xref: /linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c (revision 570d58b12fbf7bae0ba72d929ccf914a4df5ca7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Allocation in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/debugfs.h>
17 #include <linux/fs.h>
18 #include <linux/fs_parser.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernfs.h>
21 #include <linux/seq_buf.h>
22 #include <linux/seq_file.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/task.h>
25 #include <linux/slab.h>
26 #include <linux/task_work.h>
27 #include <linux/user_namespace.h>
28 
29 #include <uapi/linux/magic.h>
30 
31 #include <asm/msr.h>
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 
39 /* Mutex to protect rdtgroup access. */
40 DEFINE_MUTEX(rdtgroup_mutex);
41 
42 static struct kernfs_root *rdt_root;
43 struct rdtgroup rdtgroup_default;
44 LIST_HEAD(rdt_all_groups);
45 
46 /* list of entries for the schemata file */
47 LIST_HEAD(resctrl_schema_all);
48 
49 /* The filesystem can only be mounted once. */
50 bool resctrl_mounted;
51 
52 /* Kernel fs node for "info" directory under root */
53 static struct kernfs_node *kn_info;
54 
55 /* Kernel fs node for "mon_groups" directory under root */
56 static struct kernfs_node *kn_mongrp;
57 
58 /* Kernel fs node for "mon_data" directory under root */
59 static struct kernfs_node *kn_mondata;
60 
61 /*
62  * Used to store the max resource name width to display the schemata names in
63  * a tabular format.
64  */
65 int max_name_width;
66 
67 static struct seq_buf last_cmd_status;
68 static char last_cmd_status_buf[512];
69 
70 static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
71 static void rdtgroup_destroy_root(void);
72 
73 struct dentry *debugfs_resctrl;
74 
75 /*
76  * Memory bandwidth monitoring event to use for the default CTRL_MON group
77  * and each new CTRL_MON group created by the user.  Only relevant when
78  * the filesystem is mounted with the "mba_MBps" option so it does not
79  * matter that it remains uninitialized on systems that do not support
80  * the "mba_MBps" option.
81  */
82 enum resctrl_event_id mba_mbps_default_event;
83 
84 static bool resctrl_debug;
85 
86 void rdt_last_cmd_clear(void)
87 {
88 	lockdep_assert_held(&rdtgroup_mutex);
89 	seq_buf_clear(&last_cmd_status);
90 }
91 
92 void rdt_last_cmd_puts(const char *s)
93 {
94 	lockdep_assert_held(&rdtgroup_mutex);
95 	seq_buf_puts(&last_cmd_status, s);
96 }
97 
98 void rdt_last_cmd_printf(const char *fmt, ...)
99 {
100 	va_list ap;
101 
102 	va_start(ap, fmt);
103 	lockdep_assert_held(&rdtgroup_mutex);
104 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
105 	va_end(ap);
106 }
107 
108 void rdt_staged_configs_clear(void)
109 {
110 	struct rdt_ctrl_domain *dom;
111 	struct rdt_resource *r;
112 
113 	lockdep_assert_held(&rdtgroup_mutex);
114 
115 	for_each_alloc_capable_rdt_resource(r) {
116 		list_for_each_entry(dom, &r->ctrl_domains, hdr.list)
117 			memset(dom->staged_config, 0, sizeof(dom->staged_config));
118 	}
119 }
120 
121 static bool resctrl_is_mbm_enabled(void)
122 {
123 	return (resctrl_arch_is_mbm_total_enabled() ||
124 		resctrl_arch_is_mbm_local_enabled());
125 }
126 
127 static bool resctrl_is_mbm_event(int e)
128 {
129 	return (e >= QOS_L3_MBM_TOTAL_EVENT_ID &&
130 		e <= QOS_L3_MBM_LOCAL_EVENT_ID);
131 }
132 
133 /*
134  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
135  * we can keep a bitmap of free CLOSIDs in a single integer.
136  *
137  * Using a global CLOSID across all resources has some advantages and
138  * some drawbacks:
139  * + We can simply set current's closid to assign a task to a resource
140  *   group.
141  * + Context switch code can avoid extra memory references deciding which
142  *   CLOSID to load into the PQR_ASSOC MSR
143  * - We give up some options in configuring resource groups across multi-socket
144  *   systems.
145  * - Our choices on how to configure each resource become progressively more
146  *   limited as the number of resources grows.
