource to which @d belongs. 1494 * @d: RDT domain instance. 1495 * @cbm: bitmask for which the size should be computed. 1496 * 1497 * The bitmask provided associated with the RDT domain instance @d will be 1498 * translated into how many bytes it represents. The size in bytes is 1499 * computed by first dividing the total cache size by the CBM length to 1500 * determine how many bytes each bit in the bitmask represents. The result 1501 * is multiplied with the number of bits set in the bitmask. 1502 * 1503 * @cbm is unsigned long, even if only 32 bits are used to make the 1504 * bitmap functions work correctly. 1505 */ 1506 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1507 struct rdt_ctrl_domain *d, unsigned long cbm) 1508 { 1509 unsigned int size = 0; 1510 struct cacheinfo *ci; 1511 int num_b; 1512 1513 if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE)) 1514 return size; 1515 1516 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1517 ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope); 1518 if (ci) 1519 size = ci->size / r->cache.cbm_len * num_b; 1520 1521 return size; 1522 } 1523 1524 /* 1525 * rdtgroup_size_show - Display size in bytes of allocated regions 1526 * 1527 * The "size" file mirrors the layout of the "schemata" file, printing the 1528 * size in bytes of each region instead of the capacity bitmask. 1529 */ 1530 static int rdtgroup_size_show(struct kernfs_open_file *of, 1531 struct seq_file *s, void *v) 1532 { 1533 struct resctrl_schema *schema; 1534 enum resctrl_conf_type type; 1535 struct rdt_ctrl_domain *d; 1536 struct rdtgroup *rdtgrp; 1537 struct rdt_resource *r; 1538 unsigned int size; 1539 int ret = 0; 1540 u32 closid; 1541 bool sep; 1542 u32 ctrl; 1543 1544 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1545 if (!rdtgrp) { 1546 rdtgroup_kn_unlock(of->kn); 1547 return -ENOENT; 1548 } 1549 1550 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1551 if (!rdtgrp->plr->d) { 1552 rdt_last_cmd_clear(); 1553 rdt_last_cmd_puts("Cache domain offline\n"); 1554 ret = -ENODEV; 1555 } else { 1556 seq_printf(s, "%*s:", max_name_width, 1557 rdtgrp->plr->s->name); 1558 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res, 1559 rdtgrp->plr->d, 1560 rdtgrp->plr->cbm); 1561 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size); 1562 } 1563 goto out; 1564 } 1565 1566 closid = rdtgrp->closid; 1567 1568 list_for_each_entry(schema, &resctrl_schema_all, list) { 1569 r = schema->res; 1570 type = schema->conf_type; 1571 sep = false; 1572 seq_printf(s, "%*s:", max_name_width, schema->name); 1573 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 1574 if (sep) 1575 seq_putc(s, ';'); 1576 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1577 size = 0; 1578 } else { 1579 if (is_mba_sc(r)) 1580 ctrl = d->mbps_val[closid]; 1581 else 1582 ctrl = resctrl_arch_get_config(r, d, 1583 closid, 1584 type); 1585 if (r->rid == RDT_RESOURCE_MBA || 1586 r->rid == RDT_RESOURCE_SMBA) 1587 size = ctrl; 1588 else 1589 size = rdtgroup_cbm_to_size(r, d, ctrl); 1590 } 1591 seq_printf(s, "%d=%u", d->hdr.id, size); 1592 sep = true; 1593 } 1594 seq_putc(s, '\n'); 1595 } 1596 1597 out: 1598 rdtgroup_kn_unlock(of->kn); 1599 1600 return ret; 1601 } 1602 1603 #define INVALID_CONFIG_INDEX UINT_MAX 1604 1605 /** 1606 * mon_event_config_index_get - get the hardware index for the 1607 * configurable event 1608 * @evtid: event id. 1609 * 1610 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID 1611 * 1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID 1612 * INVALID_CONFIG_INDEX for invalid evtid 1613 */ 1614 static inline unsigned int mon_event_config_index_get(u32 evtid) 1615 { 1616 switch (evtid) { 1617 case QOS_L3_MBM_TOTAL_EVENT_ID: 1618 return 0; 1619 case QOS_L3_MBM_LOCAL_EVENT_ID: 1620 return 1; 1621 default: 1622 /* Should never reach here */ 1623 return INVALID_CONFIG_INDEX; 1624 } 1625 } 1626 1627 void resctrl_arch_mon_event_config_read(void *_config_info) 1628 { 1629 struct resctrl_mon_config_info *config_info = _config_info; 1630 unsigned int index; 1631 u64 msrval; 1632 1633 index = mon_event_config_index_get(config_info->evtid); 1634 if (index == INVALID_CONFIG_INDEX) { 1635 pr_warn_once("Invalid event id %d\n", config_info->evtid); 1636 return; 1637 } 1638 rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval); 1639 1640 /* Report only the valid event configuration bits */ 1641 config_info->mon_config = msrval & MAX_EVT_CONFIG_BITS; 1642 } 1643 1644 static void mondata_config_read(struct resctrl_mon_config_info *mon_info) 1645 { 1646 smp_call_function_any(&mon_info->d->hdr.cpu_mask, 1647 resctrl_arch_mon_event_config_read, mon_info, 1); 1648 } 1649 1650 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid) 1651 { 1652 struct resctrl_mon_config_info mon_info; 1653 struct rdt_mon_domain *dom; 1654 bool sep = false; 1655 1656 cpus_read_lock(); 1657 mutex_lock(&rdtgroup_mutex); 1658 1659 list_for_each_entry(dom, &r->mon_domains, hdr.list) { 1660 if (sep) 1661 seq_puts(s, ";"); 1662 1663 memset(&mon_info, 0, sizeof(struct resctrl_mon_config_info)); 1664 mon_info.r = r; 1665 mon_info.d = dom; 1666 mon_info.evtid = evtid; 1667 mondata_config_read(&mon_info); 1668 1669 seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config); 1670 sep = true; 1671 } 1672 seq_puts(s, "\n"); 1673 1674 mutex_unlock(&rdtgroup_mutex); 1675 cpus_read_unlock(); 1676 1677 return 0; 1678 } 1679 1680 static int mbm_total_bytes_config_show(struct kernfs_open_file *of, 1681 struct seq_file *seq, void *v) 1682 { 1683 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1684 1685 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID); 1686 1687 return 0; 1688 } 1689 1690 static int mbm_local_bytes_config_show(struct kernfs_open_file *of, 1691 struct seq_file *seq, void *v) 1692 { 1693 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1694 1695 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID); 1696 1697 return 0; 1698 } 1699 1700 void resctrl_arch_mon_event_config_write(void *_config_info) 1701 { 1702 struct resctrl_mon_config_info *config_info = _config_info; 1703 unsigned int index; 1704 1705 index = mon_event_config_index_get(config_info->evtid); 1706 if (index == INVALID_CONFIG_INDEX) { 1707 pr_warn_once("Invalid event id %d\n", config_info->evtid); 1708 return; 1709 } 1710 wrmsr(MSR_IA32_EVT_CFG_BASE + index, config_info->mon_config, 0); 1711 } 1712 1713 static void mbm_config_write_domain(struct rdt_resource *r, 1714 struct rdt_mon_domain *d, u32 evtid, u32 val) 1715 { 1716 struct resctrl_mon_config_info mon_info = {0}; 1717 1718 /* 1719 * Read the current config value first. If both are the same then 1720 * no need to write it again. 1721 */ 1722 mon_info.r = r; 1723 mon_info.d = d; 1724 mon_info.evtid = evtid; 1725 mondata_config_read(&mon_info); 1726 if (mon_info.mon_config == val) 1727 return; 1728 1729 mon_info.mon_config = val; 1730 1731 /* 1732 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the 1733 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE 1734 * are scoped at the domain level. Writing any of these MSRs 1735 * on one CPU is observed by all the CPUs in the domain. 1736 */ 1737 smp_call_function_any(&d->hdr.cpu_mask, resctrl_arch_mon_event_config_write, 1738 &mon_info, 1); 1739 1740 /* 1741 * When an Event Configuration is changed, the bandwidth counters 1742 * for all RMIDs and Events will be cleared by the hardware. The 1743 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for 1744 * every RMID on the next read to any event for every RMID. 1745 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62) 1746 * cleared while it is tracked by the hardware. Clear the 1747 * mbm_local and mbm_total counts for all the RMIDs. 1748 */ 1749 resctrl_arch_reset_rmid_all(r, d); 1750 } 1751 1752 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid) 1753 { 1754 char *dom_str = NULL, *id_str; 1755 unsigned long dom_id, val; 1756 struct rdt_mon_domain *d; 1757 1758 /* Walking r->domains, ensure it can't race with cpuhp */ 1759 lockdep_assert_cpus_held(); 1760 1761 next: 1762 if (!tok || tok[0] == '\0') 1763 return 0; 1764 1765 /* Start processing the strings for each domain */ 1766 dom_str = strim(strsep(&tok, ";")); 1767 id_str = strsep(&dom_str, "="); 1768 1769 if (!id_str || kstrtoul(id_str, 10, &dom_id)) { 1770 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n"); 1771 return -EINVAL; 1772 } 1773 1774 if (!dom_str || kstrtoul(dom_str, 16, &val)) { 1775 rdt_last_cmd_puts("Non-numeric event configuration value\n"); 1776 return -EINVAL; 1777 } 1778 1779 /* Value from user cannot be more than the supported set of events */ 1780 if ((val & r->mbm_cfg_mask) != val) { 1781 rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n", 1782 r->mbm_cfg_mask); 1783 return -EINVAL; 1784 } 1785 1786 list_for_each_entry(d, &r->mon_domains, hdr.list) { 1787 if (d->hdr.id == dom_id) { 1788 mbm_config_write_domain(r, d, evtid, val); 1789 goto next; 1790 } 1791 } 1792 1793 return -EINVAL; 1794 } 1795 1796 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of, 1797 char *buf, size_t nbytes, 1798 loff_t off) 1799 { 1800 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1801 int ret; 1802 1803 /* Valid input requires a trailing newline */ 1804 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1805 return -EINVAL; 1806 1807 cpus_read_lock(); 1808 mutex_lock(&rdtgroup_mutex); 1809 1810 rdt_last_cmd_clear(); 1811 1812 buf[nbytes - 1] = '\0'; 1813 1814 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID); 1815 1816 mutex_unlock(&rdtgroup_mutex); 1817 cpus_read_unlock(); 1818 1819 return ret ?: nbytes; 1820 } 1821 1822 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of, 1823 char *buf, size_t nbytes, 1824 loff_t off) 1825 { 1826 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1827 int ret; 1828 1829 /* Valid input requires a trailing newline */ 1830 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1831 return -EINVAL; 1832 1833 cpus_read_lock(); 1834 mutex_lock(&rdtgroup_mutex); 1835 1836 rdt_last_cmd_clear(); 1837 1838 buf[nbytes - 1] = '\0'; 1839 1840 