147  */
148 static unsigned long closid_free_map;
149 static int closid_free_map_len;
150 
151 int closids_supported(void)
152 {
153 	return closid_free_map_len;
154 }
155 
156 static void closid_init(void)
157 {
158 	struct resctrl_schema *s;
159 	u32 rdt_min_closid = 32;
160 
161 	/* Compute rdt_min_closid across all resources */
162 	list_for_each_entry(s, &resctrl_schema_all, list)
163 		rdt_min_closid = min(rdt_min_closid, s->num_closid);
164 
165 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
166 
167 	/* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
168 	__clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map);
169 	closid_free_map_len = rdt_min_closid;
170 }
171 
172 static int closid_alloc(void)
173 {
174 	int cleanest_closid;
175 	u32 closid;
176 
177 	lockdep_assert_held(&rdtgroup_mutex);
178 
179 	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID) &&
180 	    resctrl_arch_is_llc_occupancy_enabled()) {
181 		cleanest_closid = resctrl_find_cleanest_closid();
182 		if (cleanest_closid < 0)
183 			return cleanest_closid;
184 		closid = cleanest_closid;
185 	} else {
186 		closid = ffs(closid_free_map);
187 		if (closid == 0)
188 			return -ENOSPC;
189 		closid--;
190 	}
191 	__clear_bit(closid, &closid_free_map);
192 
193 	return closid;
194 }
195 
196 void closid_free(int closid)
197 {
198 	lockdep_assert_held(&rdtgroup_mutex);
199 
200 	__set_bit(closid, &closid_free_map);
201 }
202 
203 /**
204  * closid_allocated - test if provided closid is in use
205  * @closid: closid to be tested
206  *
207  * Return: true if @closid is currently associated with a resource group,
208  * false if @closid is free
209  */
210 bool closid_allocated(unsigned int closid)
211 {
212 	lockdep_assert_held(&rdtgroup_mutex);
213 
214 	return !test_bit(closid, &closid_free_map);
215 }
216 
217 /**
218  * rdtgroup_mode_by_closid - Return mode of resource group with closid
219  * @closid: closid if the resource group
220  *
221  * Each resource group is associated with a @closid. Here the mode
222  * of a resource group can be queried by searching for it using its closid.
223  *
224  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
225  */
226 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
227 {
228 	struct rdtgroup *rdtgrp;
229 
230 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
231 		if (rdtgrp->closid == closid)
232 			return rdtgrp->mode;
233 	}
234 
235 	return RDT_NUM_MODES;
236 }
237 
238 static const char * const rdt_mode_str[] = {
239 	[RDT_MODE_SHAREABLE]		= "shareable",
240 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
241 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
242 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
243 };
244 
245 /**
246  * rdtgroup_mode_str - Return the string representation of mode
247  * @mode: the resource group mode as &enum rdtgroup_mode
248  *
249  * Return: string representation of valid mode, "unknown" otherwise
250  */
251 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
252 {
253 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
254 		return "unknown";
255 
256 	return rdt_mode_str[mode];
257 }
258 
259 /* set uid and gid of rdtgroup dirs and files to that of the creator */
260 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
261 {
262 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
263 				.ia_uid = current_fsuid(),
264 				.ia_gid = current_fsgid(), };
265 
266 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
267 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
268 		return 0;
269 
270 	return kernfs_setattr(kn, &iattr);
271 }
272 
273 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
274 {
275 	struct kernfs_node *kn;
276 	int ret;
277 
278 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
279 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
280 				  0, rft->kf_ops, rft, NULL, NULL);
281 	if (IS_ERR(kn))
282 		return PTR_ERR(kn);
283 
284 	ret = rdtgroup_kn_set_ugid(kn);
285 	if (ret) {
286 		kernfs_remove(kn);
287 		return ret;
288 	}
289 
290 	return 0;
291 }
292 
293 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
294 {
295 	struct kernfs_open_file *of = m->private;
296 	struct rftype *rft = of->kn->priv;
297 
298 	if (rft->seq_show)
299 		return rft->seq_show(of, m, arg);
300 	return 0;
301 }
302 
303 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
304 				   size_t nbytes, loff_t off)
305 {
306 	struct rftype *rft = of->kn->priv;
307 
308 	if (rft->write)
309 		return rft->write(of, buf, nbytes, off);
310 
311 	return -EINVAL;
312 }
313 
314 static const struct kernfs_ops rdtgroup_kf_single_ops = {
315 	.atomic_write_len	= PAGE_SIZE,
316 	.write			= rdtgroup_file_write,
317 	.seq_show		= rdtgroup_seqfile_show,
318 };
319 
320 static const struct kernfs_ops kf_mondata_ops = {
321 	.atomic_write_len	= PAGE_SIZE,
322 	.seq_show		= rdtgroup_mondata_show,
323 };
324 
325 static bool is_cpu_list(struct kernfs_open_file *of)
326 {
327 	struct rftype *rft = of->kn->priv;
328 
329 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
330 }
331 
332 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
333 			      struct seq_file *s, void *v)
334 {
335 	struct rdtgroup *rdtgrp;
336 	struct cpumask *mask;
337 	int ret = 0;
338 
339 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
340 
341 	if (rdtgrp) {
342 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
343 			if (!rdtgrp->plr->d) {
344 				rdt_last_cmd_clear();
345 				rdt_last_cmd_puts("Cache domain offline\n");
346 				ret = -ENODEV;
347 			} else {
348 				mask = &rdtgrp->plr->d->hdr.cpu_mask;
349 				seq_printf(s, is_cpu_list(of) ?