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID); 1841 1842 mutex_unlock(&rdtgroup_mutex); 1843 cpus_read_unlock(); 1844 1845 return ret ?: nbytes; 1846 } 1847 1848 /* rdtgroup information files for one cache resource. */ 1849 static struct rftype res_common_files[] = { 1850 { 1851 .name = "last_cmd_status", 1852 .mode = 0444, 1853 .kf_ops = &rdtgroup_kf_single_ops, 1854 .seq_show = rdt_last_cmd_status_show, 1855 .fflags = RFTYPE_TOP_INFO, 1856 }, 1857 { 1858 .name = "num_closids", 1859 .mode = 0444, 1860 .kf_ops = &rdtgroup_kf_single_ops, 1861 .seq_show = rdt_num_closids_show, 1862 .fflags = RFTYPE_CTRL_INFO, 1863 }, 1864 { 1865 .name = "mon_features", 1866 .mode = 0444, 1867 .kf_ops = &rdtgroup_kf_single_ops, 1868 .seq_show = rdt_mon_features_show, 1869 .fflags = RFTYPE_MON_INFO, 1870 }, 1871 { 1872 .name = "num_rmids", 1873 .mode = 0444, 1874 .kf_ops = &rdtgroup_kf_single_ops, 1875 .seq_show = rdt_num_rmids_show, 1876 .fflags = RFTYPE_MON_INFO, 1877 }, 1878 { 1879 .name = "cbm_mask", 1880 .mode = 0444, 1881 .kf_ops = &rdtgroup_kf_single_ops, 1882 .seq_show = rdt_default_ctrl_show, 1883 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1884 }, 1885 { 1886 .name = "min_cbm_bits", 1887 .mode = 0444, 1888 .kf_ops = &rdtgroup_kf_single_ops, 1889 .seq_show = rdt_min_cbm_bits_show, 1890 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1891 }, 1892 { 1893 .name = "shareable_bits", 1894 .mode = 0444, 1895 .kf_ops = &rdtgroup_kf_single_ops, 1896 .seq_show = rdt_shareable_bits_show, 1897 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1898 }, 1899 { 1900 .name = "bit_usage", 1901 .mode = 0444, 1902 .kf_ops = &rdtgroup_kf_single_ops, 1903 .seq_show = rdt_bit_usage_show, 1904 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1905 }, 1906 { 1907 .name = "min_bandwidth", 1908 .mode = 0444, 1909 .kf_ops = &rdtgroup_kf_single_ops, 1910 .seq_show = rdt_min_bw_show, 1911 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1912 }, 1913 { 1914 .name = "bandwidth_gran", 1915 .mode = 0444, 1916 .kf_ops = &rdtgroup_kf_single_ops, 1917 .seq_show = rdt_bw_gran_show, 1918 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1919 }, 1920 { 1921 .name = "delay_linear", 1922 .mode = 0444, 1923 .kf_ops = &rdtgroup_kf_single_ops, 1924 .seq_show = rdt_delay_linear_show, 1925 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1926 }, 1927 /* 1928 * Platform specific which (if any) capabilities are provided by 1929 * thread_throttle_mode. Defer "fflags" initialization to platform 1930 * discovery. 1931 */ 1932 { 1933 .name = "thread_throttle_mode", 1934 .mode = 0444, 1935 .kf_ops = &rdtgroup_kf_single_ops, 1936 .seq_show = rdt_thread_throttle_mode_show, 1937 }, 1938 { 1939 .name = "max_threshold_occupancy", 1940 .mode = 0644, 1941 .kf_ops = &rdtgroup_kf_single_ops, 1942 .write = max_threshold_occ_write, 1943 .seq_show = max_threshold_occ_show, 1944 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE, 1945 }, 1946 { 1947 .name = "mbm_total_bytes_config", 1948 .mode = 0644, 1949 .kf_ops = &rdtgroup_kf_single_ops, 1950 .seq_show = mbm_total_bytes_config_show, 1951 .write = mbm_total_bytes_config_write, 1952 }, 1953 { 1954 .name = "mbm_local_bytes_config", 1955 .mode = 0644, 1956 .kf_ops = &rdtgroup_kf_single_ops, 1957 .seq_show = mbm_local_bytes_config_show, 1958 .write = mbm_local_bytes_config_write, 1959 }, 1960 { 1961 .name = "cpus", 1962 .mode = 0644, 1963 .kf_ops = &rdtgroup_kf_single_ops, 1964 .write = rdtgroup_cpus_write, 1965 .seq_show = rdtgroup_cpus_show, 1966 .fflags = RFTYPE_BASE, 1967 }, 1968 { 1969 .name = "cpus_list", 1970 .mode = 0644, 1971 .kf_ops = &rdtgroup_kf_single_ops, 1972 .write = rdtgroup_cpus_write, 1973 .seq_show = rdtgroup_cpus_show, 1974 .flags = RFTYPE_FLAGS_CPUS_LIST, 1975 .fflags = RFTYPE_BASE, 1976 }, 1977 { 1978 .name = "tasks", 1979 .mode = 0644, 1980 .kf_ops = &rdtgroup_kf_single_ops, 1981 .write = rdtgroup_tasks_write, 1982 .seq_show = rdtgroup_tasks_show, 1983 .fflags = RFTYPE_BASE, 1984 }, 1985 { 1986 .name = "mon_hw_id", 1987 .mode = 0444, 1988 .kf_ops = &rdtgroup_kf_single_ops, 1989 .seq_show = rdtgroup_rmid_show, 1990 .fflags = RFTYPE_MON_BASE | RFTYPE_DEBUG, 1991 }, 1992 { 1993 .name = "schemata", 1994 .mode = 0644, 1995 .kf_ops = &rdtgroup_kf_single_ops, 1996 .write = rdtgroup_schemata_write, 1997 .seq_show = rdtgroup_schemata_show, 1998 .fflags = RFTYPE_CTRL_BASE, 1999 }, 2000 { 2001 .name = "mba_MBps_event", 2002 .mode = 0644, 2003 .kf_ops = &rdtgroup_kf_single_ops, 2004 .write = rdtgroup_mba_mbps_event_write, 2005 .seq_show = rdtgroup_mba_mbps_event_show, 2006 }, 2007 { 2008 .name = "mode", 2009 .mode = 0644, 2010 .kf_ops = &rdtgroup_kf_single_ops, 2011 .write = rdtgroup_mode_write, 2012 .seq_show = rdtgroup_mode_show, 2013 .fflags = RFTYPE_CTRL_BASE, 2014 }, 2015 { 2016 .name = "size", 2017 .mode = 0444, 2018 .kf_ops = &rdtgroup_kf_single_ops, 2019 .seq_show = rdtgroup_size_show, 2020 .fflags = RFTYPE_CTRL_BASE, 2021 }, 2022 { 2023 .name = "sparse_masks", 2024 .mode = 0444, 2025 .kf_ops = &rdtgroup_kf_single_ops, 2026 .seq_show = rdt_has_sparse_bitmasks_show, 2027 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 2028 }, 2029 { 2030 .name = "ctrl_hw_id", 2031 .mode = 0444, 2032 .kf_ops = &rdtgroup_kf_single_ops, 2033 .seq_show = rdtgroup_closid_show, 2034 .fflags = RFTYPE_CTRL_BASE | RFTYPE_DEBUG, 2035 }, 2036 2037 }; 2038 2039 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 2040 { 2041 struct rftype *rfts, *rft; 2042 int ret, len; 2043 2044 rfts = res_common_files; 2045 len = ARRAY_SIZE(res_common_files); 2046 2047 lockdep_assert_held(&rdtgroup_mutex); 2048 2049 if (resctrl_debug) 2050 fflags |= RFTYPE_DEBUG; 2051 2052 for (rft = rfts; rft < rfts + len; rft++) { 2053 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 2054 ret = rdtgroup_add_file(kn, rft); 2055 if (ret) 2056 goto error; 2057 } 2058 } 2059 2060 return 0; 2061 error: 2062 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 2063 while (--rft >= rfts) { 2064 if ((fflags & rft->fflags) == rft->fflags) 2065 kernfs_remove_by_name(kn, rft->name); 2066 } 2067 return ret; 2068 } 2069 2070 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 2071 { 2072 struct rftype *rfts, *rft; 2073 int len; 2074 2075 rfts = res_common_files; 2076 len = ARRAY_SIZE(res_common_files); 2077 2078 for (rft = rfts; rft < rfts + len; rft++) { 2079 if (!strcmp(rft->name, name)) 2080 return rft; 2081 } 2082 2083 return NULL; 2084 } 2085 2086 static void thread_throttle_mode_init(void) 2087 { 2088 enum membw_throttle_mode throttle_mode = THREAD_THROTTLE_UNDEFINED; 2089 struct rdt_resource *r_mba, *r_smba; 2090 2091 r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA); 2092 if (r_mba->alloc_capable && 2093 r_mba->membw.throttle_mode != THREAD_THROTTLE_UNDEFINED) 2094 throttle_mode = r_mba->membw.throttle_mode; 2095 2096 r_smba = resctrl_arch_get_resource(RDT_RESOURCE_SMBA); 2097 if (r_smba->alloc_capable && 2098 r_smba->membw.throttle_mode != THREAD_THROTTLE_UNDEFINED) 2099 throttle_mode = r_smba->membw.throttle_mode; 2100 2101 if (throttle_mode == THREAD_THROTTLE_UNDEFINED) 2102 return; 2103 2104 resctrl_file_fflags_init("thread_throttle_mode", 2105 RFTYPE_CTRL_INFO | RFTYPE_RES_MB); 2106 } 2107 2108 void resctrl_file_fflags_init(const char *config, unsigned long fflags) 2109 { 2110 struct rftype *rft; 2111 2112 rft = rdtgroup_get_rftype_by_name(config); 2113 if (rft) 2114 rft->fflags = fflags; 2115 } 2116 2117 /** 2118 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 2119 * @r: The resource group with which the file is associated. 2120 * @name: Name of the file 2121 * 2122 * The permissions of named resctrl file, directory, or link are modified 2123 * to not allow read, write, or execute by any user. 2124 * 2125 * WARNING: This function is intended to communicate to the user that the 2126 * resctrl file has been locked down - that it is not relevant to the 2127 * particular state the system finds itself in. It should not be relied 2128 * on to protect from user access because after the file's permissions 2129 * are restricted the user can still change the permissions using chmod 2130 * from the command line. 2131 * 2132 * Return: 0 on success, <0 on failure. 2133 */ 2134 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 2135 { 2136 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 2137 struct kernfs_node *kn; 2138 int ret = 0; 2139 2140 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 2141 if (!kn) 2142 return -ENOENT; 2143 2144 switch (kernfs_type(kn)) { 2145 case KERNFS_DIR: 2146 iattr.ia_mode = S_IFDIR; 2147 break; 2148 case KERNFS_FILE: 2149 iattr.ia_mode = S_IFREG; 2150 break; 2151 case KERNFS_LINK: 2152 iattr.ia_mode = S_IFLNK; 2153 break; 2154 } 2155 2156 ret = kernfs_setattr(kn, &iattr); 2157 kernfs_put(kn); 2158 return ret; 2159 } 2160 2161 /** 2162 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 2163 * @r: The resource group with which the file is associated. 2164 * @name: Name of the file 2165 * @mask: Mask of permissions that should be restored 2166 * 2167 * Restore the permissions of the named file. If @name is a directory the 2168 * permissions of its parent will be used. 2169 * 2170 * Return: 0 on success, <0 on failure. 