350 					   "%*pbl\n" : "%*pb\n",
351 					   cpumask_pr_args(mask));
352 			}
353 		} else {
354 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
355 				   cpumask_pr_args(&rdtgrp->cpu_mask));
356 		}
357 	} else {
358 		ret = -ENOENT;
359 	}
360 	rdtgroup_kn_unlock(of->kn);
361 
362 	return ret;
363 }
364 
365 /*
366  * This is safe against resctrl_sched_in() called from __switch_to()
367  * because __switch_to() is executed with interrupts disabled. A local call
368  * from update_closid_rmid() is protected against __switch_to() because
369  * preemption is disabled.
370  */
371 void resctrl_arch_sync_cpu_closid_rmid(void *info)
372 {
373 	struct resctrl_cpu_defaults *r = info;
374 
375 	if (r) {
376 		this_cpu_write(pqr_state.default_closid, r->closid);
377 		this_cpu_write(pqr_state.default_rmid, r->rmid);
378 	}
379 
380 	/*
381 	 * We cannot unconditionally write the MSR because the current
382 	 * executing task might have its own closid selected. Just reuse
383 	 * the context switch code.
384 	 */
385 	resctrl_sched_in(current);
386 }
387 
388 /*
389  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
390  *
391  * Per task closids/rmids must have been set up before calling this function.
392  * @r may be NULL.
393  */
394 static void
395 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
396 {
397 	struct resctrl_cpu_defaults defaults, *p = NULL;
398 
399 	if (r) {
400 		defaults.closid = r->closid;
401 		defaults.rmid = r->mon.rmid;
402 		p = &defaults;
403 	}
404 
405 	on_each_cpu_mask(cpu_mask, resctrl_arch_sync_cpu_closid_rmid, p, 1);
406 }
407 
408 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
409 			  cpumask_var_t tmpmask)
410 {
411 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
412 	struct list_head *head;
413 
414 	/* Check whether cpus belong to parent ctrl group */
415 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
416 	if (!cpumask_empty(tmpmask)) {
417 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
418 		return -EINVAL;
419 	}
420 
421 	/* Check whether cpus are dropped from this group */
422 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
423 	if (!cpumask_empty(tmpmask)) {
424 		/* Give any dropped cpus to parent rdtgroup */
425 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
426 		update_closid_rmid(tmpmask, prgrp);
427 	}
428 
429 	/*
430 	 * If we added cpus, remove them from previous group that owned them
431 	 * and update per-cpu rmid
432 	 */
433 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
434 	if (!cpumask_empty(tmpmask)) {
435 		head = &prgrp->mon.crdtgrp_list;
436 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
437 			if (crgrp == rdtgrp)
438 				continue;
439 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
440 				       tmpmask);
441 		}
442 		update_closid_rmid(tmpmask, rdtgrp);
443 	}
444 
445 	/* Done pushing/pulling - update this group with new mask */
446 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
447 
448 	return 0;
449 }
450 
451 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
452 {
453 	struct rdtgroup *crgrp;
454 
455 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
456 	/* update the child mon group masks as well*/
457 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
458 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
459 }
460 
461 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
462 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
463 {
464 	struct rdtgroup *r, *crgrp;
465 	struct list_head *head;
466 
467 	/* Check whether cpus are dropped from this group */
468 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
469 	if (!cpumask_empty(tmpmask)) {
470 		/* Can't drop from default group */
471 		if (rdtgrp == &rdtgroup_default) {
472 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
473 			return -EINVAL;
474 		}
475 
476 		/* Give any dropped cpus to rdtgroup_default */
477 		cpumask_or(&rdtgroup_default.cpu_mask,
478 			   &rdtgroup_default.cpu_mask, tmpmask);
479 		update_closid_rmid(tmpmask, &rdtgroup_default);
480 	}
481 
482 	/*
483 	 * If we added cpus, remove them from previous group and
484 	 * the prev group's child groups that owned them
485 	 * and update per-cpu closid/rmid.