2171 */ 2172 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 2173 umode_t mask) 2174 { 2175 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 2176 struct kernfs_node *kn, *parent; 2177 struct rftype *rfts, *rft; 2178 int ret, len; 2179 2180 rfts = res_common_files; 2181 len = ARRAY_SIZE(res_common_files); 2182 2183 for (rft = rfts; rft < rfts + len; rft++) { 2184 if (!strcmp(rft->name, name)) 2185 iattr.ia_mode = rft->mode & mask; 2186 } 2187 2188 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 2189 if (!kn) 2190 return -ENOENT; 2191 2192 switch (kernfs_type(kn)) { 2193 case KERNFS_DIR: 2194 parent = kernfs_get_parent(kn); 2195 if (parent) { 2196 iattr.ia_mode |= parent->mode; 2197 kernfs_put(parent); 2198 } 2199 iattr.ia_mode |= S_IFDIR; 2200 break; 2201 case KERNFS_FILE: 2202 iattr.ia_mode |= S_IFREG; 2203 break; 2204 case KERNFS_LINK: 2205 iattr.ia_mode |= S_IFLNK; 2206 break; 2207 } 2208 2209 ret = kernfs_setattr(kn, &iattr); 2210 kernfs_put(kn); 2211 return ret; 2212 } 2213 2214 static int rdtgroup_mkdir_info_resdir(void *priv, char *name, 2215 unsigned long fflags) 2216 { 2217 struct kernfs_node *kn_subdir; 2218 int ret; 2219 2220 kn_subdir = kernfs_create_dir(kn_info, name, 2221 kn_info->mode, priv); 2222 if (IS_ERR(kn_subdir)) 2223 return PTR_ERR(kn_subdir); 2224 2225 ret = rdtgroup_kn_set_ugid(kn_subdir); 2226 if (ret) 2227 return ret; 2228 2229 ret = rdtgroup_add_files(kn_subdir, fflags); 2230 if (!ret) 2231 kernfs_activate(kn_subdir); 2232 2233 return ret; 2234 } 2235 2236 static unsigned long fflags_from_resource(struct rdt_resource *r) 2237 { 2238 switch (r->rid) { 2239 case RDT_RESOURCE_L3: 2240 case RDT_RESOURCE_L2: 2241 return RFTYPE_RES_CACHE; 2242 case RDT_RESOURCE_MBA: 2243 case RDT_RESOURCE_SMBA: 2244 return RFTYPE_RES_MB; 2245 } 2246 2247 return WARN_ON_ONCE(1); 2248 } 2249 2250 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 2251 { 2252 struct resctrl_schema *s; 2253 struct rdt_resource *r; 2254 unsigned long fflags; 2255 char name[32]; 2256 int ret; 2257 2258 /* create the directory */ 2259 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 2260 if (IS_ERR(kn_info)) 2261 return PTR_ERR(kn_info); 2262 2263 ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO); 2264 if (ret) 2265 goto out_destroy; 2266 2267 /* loop over enabled controls, these are all alloc_capable */ 2268 list_for_each_entry(s, &resctrl_schema_all, list) { 2269 r = s->res; 2270 fflags = fflags_from_resource(r) | RFTYPE_CTRL_INFO; 2271 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags); 2272 if (ret) 2273 goto out_destroy; 2274 } 2275 2276 for_each_mon_capable_rdt_resource(r) { 2277 fflags = fflags_from_resource(r) | RFTYPE_MON_INFO; 2278 sprintf(name, "%s_MON", r->name); 2279 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 2280 if (ret) 2281 goto out_destroy; 2282 } 2283 2284 ret = rdtgroup_kn_set_ugid(kn_info); 2285 if (ret) 2286 goto out_destroy; 2287 2288 kernfs_activate(kn_info); 2289 2290 return 0; 2291 2292 out_destroy: 2293 kernfs_remove(kn_info); 2294 return ret; 2295 } 2296 2297 static int 2298 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 2299 char *name, struct kernfs_node **dest_kn) 2300 { 2301 struct kernfs_node *kn; 2302 int ret; 2303 2304 /* create the directory */ 2305 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2306 if (IS_ERR(kn)) 2307 return PTR_ERR(kn); 2308 2309 if (dest_kn) 2310 *dest_kn = kn; 2311 2312 ret = rdtgroup_kn_set_ugid(kn); 2313 if (ret) 2314 goto out_destroy; 2315 2316 kernfs_activate(kn); 2317 2318 return 0; 2319 2320 out_destroy: 2321 kernfs_remove(kn); 2322 return ret; 2323 } 2324 2325 static void l3_qos_cfg_update(void *arg) 2326 { 2327 bool *enable = arg; 2328 2329 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 2330 } 2331 2332 static void l2_qos_cfg_update(void *arg) 2333 { 2334 bool *enable = arg; 2335 2336 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 2337 } 2338 2339 static inline bool is_mba_linear(void) 2340 { 2341 return resctrl_arch_get_resource(RDT_RESOURCE_MBA)->membw.delay_linear; 2342 } 2343 2344 static int set_cache_qos_cfg(int level, bool enable) 2345 { 2346 void (*update)(void *arg); 2347 struct rdt_ctrl_domain *d; 2348 struct rdt_resource *r_l; 2349 cpumask_var_t cpu_mask; 2350 int cpu; 2351 2352 /* Walking r->domains, ensure it can't race with cpuhp */ 2353 lockdep_assert_cpus_held(); 2354 2355 if (level == RDT_RESOURCE_L3) 2356 update = l3_qos_cfg_update; 2357 else if (level == RDT_RESOURCE_L2) 2358 update = l2_qos_cfg_update; 2359 else 2360 return -EINVAL; 2361 2362 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2363 return -ENOMEM; 2364 2365 r_l = &rdt_resources_all[level].r_resctrl; 2366 list_for_each_entry(d, &r_l->ctrl_domains, hdr.list) { 2367 if (r_l->cache.arch_has_per_cpu_cfg) 2368 /* Pick all the CPUs in the domain instance */ 2369 for_each_cpu(cpu, &d->hdr.cpu_mask) 2370 cpumask_set_cpu(cpu, cpu_mask); 2371 else 2372 /* Pick one CPU from each domain instance to update MSR */ 2373 cpumask_set_cpu(cpumask_any(&d->hdr.cpu_mask), cpu_mask); 2374 } 2375 2376 /* Update QOS_CFG MSR on all the CPUs in cpu_mask */ 2377 on_each_cpu_mask(cpu_mask, update, &enable, 1); 2378 2379 free_cpumask_var(cpu_mask); 2380 2381 return 0; 2382 } 2383 2384 /* Restore the qos cfg state when a domain comes online */ 2385 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 2386 { 2387 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2388 2389 if (!r->cdp_capable) 2390 return; 2391 2392 if (r->rid == RDT_RESOURCE_L2) 2393 l2_qos_cfg_update(&hw_res->cdp_enabled); 2394 2395 if (r->rid == RDT_RESOURCE_L3) 2396 l3_qos_cfg_update(&hw_res->cdp_enabled); 2397 } 2398 2399 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d) 2400 { 2401 u32 num_closid = resctrl_arch_get_num_closid(r); 2402 int cpu = cpumask_any(&d->hdr.cpu_mask); 2403 int i; 2404 2405 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val), 2406 GFP_KERNEL, cpu_to_node(cpu)); 2407 if (!d->mbps_val) 2408 return -ENOMEM; 2409 2410 for (i = 0; i < num_closid; i++) 2411 d->mbps_val[i] = MBA_MAX_MBPS; 2412 2413 return 0; 2414 } 2415 2416 static void mba_sc_domain_destroy(struct rdt_resource *r, 2417 struct rdt_ctrl_domain *d) 2418 { 2419 kfree(d->mbps_val); 2420 d->mbps_val = NULL; 2421 } 2422 2423 /* 2424 * MBA software controller is supported only if 2425 * MBM is supported and MBA is in linear scale, 2426 * and the MBM monitor scope is the same as MBA 2427 * control scope. 2428 */ 2429 static bool supports_mba_mbps(void) 2430 { 2431 struct rdt_resource *rmbm = resctrl_arch_get_resource(RDT_RESOURCE_L3); 2432 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_MBA); 2433 2434 return (resctrl_is_mbm_enabled() && 2435 r->alloc_capable && is_mba_linear() && 2436 r->ctrl_scope == rmbm->mon_scope); 2437 } 2438 2439 /* 2440 * Enable or disable the MBA software controller 2441 * which helps user specify bandwidth in MBps. 2442 */ 2443 static int set_mba_sc(bool mba_sc) 2444 { 2445 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_MBA); 2446 u32 num_closid = resctrl_arch_get_num_closid(r); 2447 struct rdt_ctrl_domain *d; 2448 unsigned long fflags; 2449 int i; 2450 2451 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r)) 2452 return -EINVAL; 2453 2454 r->membw.mba_sc = mba_sc; 2455 2456 rdtgroup_default.mba_mbps_event = mba_mbps_default_event; 2457 2458 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 2459 for (i = 0; i < num_closid; i++) 2460 d->mbps_val[i] = MBA_MAX_MBPS; 2461 } 2462 2463 fflags = mba_sc ? RFTYPE_CTRL_BASE | RFTYPE_MON_BASE : 0; 2464 resctrl_file_fflags_init("mba_MBps_event", fflags); 2465 2466 return 0; 2467 } 2468 2469 static int cdp_enable(int level) 2470 { 2471 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl; 2472 int ret; 2473 2474 if (!r_l->alloc_capable) 2475 return -EINVAL; 2476 2477 ret = set_cache_qos_cfg(level, true); 2478 if (!ret) 2479 rdt_resources_all[level].cdp_enabled = true; 2480 2481 return ret; 2482 } 2483 2484 static void cdp_disable(int level) 2485 { 2486 struct rdt_hw_resource *r_hw = &rdt_resources_all[level]; 2487 2488 if (r_hw->cdp_enabled) { 2489 set_cache_qos_cfg(level, false); 2490 r_hw->cdp_enabled = false; 2491 } 2492 } 2493 2494 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable) 2495 { 2496 struct rdt_hw_resource *hw_res = &rdt_resources_all[l]; 2497 2498 if (!hw_res->r_resctrl.cdp_capable) 2499 return -EINVAL; 2500 2501 if (enable) 2502 return cdp_enable(l); 2503 2504 cdp_disable(l); 2505 2506 return 0; 2507 } 2508 2509 /* 2510 * We don't allow rdtgroup directories to be created anywhere 2511 * except the root directory. Thus when looking for the rdtgroup 2512 * structure for a kernfs node we are either looking at a directory, 2513 * in which case the rdtgroup structure is pointed at by the "priv" 2514 * field, otherwise we have a file, and need only look to the parent 2515 * to find the rdtgroup. 2516 */ 2517 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2518 { 2519 if (kernfs_type(kn) == KERNFS_DIR) { 2520 /* 2521 * All the resource directories use "kn->priv" 2522 * to point to the "struct rdtgroup" for the 2523 * resource. "info" and its subdirectories don't 2524 * have rdtgroup structures, so return NULL here. 2525 */ 2526 if (kn == kn_info || 2527 rcu_access_pointer(kn->__parent) == kn_info) 2528 return NULL; 2529 else 2530 return kn->priv; 2531 } else { 2532 return rdt_kn_parent_priv(kn); 2533 } 2534 } 2535 2536 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2537 { 2538 atomic_inc(&rdtgrp->waitcount); 2539 kernfs_break_active_protection(kn); 2540 } 2541 2542 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2543 { 2544 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2545 (rdtgrp->flags & RDT_DELETED)) { 2546 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2547 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2548 rdtgroup_pseudo_lock_remove(rdtgrp); 2549 kernfs_unbreak_active_protection(kn); 2550 rdtgroup_remove(rdtgrp); 2551 } else { 2552 kernfs_unbreak_active_protection(kn); 2553 } 2554 } 2555 2556 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2557 { 2558 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2559 2560 if (!rdtgrp) 2561 return NULL; 2562 2563 rdtgroup_kn_get(rdtgrp, kn); 2564 2565 cpus_read_lock(); 2566 mutex_lock(&rdtgroup_mutex); 2567 2568 /* Was this group deleted while we waited? */ 2569 if (rdtgrp->flags & RDT_DELETED) 2570 return NULL; 2571 2572 return rdtgrp; 2573 } 2574 2575 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2576 { 2577 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2578 2579 if (!rdtgrp) 2580 return; 2581 2582 mutex_unlock(&rdtgroup_mutex); 2583 cpus_read_unlock(); 2584 2585 rdtgroup_kn_put(rdtgrp, kn); 2586 } 2587 2588 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2589 struct rdtgroup *prgrp, 2590 struct kernfs_node **mon_data_kn); 2591 2592 static void rdt_disable_ctx(void) 2593 { 2594 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2595 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2596 set_mba_sc(false); 2597 2598 resctrl_debug = false; 2599 } 2600 2601 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2602 { 2603 int ret = 0; 2604 2605 if (ctx->enable_cdpl2) { 2606 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true); 2607 if (ret) 2608 goto out_done; 2609 } 2610 2611 if (ctx->enable_cdpl3) { 2612 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true); 2613 if (ret) 2614 goto out_cdpl2; 2615 } 2616 2617 if (ctx->enable_mba_mbps) { 2618 ret = set_mba_sc(true); 2619 if (ret) 2620 goto out_cdpl3; 2621 } 2622 2623 if (ctx->enable_debug) 2624 resctrl_debug = true; 2625 2626 return 0; 2627 2628 out_cdpl3: 2629 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2630 out_cdpl2: 2631 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2632 out_done: 2633 return ret; 2634 } 2635 2636 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type) 2637 { 2638 struct resctrl_schema *s; 2639 const char *suffix = ""; 2640 int ret, cl; 2641 2642 s = kzalloc(sizeof(*s), GFP_KERNEL); 2643 if (!s) 2644 return -ENOMEM; 2645 2646 s->res = r; 2647 s->num_closid = resctrl_arch_get_num_closid(r); 2648 if (resctrl_arch_get_cdp_enabled(r->rid)) 2649 s->num_closid /= 2; 2650 2651 s->conf_type = type; 2652 switch (type) { 2653 case CDP_CODE: 2654 suffix = "CODE"; 2655 break; 2656 case CDP_DATA: 2657 suffix = "DATA"; 2658 break; 2659 case CDP_NONE: 2660 suffix = ""; 2661 break; 2662 } 2663 2664 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix); 2665 if (ret >= sizeof(s->name)) { 2666 kfree(s); 2667 return -EINVAL; 2668 } 2669 2670 cl = strlen(s->name); 2671 2672 /* 2673 * If CDP is supported by this resource, but not enabled, 2674 * include the suffix. This ensures the tabular format of the 2675 * schemata file does not change between mounts of the filesystem. 2676 */ 2677 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid)) 2678 cl += 4; 2679 2680 if (cl > max_name_width) 2681 max_name_width = cl; 2682 2683 switch (r->schema_fmt) { 2684 case RESCTRL_SCHEMA_BITMAP: 2685 s->fmt_str = "%d=%x"; 2686 break; 2687 case RESCTRL_SCHEMA_RANGE: 2688 s->fmt_str = "%d=%u"; 2689 break; 2690 } 2691 2692 if (WARN_ON_ONCE(!s->fmt_str)) { 2693 kfree(s); 2694 return -EINVAL; 2695 } 2696 2697 INIT_LIST_HEAD(&s->list); 2698 list_add(&s->list, &resctrl_schema_all); 2699 2700 return 0; 2701 } 2702 2703 static int schemata_list_create(void) 2704 { 2705 struct rdt_resource *r; 2706 int ret = 0; 2707 2708 for_each_alloc_capable_rdt_resource(r) { 2709 if (resctrl_arch_get_cdp_enabled(r->rid)) { 2710 ret = schemata_list_add(r, CDP_CODE); 2711 if (ret) 2712 break; 2713 2714 ret = schemata_list_add(r, CDP_DATA); 2715 } else { 2716 ret = schemata_list_add(r, CDP_NONE); 2717 } 2718 2719 if (ret) 2720 break; 2721 } 2722 2723 return ret; 2724 } 2725 2726 static void schemata_list_destroy(void) 2727 { 2728 struct resctrl_schema *s, *tmp; 2729 2730 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) { 2731 list_del(&s->list); 2732 kfree(s); 2733 } 2734 } 2735 2736 static int rdt_get_tree(struct fs_context *fc) 2737 { 2738 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2739 unsigned long flags = RFTYPE_CTRL_BASE; 2740 struct rdt_mon_domain *dom; 2741 struct rdt_resource *r; 2742 int ret; 2743 2744 cpus_read_lock(); 2745 mutex_lock(&rdtgroup_mutex); 2746 /* 2747 * resctrl file system can only be mounted once. 2748 */ 2749 if (resctrl_mounted) { 2750 ret = -EBUSY; 2751 goto out; 2752 } 2753 2754 ret = rdtgroup_setup_root(ctx); 2755 if (ret) 2756 goto out; 2757 2758 ret = rdt_enable_ctx(ctx); 2759 if (ret) 2760 goto out_root; 2761 2762 ret = schemata_list_create(); 2763 if (ret) { 2764 schemata_list_destroy(); 2765 goto out_ctx; 2766 } 2767 2768 closid_init(); 2769 2770 if (resctrl_arch_mon_capable()) 2771 flags |= RFTYPE_MON; 2772 2773 ret = rdtgroup_add_files(rdtgroup_default.kn, flags); 2774 if (ret) 2775 goto out_schemata_free; 2776 2777 kernfs_activate(rdtgroup_default.kn); 2778 2779 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2780 if (ret < 0) 2781 goto out_schemata_free; 2782 2783 if (resctrl_arch_mon_capable()) { 2784 ret = mongroup_create_dir(rdtgroup_default.kn, 2785 &rdtgroup_default, "mon_groups", 2786 &kn_mongrp); 2787 if (ret < 0) 2788 goto out_info; 2789 2790 ret = mkdir_mondata_all(rdtgroup_default.kn, 2791 &rdtgroup_default, &kn_mondata); 2792 if (ret < 0) 2793 goto out_mongrp; 2794 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2795 } 2796 2797 ret = rdt_pseudo_lock_init(); 2798 if (ret) 2799 goto out_mondata; 2800 2801 ret = kernfs_get_tree(fc); 2802 if (ret < 0) 2803 goto out_psl; 2804 2805 if (resctrl_arch_alloc_capable()) 2806 resctrl_arch_enable_alloc(); 2807 if (resctrl_arch_mon_capable()) 2808 resctrl_arch_enable_mon(); 2809 2810 if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable()) 2811 resctrl_mounted = true; 2812 2813 if (resctrl_is_mbm_enabled()) { 2814 r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 2815 list_for_each_entry(dom, &r->mon_domains, hdr.list) 2816 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL, 2817 RESCTRL_PICK_ANY_CPU); 2818 } 2819 2820 goto out; 2821 2822 out_psl: 2823 rdt_pseudo_lock_release(); 2824 out_mondata: 2825 if (resctrl_arch_mon_capable()) 2826 kernfs_remove(kn_mondata); 2827 out_mongrp: 2828 if (resctrl_arch_mon_capable()) 2829 kernfs_remove(kn_mongrp); 2830 out_info: 2831 kernfs_remove(kn_info); 2832 out_schemata_free: 2833 schemata_list_destroy(); 2834 out_ctx: 2835 rdt_disable_ctx(); 2836 out_root: 2837 rdtgroup_destroy_root(); 2838 out: 2839 rdt_last_cmd_clear(); 2840 mutex_unlock(&rdtgroup_mutex); 2841 cpus_read_unlock(); 2842 return ret; 2843 } 2844 2845 enum rdt_param { 2846 Opt_cdp, 2847 Opt_cdpl2, 2848 Opt_mba_mbps, 2849 Opt_debug, 2850 nr__rdt_params 2851 }; 2852 2853 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2854 fsparam_flag("cdp", Opt_cdp), 2855 fsparam_flag("cdpl2", Opt_cdpl2), 2856 fsparam_flag("mba_MBps", Opt_mba_mbps), 2857 fsparam_flag("debug", Opt_debug), 2858 {} 2859 }; 2860 2861 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2862 { 2863 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2864 struct fs_parse_result result; 2865 const char *msg; 2866 int opt; 2867 2868 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2869 if (opt < 0) 2870 return opt; 2871 2872 switch (opt) { 2873 case Opt_cdp: 2874 ctx->enable_cdpl3 = true; 2875 return 0; 2876 case Opt_cdpl2: 2877 ctx->enable_cdpl2 = true; 2878 return 0; 2879 case Opt_mba_mbps: 2880 msg = "mba_MBps requires MBM and linear scale MBA at L3 scope"; 2881 if (!supports_mba_mbps()) 2882 return invalfc(fc, msg); 2883 ctx->enable_mba_mbps = true; 2884 return 0; 2885 case Opt_debug: 2886 ctx->enable_debug = true; 2887 return 0; 2888 } 2889 2890 return -EINVAL; 2891 } 2892 2893 static void rdt_fs_context_free(struct fs_context *fc) 2894 { 2895 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2896 2897 kernfs_free_fs_context(fc); 2898 kfree(ctx); 2899 } 2900 2901 static const struct fs_context_operations rdt_fs_context_ops = { 2902 .free = rdt_fs_context_free, 2903 .parse_param = rdt_parse_param, 2904 .get_tree = rdt_get_tree, 2905 }; 2906 2907 static int rdt_init_fs_context(struct fs_context *fc) 2908 { 2909 struct rdt_fs_context *ctx; 2910 2911 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2912 if (!ctx) 2913 return -ENOMEM; 2914 2915 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2916 fc->fs_private = &ctx->kfc; 2917 fc->ops = &rdt_fs_context_ops; 2918 put_user_ns(fc->user_ns); 2919 fc->user_ns = get_user_ns(&init_user_ns); 2920 fc->global = true; 2921 return 0; 2922 } 2923 2924 void resctrl_arch_reset_all_ctrls(struct rdt_resource *r) 2925 { 2926 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2927 struct rdt_hw_ctrl_domain *hw_dom; 2928 struct msr_param msr_param; 2929 struct rdt_ctrl_domain *d; 2930 int i; 2931 2932 /* Walking r->domains, ensure it can't race with cpuhp */ 2933 lockdep_assert_cpus_held(); 2934 2935 msr_param.res = r; 2936 msr_param.low = 0; 2937 msr_param.high = hw_res->num_closid; 2938 2939 /* 2940 * Disable resource control for this resource by setting all 2941 * CBMs in all ctrl_domains to the maximum mask value. Pick one CPU 2942 * from each domain to update the MSRs below. 2943 */ 2944 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 2945 hw_dom = resctrl_to_arch_ctrl_dom(d); 2946 2947 for (i = 0; i < hw_res->num_closid; i++) 2948 hw_dom->ctrl_val[i] = resctrl_get_default_ctrl(r); 2949 msr_param.dom = d; 2950 smp_call_function_any(&d->hdr.cpu_mask, rdt_ctrl_update, &msr_param, 1); 2951 } 2952 2953 return; 2954 } 2955 2956 /* 2957 * Move tasks from one to the other group. If @from is NULL, then all tasks 2958 * in the systems are moved unconditionally (used for teardown). 2959 * 2960 * If @mask is not NULL the cpus on which moved tasks are running are set 2961 * in that mask so the update smp function call is restricted to affected 2962 * cpus. 2963 */ 2964 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2965 struct cpumask *mask) 2966 { 2967 struct task_struct *p, *t; 2968 2969 read_lock(&tasklist_lock); 2970 for_each_process_thread(p, t) { 2971 if (!from || is_closid_match(t, from) || 2972 is_rmid_match(t, from)) { 2973 resctrl_arch_set_closid_rmid(t, to->closid, 2974 to->mon.rmid); 2975 2976 /* 2977 * Order the closid/rmid stores above before the loads 2978 * in task_curr(). This pairs with the full barrier 2979 * between the rq->curr update and resctrl_sched_in() 2980 * during context switch. 2981 */ 2982 smp_mb(); 2983 2984 /* 2985 * If the task is on a CPU, set the CPU in the mask. 2986 * The detection is inaccurate as tasks might move or 2987 * schedule before the smp function call takes place. 2988 * In such a case the function call is pointless, but 2989 * there is no other side effect. 2990 */ 2991 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t)) 2992 cpumask_set_cpu(task_cpu(t), mask); 2993 } 2994 } 2995 read_unlock(&tasklist_lock); 2996 } 2997 2998 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2999 { 3000 struct rdtgroup *sentry, *stmp; 3001 struct list_head *head; 3002 3003 head = &rdtgrp->mon.crdtgrp_list; 3004 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 3005 free_rmid(sentry->closid, sentry->mon.rmid); 3006 list_del(&sentry->mon.crdtgrp_list); 3007 3008 if (atomic_read(&sentry->waitcount) != 0) 3009 sentry->flags = RDT_DELETED; 3010 else 3011 rdtgroup_remove(sentry); 3012 } 3013 } 3014 3015 /* 3016 * Forcibly remove all of subdirectories under root. 3017 */ 3018 static void rmdir_all_sub(void) 3019 { 3020 struct rdtgroup *rdtgrp, *tmp; 3021 3022 /* Move all tasks to the default resource group */ 3023 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 3024 3025 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 3026 /* Free any child rmids */ 3027 free_all_child_rdtgrp(rdtgrp); 3028 3029 /* Remove each rdtgroup other than root */ 3030 if (rdtgrp == &rdtgroup_default) 3031 continue; 3032 3033 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3034 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 3035 rdtgroup_pseudo_lock_remove(rdtgrp); 3036 3037 /* 3038 * Give any CPUs back to the default group. We cannot copy 3039 * cpu_online_mask because a CPU might have executed the 3040 * offline callback already, but is still marked online. 3041 */ 3042 cpumask_or(&rdtgroup_default.cpu_mask, 3043 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3044 3045 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3046 3047 kernfs_remove(rdtgrp->kn); 3048 list_del(&rdtgrp->rdtgroup_list); 3049 3050 if (atomic_read(&rdtgrp->waitcount) != 0) 3051 rdtgrp->flags = RDT_DELETED; 3052 else 3053 rdtgroup_remove(rdtgrp); 3054 } 3055 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 3056 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 3057 3058 kernfs_remove(kn_info); 3059 kernfs_remove(kn_mongrp); 3060 kernfs_remove(kn_mondata); 3061 } 3062 3063 static void rdt_kill_sb(struct super_block *sb) 3064 { 3065 struct rdt_resource *r; 3066 3067 cpus_read_lock(); 3068 mutex_lock(&rdtgroup_mutex); 3069 3070 rdt_disable_ctx(); 3071 3072 /* Put everything back to default values. */ 3073 for_each_alloc_capable_rdt_resource(r) 3074 resctrl_arch_reset_all_ctrls(r); 3075 3076 rmdir_all_sub(); 3077 rdt_pseudo_lock_release(); 3078 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 3079 schemata_list_destroy(); 3080 rdtgroup_destroy_root(); 3081 if (resctrl_arch_alloc_capable()) 3082 resctrl_arch_disable_alloc(); 3083 if (resctrl_arch_mon_capable()) 3084 resctrl_arch_disable_mon(); 3085 resctrl_mounted = false; 3086 kernfs_kill_sb(sb); 3087 mutex_unlock(&rdtgroup_mutex); 3088 cpus_read_unlock(); 3089 } 3090 3091 static struct file_system_type rdt_fs_type = { 3092 .name = "resctrl", 3093 .init_fs_context = rdt_init_fs_context, 3094 .parameters = rdt_fs_parameters, 3095 .kill_sb = rdt_kill_sb, 3096 }; 3097 3098 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 3099 void *priv) 3100 { 3101 struct kernfs_node *kn; 3102 int ret = 0; 3103 3104 kn = __kernfs_create_file(parent_kn, name, 0444, 3105 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 3106 &kf_mondata_ops, priv, NULL, NULL); 3107 if (IS_ERR(kn)) 3108 return PTR_ERR(kn); 3109 3110 ret = rdtgroup_kn_set_ugid(kn); 3111 if (ret) { 3112 kernfs_remove(kn); 3113 return ret; 3114 } 3115 3116 return ret; 3117 } 3118 3119 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname) 3120 { 3121 struct kernfs_node *kn; 3122 3123 kn = kernfs_find_and_get(pkn, name); 3124 if (!kn) 3125 return; 3126 kernfs_put(kn); 3127 3128 if (kn->dir.subdirs <= 1) 3129 kernfs_remove(kn); 3130 else 3131 kernfs_remove_by_name(kn, subname); 3132 } 3133 3134 /* 3135 * Remove all subdirectories of mon_data of ctrl_mon groups 3136 * and monitor groups for the given domain. 3137 * Remove files and directories containing "sum" of domain data 3138 * when last domain being summed is removed. 3139 */ 3140 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 3141 struct rdt_mon_domain *d) 3142 { 3143 struct rdtgroup *prgrp, *crgrp; 3144 char subname[32]; 3145 bool snc_mode; 3146 char name[32]; 3147 3148 snc_mode = r->mon_scope == RESCTRL_L3_NODE; 3149 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id); 3150 if (snc_mode) 3151 sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id); 3152 3153 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 3154 mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname); 3155 3156 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 3157 mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname); 3158 } 3159 } 3160 3161 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d, 3162 struct rdt_resource *r, struct rdtgroup *prgrp, 3163 bool do_sum) 3164 { 3165 struct rmid_read rr = {0}; 3166 union mon_data_bits priv; 3167 struct mon_evt *mevt; 3168 int ret; 3169 3170 if (WARN_ON(list_empty(&r->evt_list))) 3171 return -EPERM; 3172 3173 priv.u.rid = r->rid; 3174 priv.u.domid = do_sum ? d->ci->id : d->hdr.id; 3175 priv.u.sum = do_sum; 3176 list_for_each_entry(mevt, &r->evt_list, list) { 3177 priv.u.evtid = mevt->evtid; 3178 ret = mon_addfile(kn, mevt->name, priv.priv); 3179 if (ret) 3180 return ret; 3181 3182 if (!do_sum && resctrl_is_mbm_event(mevt->evtid)) 3183 mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true); 3184 } 3185 3186 return 0; 3187 } 3188 3189 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 3190 struct rdt_mon_domain *d, 3191 struct rdt_resource *r, struct rdtgroup *prgrp) 3192 { 3193 struct kernfs_node *kn, *ckn; 3194 char name[32]; 3195 bool snc_mode; 3196 int ret = 0; 3197 3198 lockdep_assert_held(&rdtgroup_mutex); 3199 3200 snc_mode = r->mon_scope == RESCTRL_L3_NODE; 3201 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id); 3202 kn = kernfs_find_and_get(parent_kn, name); 3203 if (kn) { 3204 /* 3205 * rdtgroup_mutex will prevent this directory from being 3206 * removed. No need to keep this hold. 3207 */ 3208 kernfs_put(kn); 3209 } else { 3210 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 3211 if (IS_ERR(kn)) 3212 return PTR_ERR(kn); 3213 3214 ret = rdtgroup_kn_set_ugid(kn); 3215 if (ret) 3216 goto out_destroy; 3217 ret = mon_add_all_files(kn, d, r, prgrp, snc_mode); 3218 if (ret) 3219 goto out_destroy; 3220 } 3221 3222 if (snc_mode) { 3223 sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id); 3224 ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp); 3225 if (IS_ERR(ckn)) { 3226 ret = -EINVAL; 3227 goto out_destroy; 3228 } 3229 3230 ret = rdtgroup_kn_set_ugid(ckn); 3231 if (ret) 3232 goto out_destroy; 3233 3234 ret = mon_add_all_files(ckn, d, r, prgrp, false); 3235 if (ret) 3236 goto out_destroy; 3237 } 3238 3239 kernfs_activate(kn); 3240 return 0; 3241 3242 out_destroy: 3243 kernfs_remove(kn); 3244 return ret; 3245 } 3246 3247 /* 3248 * Add all subdirectories of mon_data for "ctrl_mon" groups 3249 * and "monitor" groups with given domain id. 3250 */ 3251 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 3252 struct rdt_mon_domain *d) 3253 { 3254 struct kernfs_node *parent_kn; 3255 struct rdtgroup *prgrp, *crgrp; 3256 struct list_head *head; 3257 3258 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 3259 parent_kn = prgrp->mon.mon_data_kn; 3260 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 3261 3262 head = &prgrp->mon.crdtgrp_list; 3263 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 3264 parent_kn = crgrp->mon.mon_data_kn; 3265 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 3266 } 3267 } 3268 } 3269 3270 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 3271 struct rdt_resource *r, 3272 struct rdtgroup *prgrp) 3273 { 3274 struct rdt_mon_domain *dom; 3275 int ret; 3276 3277 /* Walking r->domains, ensure it can't race with cpuhp */ 3278 lockdep_assert_cpus_held(); 3279 3280 list_for_each_entry(dom, &r->mon_domains, hdr.list) { 3281 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 3282 if (ret) 3283 return ret; 3284 } 3285 3286 return 0; 3287 } 3288 3289 /* 3290 * This creates a directory mon_data which contains the monitored data. 3291 * 3292 * mon_data has one directory for each domain which are named 3293 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 3294 * with L3 domain looks as below: 3295 * ./mon_data: 3296 * mon_L3_00 3297 * mon_L3_01 3298 * mon_L3_02 3299 * ... 3300 * 3301 * Each domain directory has one file per event: 3302 * ./mon_L3_00/: 3303 * llc_occupancy 3304 * 3305 */ 3306 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 3307 struct rdtgroup *prgrp, 3308 struct kernfs_node **dest_kn) 3309 { 3310 struct rdt_resource *r; 3311 struct kernfs_node *kn; 3312 int ret; 3313 3314 /* 3315 * Create the mon_data directory first. 3316 */ 3317 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 3318 if (ret) 3319 return ret; 3320 3321 if (dest_kn) 3322 *dest_kn = kn; 3323 3324 /* 3325 * Create the subdirectories for each domain. Note that all events 3326 * in a domain like L3 are grouped into a resource whose domain is L3 3327 */ 3328 for_each_mon_capable_rdt_resource(r) { 3329 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 3330 if (ret) 3331 goto out_destroy; 3332 } 3333 3334 return 0; 3335 3336 out_destroy: 3337 kernfs_remove(kn); 3338 return ret; 3339 } 3340 3341 /** 3342 * cbm_ensure_valid - Enforce validity on provided CBM 3343 * @_val: Candidate CBM 3344 * @r: RDT resource to which the CBM belongs 3345 * 3346 * The provided CBM represents all cache portions available for use. This 3347 * may be represented by a bitmap that does not consist of contiguous ones 3348 * and thus be an invalid CBM. 3349 * Here the provided CBM is forced to be a valid CBM by only considering 3350 * the first set of contiguous bits as valid and clearing all bits. 3351 * The intention here is to provide a valid default CBM with which a new 3352 * resource group is initialized. The user can follow this with a 3353 * modification to the CBM if the default does not satisfy the 3354 * requirements. 3355 */ 3356 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 3357 { 3358 unsigned int cbm_len = r->cache.cbm_len; 3359 unsigned long first_bit, zero_bit; 3360 unsigned long val = _val; 3361 3362 if (!val) 3363 return 0; 3364 3365 first_bit = find_first_bit(&val, cbm_len); 3366 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 3367 3368 /* Clear any remaining bits to ensure contiguous region */ 3369 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 3370 return (u32)val; 3371 } 3372 3373 /* 3374 * Initialize cache resources per RDT domain 3375 * 3376 * Set the RDT domain up to start off with all usable allocations. That is, 3377 * all shareable and unused bits. All-zero CBM is invalid. 3378 */ 3379 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s, 3380 u32 closid) 3381 { 3382 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 3383 enum resctrl_conf_type t = s->conf_type; 3384 struct resctrl_staged_config *cfg; 3385 struct rdt_resource *r = s->res; 3386 u32 used_b = 0, unused_b = 0; 3387 unsigned long tmp_cbm; 3388 enum rdtgrp_mode mode; 3389 u32 peer_ctl, ctrl_val; 3390 int i; 3391 3392 cfg = &d->staged_config[t]; 3393 cfg->have_new_ctrl = false; 3394 cfg->new_ctrl = r->cache.shareable_bits; 3395 used_b = r->cache.shareable_bits; 3396 for (i = 0; i < closids_supported(); i++) { 3397 if (closid_allocated(i) && i != closid) { 3398 mode = rdtgroup_mode_by_closid(i); 3399 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 3400 /* 3401 * ctrl values for locksetup aren't relevant 3402 * until the schemata is written, and the mode 3403 * becomes RDT_MODE_PSEUDO_LOCKED. 3404 */ 3405 continue; 3406 /* 3407 * If CDP is active include peer domain's 3408 * usage to ensure there is no overlap 3409 * with an exclusive group. 3410 */ 3411 if (resctrl_arch_get_cdp_enabled(r->rid)) 3412 peer_ctl = resctrl_arch_get_config(r, d, i, 3413 peer_type); 3414 else 3415 peer_ctl = 0; 3416 ctrl_val = resctrl_arch_get_config(r, d, i, 3417 s->conf_type); 3418 used_b |= ctrl_val | peer_ctl; 3419 if (mode == RDT_MODE_SHAREABLE) 3420 cfg->new_ctrl |= ctrl_val | peer_ctl; 3421 } 3422 } 3423 if (d->plr && d->plr->cbm > 0) 3424 used_b |= d->plr->cbm; 3425 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 3426 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 3427 cfg->new_ctrl |= unused_b; 3428 /* 3429 * Force the initial CBM to be valid, user can 3430 * modify the CBM based on system availability. 3431 */ 3432 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r); 3433 /* 3434 * Assign the u32 CBM to an unsigned long to ensure that 3435 * bitmap_weight() does not access out-of-bound memory. 3436 */ 3437 tmp_cbm = cfg->new_ctrl; 3438 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 3439 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id); 3440 return -ENOSPC; 3441 } 3442 cfg->have_new_ctrl = true; 3443 3444 return 0; 3445 } 3446 3447 /* 3448 * Initialize cache resources with default values. 3449 * 3450 * A new RDT group is being created on an allocation capable (CAT) 3451 * supporting system. Set this group up to start off with all usable 3452 * allocations. 3453 * 3454 * If there are no more shareable bits available on any domain then 3455 * the entire allocation will fail. 3456 */ 3457 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid) 3458 { 3459 struct rdt_ctrl_domain *d; 3460 int ret; 3461 3462 list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) { 3463 ret = __init_one_rdt_domain(d, s, closid); 3464 if (ret < 0) 3465 return ret; 3466 } 3467 3468 return 0; 3469 } 3470 3471 /* Initialize MBA resource with default values. */ 3472 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid) 3473 { 3474 struct resctrl_staged_config *cfg; 3475 struct rdt_ctrl_domain *d; 3476 3477 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 3478 if (is_mba_sc(r)) { 3479 d->mbps_val[closid] = MBA_MAX_MBPS; 3480 continue; 3481 } 3482 3483 cfg = &d->staged_config[CDP_NONE]; 3484 cfg->new_ctrl = resctrl_get_default_ctrl(r); 3485 cfg->have_new_ctrl = true; 3486 } 3487 } 3488 3489 /* Initialize the RDT group's allocations. */ 3490 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 3491 { 3492 struct resctrl_schema *s; 3493 struct rdt_resource *r; 3494 int ret = 0; 3495 3496 rdt_staged_configs_clear(); 3497 3498 list_for_each_entry(s, &resctrl_schema_all, list) { 3499 r = s->res; 3500 if (r->rid == RDT_RESOURCE_MBA || 3501 r->rid == RDT_RESOURCE_SMBA) { 3502 rdtgroup_init_mba(r, rdtgrp->closid); 3503 if (is_mba_sc(r)) 3504 continue; 3505 } else { 3506 ret = rdtgroup_init_cat(s, rdtgrp->closid); 3507 if (ret < 0) 3508 goto out; 3509 } 3510 3511 ret = resctrl_arch_update_domains(r, rdtgrp->closid); 3512 if (ret < 0) { 3513 rdt_last_cmd_puts("Failed to initialize allocations\n"); 3514 goto out; 3515 } 3516 3517 } 3518 3519 rdtgrp->mode = RDT_MODE_SHAREABLE; 3520 3521 out: 3522 rdt_staged_configs_clear(); 3523 return ret; 3524 } 3525 3526 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp) 3527 { 3528 int ret; 3529 3530 if (!resctrl_arch_mon_capable()) 3531 return 0; 3532 3533 ret = alloc_rmid(rdtgrp->closid); 3534 if (ret < 0) { 3535 rdt_last_cmd_puts("Out of RMIDs\n"); 3536 return ret; 3537 } 3538 rdtgrp->mon.rmid = ret; 3539 3540 ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 3541 if (ret) { 3542 rdt_last_cmd_puts("kernfs subdir error\n"); 3543 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3544 return ret; 3545 } 3546 3547 return 0; 3548 } 3549 3550 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp) 3551 { 3552 if (resctrl_arch_mon_capable()) 3553 free_rmid(rgrp->closid, rgrp->mon.rmid); 3554 } 3555 3556 /* 3557 * We allow creating mon groups only with in a directory called "mon_groups" 3558 * which is present in every ctrl_mon group. Check if this is a valid 3559 * "mon_groups" directory. 3560 * 3561 * 1. The directory should be named "mon_groups". 3562 * 2. The mon group itself should "not" be named "mon_groups". 3563 * This makes sure "mon_groups" directory always has a ctrl_mon group 3564 * as parent. 3565 */ 3566 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 3567 { 3568 return (!strcmp(rdt_kn_name(kn), "mon_groups") && 3569 strcmp(name, "mon_groups")); 3570 } 3571 3572 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 3573 const char *name, umode_t mode, 3574 enum rdt_group_type rtype, struct rdtgroup **r) 3575 { 3576 struct rdtgroup *prdtgrp, *rdtgrp; 3577 unsigned long files = 0; 3578 struct kernfs_node *kn; 3579 int ret; 3580 3581 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 3582 if (!prdtgrp) { 3583 ret = -ENODEV; 3584 goto out_unlock; 3585 } 3586 3587 /* 3588 * Check that the parent directory for a monitor group is a "mon_groups" 3589 * directory. 3590 */ 3591 if (rtype == RDTMON_GROUP && !is_mon_groups(parent_kn, name)) { 3592 ret = -EPERM; 3593 goto out_unlock; 3594 } 3595 3596 if (rtype == RDTMON_GROUP && 3597 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3598 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 3599 ret = -EINVAL; 3600 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 3601 goto out_unlock; 3602 } 3603 3604 /* allocate the rdtgroup. */ 3605 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 3606 if (!rdtgrp) { 3607 ret = -ENOSPC; 3608 rdt_last_cmd_puts("Kernel out of memory\n"); 3609 goto out_unlock; 3610 } 3611 *r = rdtgrp; 3612 rdtgrp->mon.parent = prdtgrp; 3613 rdtgrp->type = rtype; 3614 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 3615 3616 /* kernfs creates the directory for rdtgrp */ 3617 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 3618 if (IS_ERR(kn)) { 3619 ret = PTR_ERR(kn); 3620 rdt_last_cmd_puts("kernfs create error\n"); 3621 goto out_free_rgrp; 3622 } 3623 rdtgrp->kn = kn; 3624 3625 /* 3626 * kernfs_remove() will drop the reference count on "kn" which 3627 * will free it. But we still need it to stick around for the 3628 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 3629 * which will be dropped by kernfs_put() in rdtgroup_remove(). 3630 */ 3631 kernfs_get(kn); 3632 3633 ret = rdtgroup_kn_set_ugid(kn); 3634 if (ret) { 3635 rdt_last_cmd_puts("kernfs perm error\n"); 3636 goto out_destroy; 3637 } 3638 3639 if (rtype == RDTCTRL_GROUP) { 3640 files = RFTYPE_BASE | RFTYPE_CTRL; 3641 if (resctrl_arch_mon_capable()) 3642 files |= RFTYPE_MON; 3643 } else { 3644 files = RFTYPE_BASE | RFTYPE_MON; 3645 } 3646 3647 ret = rdtgroup_add_files(kn, files); 3648 if (ret) { 3649 rdt_last_cmd_puts("kernfs fill error\n"); 3650 goto out_destroy; 3651 } 3652 3653 /* 3654 * The caller unlocks the parent_kn upon success. 3655 */ 3656 return 0; 3657 3658 out_destroy: 3659 kernfs_put(rdtgrp->kn); 3660 kernfs_remove(rdtgrp->kn); 3661 out_free_rgrp: 3662 kfree(rdtgrp); 3663 out_unlock: 3664 rdtgroup_kn_unlock(parent_kn); 3665 return ret; 3666 } 3667 3668 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 3669 { 3670 kernfs_remove(rgrp->kn); 3671 rdtgroup_remove(rgrp); 3672 } 3673 3674 /* 3675 * Create a monitor group under "mon_groups" directory of a control 3676 * and monitor group(ctrl_mon). This is a resource group 3677 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 3678 */ 3679 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 3680 const char *name, umode_t mode) 3681 { 3682 struct rdtgroup *rdtgrp, *prgrp; 3683 int ret; 3684 3685 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 3686 if (ret) 3687 return ret; 3688 3689 prgrp = rdtgrp->mon.parent; 3690 rdtgrp->closid = prgrp->closid; 3691 3692 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp); 3693 if (ret) { 3694 mkdir_rdt_prepare_clean(rdtgrp); 3695 goto out_unlock; 3696 } 3697 3698 kernfs_activate(rdtgrp->kn); 3699 3700 /* 3701 * Add the rdtgrp to the list of rdtgrps the parent 3702 * ctrl_mon group has to track. 3703 */ 3704 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 3705 3706 out_unlock: 3707 rdtgroup_kn_unlock(parent_kn); 3708 return ret; 3709 } 3710 3711 /* 3712 * These are rdtgroups created under the root directory. Can be used 3713 * to allocate and monitor resources. 3714 */ 3715 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 3716 const char *name, umode_t mode) 3717 { 3718 struct rdtgroup *rdtgrp; 3719 struct kernfs_node *kn; 3720 u32 closid; 3721 int ret; 3722 3723 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 3724 if (ret) 3725 return ret; 3726 3727 kn = rdtgrp->kn; 3728 ret = closid_alloc(); 3729 if (ret < 0) { 3730 rdt_last_cmd_puts("Out of CLOSIDs\n"); 3731 goto out_common_fail; 3732 } 3733 closid = ret; 3734 ret = 0; 3735 3736 rdtgrp->closid = closid; 3737 3738 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp); 3739 if (ret) 3740 goto out_closid_free; 3741 3742 kernfs_activate(rdtgrp->kn); 3743 3744 ret = rdtgroup_init_alloc(rdtgrp); 3745 if (ret < 0) 3746 goto out_rmid_free; 3747 3748 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 3749 3750 if (resctrl_arch_mon_capable()) { 3751 /* 3752 * Create an empty mon_groups directory to hold the subset 3753 * of tasks and cpus to monitor. 3754 */ 3755 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 3756 if (ret) { 3757 rdt_last_cmd_puts("kernfs subdir error\n"); 3758 goto out_del_list; 3759 } 3760 if (is_mba_sc(NULL)) 3761 rdtgrp->mba_mbps_event = mba_mbps_default_event; 3762 } 3763 3764 goto out_unlock; 3765 3766 out_del_list: 3767 list_del(&rdtgrp->rdtgroup_list); 3768 out_rmid_free: 3769 mkdir_rdt_prepare_rmid_free(rdtgrp); 3770 out_closid_free: 3771 closid_free(closid); 3772 out_common_fail: 3773 mkdir_rdt_prepare_clean(rdtgrp); 3774 out_unlock: 3775 rdtgroup_kn_unlock(parent_kn); 3776 return ret; 3777 } 3778 3779 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3780 umode_t mode) 3781 { 3782 /* Do not accept '\n' to avoid unparsable situation. */ 3783 if (strchr(name, '\n')) 3784 return -EINVAL; 3785 3786 /* 3787 * If the parent directory is the root directory and RDT 3788 * allocation is supported, add a control and monitoring 3789 * subdirectory 3790 */ 3791 if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn) 3792 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3793 3794 /* Else, attempt to add a monitoring subdirectory. */ 3795 if (resctrl_arch_mon_capable()) 3796 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3797 3798 return -EPERM; 3799 } 3800 3801 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3802 { 3803 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3804 u32 closid, rmid; 3805 int cpu; 3806 3807 /* Give any tasks back to the parent group */ 3808 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3809 3810 /* 3811 * Update per cpu closid/rmid of the moved CPUs first. 3812 * Note: the closid will not change, but the arch code still needs it. 3813 */ 3814 closid = prdtgrp->closid; 3815 rmid = prdtgrp->mon.rmid; 3816 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3817 resctrl_arch_set_cpu_default_closid_rmid(cpu, closid, rmid); 3818 3819 /* 3820 * Update the MSR on moved CPUs and CPUs which have moved 3821 * task running on them. 3822 */ 3823 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3824 update_closid_rmid(tmpmask, NULL); 3825 3826 rdtgrp->flags = RDT_DELETED; 3827 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3828 3829 /* 3830 * Remove the rdtgrp from the parent ctrl_mon group's list 3831 */ 3832 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3833 list_del(&rdtgrp->mon.crdtgrp_list); 3834 3835 kernfs_remove(rdtgrp->kn); 3836 3837 return 0; 3838 } 3839 3840 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3841 { 3842 rdtgrp->flags = RDT_DELETED; 3843 list_del(&rdtgrp->rdtgroup_list); 3844 3845 kernfs_remove(rdtgrp->kn); 3846 return 0; 3847 } 3848 3849 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3850 { 3851 u32 closid, rmid; 3852 int cpu; 3853 3854 /* Give any tasks back to the default group */ 3855 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3856 3857 /* Give any CPUs back to the default group */ 3858 cpumask_or(&rdtgroup_default.cpu_mask, 3859 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3860 3861 /* Update per cpu closid and rmid of the moved CPUs first */ 3862 closid = rdtgroup_default.closid; 3863 rmid = rdtgroup_default.mon.rmid; 3864 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3865 resctrl_arch_set_cpu_default_closid_rmid(cpu, closid, rmid); 3866 3867 /* 3868 * Update the MSR on moved CPUs and CPUs which have moved 3869 * task running on them. 3870 */ 3871 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3872 update_closid_rmid(tmpmask, NULL); 3873 3874 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3875 closid_free(rdtgrp->closid); 3876 3877 rdtgroup_ctrl_remove(rdtgrp); 3878 3879 /* 3880 * Free all the child monitor group rmids. 3881 */ 3882 free_all_child_rdtgrp(rdtgrp); 3883 3884 return 0; 3885 } 3886 3887 static struct kernfs_node *rdt_kn_parent(struct kernfs_node *kn) 3888 { 3889 /* 3890 * Valid within the RCU section it was obtained or while rdtgroup_mutex 3891 * is held. 3892 */ 3893 return rcu_dereference_check(kn->__parent, lockdep_is_held(&rdtgroup_mutex)); 3894 } 3895 3896 static int rdtgroup_rmdir(struct kernfs_node *kn) 3897 { 3898 struct kernfs_node *parent_kn; 3899 struct rdtgroup *rdtgrp; 3900 cpumask_var_t tmpmask; 3901 int ret = 0; 3902 3903 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3904 return -ENOMEM; 3905 3906 rdtgrp = rdtgroup_kn_lock_live(kn); 3907 if (!rdtgrp) { 3908 ret = -EPERM; 3909 goto out; 3910 } 3911 parent_kn = rdt_kn_parent(kn); 3912 3913 /* 3914 * If the rdtgroup is a ctrl_mon group and parent directory 3915 * is the root directory, remove the ctrl_mon group. 3916 * 3917 * If the rdtgroup is a mon group and parent directory 3918 * is a valid "mon_groups" directory, remove the mon group. 3919 */ 3920 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3921 rdtgrp != &rdtgroup_default) { 3922 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3923 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3924 ret = rdtgroup_ctrl_remove(rdtgrp); 3925 } else { 3926 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 3927 } 3928 } else if (rdtgrp->type == RDTMON_GROUP && 3929 is_mon_groups(parent_kn, rdt_kn_name(kn))) { 3930 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 3931 } else { 3932 ret = -EPERM; 3933 } 3934 3935 out: 3936 rdtgroup_kn_unlock(kn); 3937 free_cpumask_var(tmpmask); 3938 return ret; 3939 } 3940 3941 /** 3942 * mongrp_reparent() - replace parent CTRL_MON group of a MON group 3943 * @rdtgrp: the MON group whose parent should be replaced 3944 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp 3945 * @cpus: cpumask provided by the caller for use during this call 3946 * 3947 * Replaces the parent CTRL_MON group for a MON group, resulting in all member 3948 * tasks' CLOSID immediately changing to that of the new parent group. 3949 * Monitoring data for the group is unaffected by this operation. 3950 */ 3951 static void mongrp_reparent(struct rdtgroup *rdtgrp, 3952 struct rdtgroup *new_prdtgrp, 3953 cpumask_var_t cpus) 3954 { 3955 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3956 3957 WARN_ON(rdtgrp->type != RDTMON_GROUP); 3958 WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP); 3959 3960 /* Nothing to do when simply renaming a MON group. */ 3961 if (prdtgrp == new_prdtgrp) 3962 return; 3963 3964 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3965 list_move_tail(&rdtgrp->mon.crdtgrp_list, 3966 &new_prdtgrp->mon.crdtgrp_list); 3967 3968 rdtgrp->mon.parent = new_prdtgrp; 3969 rdtgrp->closid = new_prdtgrp->closid; 3970 3971 /* Propagate updated closid to all tasks in this group. */ 3972 rdt_move_group_tasks(rdtgrp, rdtgrp, cpus); 3973 3974 update_closid_rmid(cpus, NULL); 3975 } 3976 3977 static int rdtgroup_rename(struct kernfs_node *kn, 3978 struct kernfs_node *new_parent, const char *new_name) 3979 { 3980 struct kernfs_node *kn_parent; 3981 struct rdtgroup *new_prdtgrp; 3982 struct rdtgroup *rdtgrp; 3983 cpumask_var_t tmpmask; 3984 int ret; 3985 3986 rdtgrp = kernfs_to_rdtgroup(kn); 3987 new_prdtgrp = kernfs_to_rdtgroup(new_parent); 3988 if (!rdtgrp || !new_prdtgrp) 3989 return -ENOENT; 3990 3991 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */ 3992 rdtgroup_kn_get(rdtgrp, kn); 3993 rdtgroup_kn_get(new_prdtgrp, new_parent); 3994 3995 mutex_lock(&rdtgroup_mutex); 3996 3997 rdt_last_cmd_clear(); 3998 3999 /* 4000 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if 4001 * either kernfs_node is a file. 4002 */ 4003 if (kernfs_type(kn) != KERNFS_DIR || 4004 kernfs_type(new_parent) != KERNFS_DIR) { 4005 rdt_last_cmd_puts("Source and destination must be directories"); 4006 ret = -EPERM; 4007 goto out; 4008 } 4009 4010 if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) { 4011 ret = -ENOENT; 4012 goto out; 4013 } 4014 4015 kn_parent = rdt_kn_parent(kn); 4016 if (rdtgrp->type != RDTMON_GROUP || !kn_parent || 4017 !is_mon_groups(kn_parent, rdt_kn_name(kn))) { 4018 rdt_last_cmd_puts("Source must be a MON group\n"); 4019 ret = -EPERM; 4020 goto out; 4021 } 4022 4023 if (!is_mon_groups(new_parent, new_name)) { 4024 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n"); 4025 ret = -EPERM; 4026 goto out; 4027 } 4028 4029 /* 4030 * If the MON group is monitoring CPUs, the CPUs must be assigned to the 4031 * current parent CTRL_MON group and therefore cannot be assigned to 4032 * the new parent, making the move illegal. 4033 */ 4034 if (!cpumask_empty(&rdtgrp->cpu_mask) && 4035 rdtgrp->mon.parent != new_prdtgrp) { 4036 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n"); 4037 ret = -EPERM; 4038 goto out; 4039 } 4040 4041 /* 4042 * Allocate the cpumask for use in mongrp_reparent() to avoid the 4043 * possibility of failing to allocate it after kernfs_rename() has 4044 * succeeded. 4045 */ 4046 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) { 4047 ret = -ENOMEM; 4048 goto out; 4049 } 4050 4051 /* 4052 * Perform all input validation and allocations needed to ensure 4053 * mongrp_reparent() will succeed before calling kernfs_rename(), 4054 * otherwise it would be necessary to revert this call if 4055 * mongrp_reparent() failed. 4056 */ 4057 ret = kernfs_rename(kn, new_parent, new_name); 4058 if (!ret) 4059 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask); 4060 4061 free_cpumask_var(tmpmask); 4062 4063 out: 4064 mutex_unlock(&rdtgroup_mutex); 4065 rdtgroup_kn_put(rdtgrp, kn); 4066 rdtgroup_kn_put(new_prdtgrp, new_parent); 4067 return ret; 4068 } 4069 4070 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 4071 { 4072 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 4073 seq_puts(seq, ",cdp"); 4074 4075 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 4076 seq_puts(seq, ",cdpl2"); 4077 4078 if (is_mba_sc(resctrl_arch_get_resource(RDT_RESOURCE_MBA))) 4079 seq_puts(seq, ",mba_MBps"); 4080 4081 if (resctrl_debug) 4082 seq_puts(seq, ",debug"); 4083 4084 return 0; 4085 } 4086 4087 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 4088 .mkdir = rdtgroup_mkdir, 4089 .rmdir = rdtgroup_rmdir, 4090 .rename = rdtgroup_rename, 4091 .show_options = rdtgroup_show_options, 4092 }; 4093 4094 static int rdtgroup_setup_root(struct rdt_fs_context *ctx) 4095 { 4096 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 4097 KERNFS_ROOT_CREATE_DEACTIVATED | 4098 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 4099 &rdtgroup_default); 4100 if (IS_ERR(rdt_root)) 4101 return PTR_ERR(rdt_root); 4102 4103 ctx->kfc.root = rdt_root; 4104 rdtgroup_default.kn = kernfs_root_to_node(rdt_root); 4105 4106 return 0; 4107 } 4108 4109 static void rdtgroup_destroy_root(void) 4110 { 4111 kernfs_destroy_root(rdt_root); 4112 rdtgroup_default.kn = NULL; 4113 } 4114 4115 static void __init rdtgroup_setup_default(void) 4116 { 4117 mutex_lock(&rdtgroup_mutex); 4118 4119 rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID; 4120 rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID; 4121 rdtgroup_default.type = RDTCTRL_GROUP; 4122 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 4123 4124 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 4125 4126 mutex_unlock(&rdtgroup_mutex); 4127 } 4128 4129 static void domain_destroy_mon_state(struct rdt_mon_domain *d) 4130 { 4131 bitmap_free(d->rmid_busy_llc); 4132 kfree(d->mbm_total); 4133 kfree(d->mbm_local); 4134 } 4135 4136 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d) 4137 { 4138 mutex_lock(&rdtgroup_mutex); 4139 4140 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 4141 mba_sc_domain_destroy(r, d); 4142 4143 mutex_unlock(&rdtgroup_mutex); 4144 } 4145 4146 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d) 4147 { 4148 mutex_lock(&rdtgroup_mutex); 4149 4150 /* 4151 * If resctrl is mounted, remove all the 4152 * per domain monitor data directories. 4153 */ 4154 if (resctrl_mounted && resctrl_arch_mon_capable()) 4155 rmdir_mondata_subdir_allrdtgrp(r, d); 4156 4157 if (resctrl_is_mbm_enabled()) 4158 cancel_delayed_work(&d->mbm_over); 4159 if (resctrl_arch_is_llc_occupancy_enabled() && has_busy_rmid(d)) { 4160 /* 4161 * When a package is going down, forcefully 4162 * decrement rmid->ebusy. There is no way to know 4163 * that the L3 was flushed and hence may lead to 4164 * incorrect counts in rare scenarios, but leaving 4165 * the RMID as busy creates RMID leaks if the 4166 * package never comes back. 4167 */ 4168 __check_limbo(d, true); 4169 cancel_delayed_work(&d->cqm_limbo); 4170 } 4171 4172 domain_destroy_mon_state(d); 4173 4174 mutex_unlock(&rdtgroup_mutex); 4175 } 4176 4177 /** 4178 * domain_setup_mon_state() - Initialise domain monitoring structures. 4179 * @r: The resource for the newly online domain. 4180 * @d: The newly online domain. 4181 * 4182 * Allocate monitor resources that belong to this domain. 4183 * Called when the first CPU of a domain comes online, regardless of whether 4184 * the filesystem is mounted. 4185 * During boot this may be called before global allocations have been made by 4186 * resctrl_mon_resource_init(). 4187 * 4188 * Returns 0 for success, or -ENOMEM. 4189 */ 4190 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d) 4191 { 4192 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 4193 size_t tsize; 4194 4195 if (resctrl_arch_is_llc_occupancy_enabled()) { 4196 d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL); 4197 if (!d->rmid_busy_llc) 4198 return -ENOMEM; 4199 } 4200 if (resctrl_arch_is_mbm_total_enabled()) { 4201 tsize = sizeof(*d->mbm_total); 4202 d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL); 4203 if (!d->mbm_total) { 4204 bitmap_free(d->rmid_busy_llc); 4205 return -ENOMEM; 4206 } 4207 } 4208 if (resctrl_arch_is_mbm_local_enabled()) { 4209 tsize = sizeof(*d->mbm_local); 4210 d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL); 4211 if (!d->mbm_local) { 4212 bitmap_free(d->rmid_busy_llc); 4213 kfree(d->mbm_total); 4214 return -ENOMEM; 4215 } 4216 } 4217 4218 return 0; 4219 } 4220 4221 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d) 4222 { 4223 int err = 0; 4224 4225 mutex_lock(&rdtgroup_mutex); 4226 4227 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) { 4228 /* RDT_RESOURCE_MBA is never mon_capable */ 4229 err = mba_sc_domain_allocate(r, d); 4230 } 4231 4232 mutex_unlock(&rdtgroup_mutex); 4233 4234 return err; 4235 } 4236 4237 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d) 4238 { 4239 int err; 4240 4241 mutex_lock(&rdtgroup_mutex); 4242 4243 err = domain_setup_mon_state(r, d); 4244 if (err) 4245 goto out_unlock; 4246 4247 if (resctrl_is_mbm_enabled()) { 4248 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); 4249 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL, 4250 RESCTRL_PICK_ANY_CPU); 4251 } 4252 4253 if (resctrl_arch_is_llc_occupancy_enabled()) 4254 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); 4255 4256 /* 4257 * If the filesystem is not mounted then only the default resource group 4258 * exists. Creation of its directories is deferred until mount time 4259 * by rdt_get_tree() calling mkdir_mondata_all(). 4260 * If resctrl is mounted, add per domain monitor data directories. 4261 */ 4262 if (resctrl_mounted && resctrl_arch_mon_capable()) 4263 mkdir_mondata_subdir_allrdtgrp(r, d); 4264 4265 out_unlock: 4266 mutex_unlock(&rdtgroup_mutex); 4267 4268 return err; 4269 } 4270 4271 void resctrl_online_cpu(unsigned int cpu) 4272 { 4273 mutex_lock(&rdtgroup_mutex); 4274 /* The CPU is set in default rdtgroup after online. */ 4275 cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask); 4276 mutex_unlock(&rdtgroup_mutex); 4277 } 4278 4279 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu) 4280 { 4281 struct rdtgroup *cr; 4282 4283 list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) { 4284 if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask)) 4285 break; 4286 } 4287 } 4288 4289 static struct rdt_mon_domain *get_mon_domain_from_cpu(int cpu, 4290 struct rdt_resource *r) 4291 { 4292 struct rdt_mon_domain *d; 4293 4294 lockdep_assert_cpus_held(); 4295 4296 list_for_each_entry(d, &r->mon_domains, hdr.list) { 4297 /* Find the domain that contains this CPU */ 4298 if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask)) 4299 return d; 4300 } 4301 4302 return NULL; 4303 } 4304 4305 void resctrl_offline_cpu(unsigned int cpu) 4306 { 4307 struct rdt_resource *l3 = resctrl_arch_get_resource(RDT_RESOURCE_L3); 4308 struct rdt_mon_domain *d; 4309 struct rdtgroup *rdtgrp; 4310 4311 mutex_lock(&rdtgroup_mutex); 4312 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 4313 if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) { 4314 clear_childcpus(rdtgrp, cpu); 4315 break; 4316 } 4317 } 4318 4319 if (!l3->mon_capable) 4320 goto out_unlock; 4321 4322 d = get_mon_domain_from_cpu(cpu, l3); 4323 if (d) { 4324 if (resctrl_is_mbm_enabled() && cpu == d->mbm_work_cpu) { 4325 cancel_delayed_work(&d->mbm_over); 4326 mbm_setup_overflow_handler(d, 0, cpu); 4327 } 4328 if (resctrl_arch_is_llc_occupancy_enabled() && 4329 cpu == d->cqm_work_cpu && has_busy_rmid(d)) { 4330 cancel_delayed_work(&d->cqm_limbo); 4331 cqm_setup_limbo_handler(d, 0, cpu); 4332 } 4333 } 4334 4335 out_unlock: 4336 mutex_unlock(&rdtgroup_mutex); 4337 } 4338 4339 /* 4340 * resctrl_init - resctrl filesystem initialization 4341 * 4342 * Setup resctrl file system including set up root, create mount point, 4343 * register resctrl filesystem, and initialize files under root directory. 4344 * 4345 * Return: 0 on success or -errno 4346 */ 4347 int __init resctrl_init(void) 4348 { 4349 int ret = 0; 4350 4351 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 4352 sizeof(last_cmd_status_buf)); 4353 4354 rdtgroup_setup_default(); 4355 4356 thread_throttle_mode_init(); 4357 4358 ret = resctrl_mon_resource_init(); 4359 if (ret) 4360 return ret; 4361 4362 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 4363 if (ret) { 4364 resctrl_mon_resource_exit(); 4365 return ret; 4366 } 4367 4368 ret = register_filesystem(&rdt_fs_type); 4369 if (ret) 4370 goto cleanup_mountpoint; 4371 4372 /* 4373 * Adding the resctrl debugfs directory here may not be ideal since 4374 * it would let the resctrl debugfs directory appear on the debugfs 4375 * filesystem before the resctrl filesystem is mounted. 4376 * It may also be ok since that would enable debugging of RDT before 4377 * resctrl is mounted. 4378 * The reason why the debugfs directory is created here and not in 4379 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 4380 * during the debugfs directory creation also &sb->s_type->i_mutex_key 4381 * (the lockdep class of inode->i_rwsem). Other filesystem 4382 * interactions (eg. SyS_getdents) have the lock ordering: 4383 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 4384 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 4385 * is taken, thus creating dependency: 4386 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 4387 * issues considering the other two lock dependencies. 4388 * By creating the debugfs directory here we avoid a dependency 4389 * that may cause deadlock (even though file operations cannot 4390 * occur until the filesystem is mounted, but I do not know how to 4391 * tell lockdep that). 4392 */ 4393 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 4394 4395 return 0; 4396 4397 cleanup_mountpoint: 4398 sysfs_remove_mount_point(fs_kobj, "resctrl"); 4399 resctrl_mon_resource_exit(); 4400 4401 return ret; 4402 } 4403 4404 void __exit resctrl_exit(void) 4405 { 4406 debugfs_remove_recursive(debugfs_resctrl); 4407 unregister_filesystem(&rdt_fs_type); 4408 sysfs_remove_mount_point(fs_kobj, "resctrl"); 4409 4410 resctrl_mon_resource_exit(); 4411 } 4412