486 	 */
487 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
488 	if (!cpumask_empty(tmpmask)) {
489 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
490 			if (r == rdtgrp)
491 				continue;
492 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
493 			if (!cpumask_empty(tmpmask1))
494 				cpumask_rdtgrp_clear(r, tmpmask1);
495 		}
496 		update_closid_rmid(tmpmask, rdtgrp);
497 	}
498 
499 	/* Done pushing/pulling - update this group with new mask */
500 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
501 
502 	/*
503 	 * Clear child mon group masks since there is a new parent mask
504 	 * now and update the rmid for the cpus the child lost.
505 	 */
506 	head = &rdtgrp->mon.crdtgrp_list;
507 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
508 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
509 		update_closid_rmid(tmpmask, rdtgrp);
510 		cpumask_clear(&crgrp->cpu_mask);
511 	}
512 
513 	return 0;
514 }
515 
516 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
517 				   char *buf, size_t nbytes, loff_t off)
518 {
519 	cpumask_var_t tmpmask, newmask, tmpmask1;
520 	struct rdtgroup *rdtgrp;
521 	int ret;
522 
523 	if (!buf)
524 		return -EINVAL;
525 
526 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
527 		return -ENOMEM;
528 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
529 		free_cpumask_var(tmpmask);
530 		return -ENOMEM;
531 	}
532 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
533 		free_cpumask_var(tmpmask);
534 		free_cpumask_var(newmask);
535 		return -ENOMEM;
536 	}
537 
538 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
539 	if (!rdtgrp) {
540 		ret = -ENOENT;
541 		goto unlock;
542 	}
543 
544 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
545 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
546 		ret = -EINVAL;
547 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
548 		goto unlock;
549 	}
550 
551 	if (is_cpu_list(of))
552 		ret = cpulist_parse(buf, newmask);
553 	else
554 		ret = cpumask_parse(buf, newmask);
555 
556 	if (ret) {
557 		rdt_last_cmd_puts("Bad CPU list/mask\n");
558 		goto unlock;
559 	}
560 
561 	/* check that user didn't specify any offline cpus */
562 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
563 	if (!cpumask_empty(tmpmask)) {
564 		ret = -EINVAL;
565 		rdt_last_cmd_puts("Can only assign online CPUs\n");
566 		goto unlock;
567 	}
568 
569 	if (rdtgrp->type == RDTCTRL_GROUP)
570 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
571 	else if (rdtgrp->type == RDTMON_GROUP)
572 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
573 	else
574 		ret = -EINVAL;
575 
576 unlock:
577 	rdtgroup_kn_unlock(of->kn);
578 	free_cpumask_var(tmpmask);
579 	free_cpumask_var(newmask);
580 	free_cpumask_var(tmpmask1);
581 
582 	return ret ?: nbytes;
583 }
584 
585 /**
586  * rdtgroup_remove - the helper to remove resource group safely
587  * @rdtgrp: resource group to remove
588  *
589  * On resource group creation via a mkdir, an extra kernfs_node reference is
590  * taken to ensure that the rdtgroup structure remains accessible for the
591  * rdtgroup_kn_unlock() calls where it is removed.
592  *
593  * Drop the extra reference here, then free the rdtgroup structure.
594  *
595  * Return: void
596  */
597 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
598 {
599 	kernfs_put(rdtgrp->kn);
600 	kfree(rdtgrp);
601 }
602 
603 static void _update_task_closid_rmid(void *task)
604 {
605 	/*
606 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
607 	 * Otherwise, the MSR is updated when the task is scheduled in.
608 	 */
609 	if (task == current)
610 		resctrl_sched_in(task);
611 }
612 
613 static void update_task_closid_rmid(struct task_struct *t)
614 {
615 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
616 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
617 	else
618 		_update_task_closid_rmid(t);
619 }
620 
621 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp)
622 {
623 	u32 closid, rmid = rdtgrp->mon.rmid;
624 
625 	if (rdtgrp->type == RDTCTRL_GROUP)
626 		closid = rdtgrp->closid;
627 	else if (rdtgrp->type == RDTMON_GROUP)
628 		closid = rdtgrp->mon.parent->closid;
629 	else
630 		return false;
631 
632 	return resctrl_arch_match_closid(tsk, closid) &&
633 	       resctrl_arch_match_rmid(tsk, closid, rmid);
634 }
635 
636 static int __rdtgroup_move_task(struct task_struct *tsk,
637 				struct rdtgroup *rdtgrp)
638 {
639 	/* If the task is already in rdtgrp, no need to move the task. */
640 	if (task_in_rdtgroup(tsk, rdtgrp))
641 		return 0;
642 
643 	/*
644 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
645 	 * updated by them.
646 	 *
647 	 * For ctrl_mon groups, move both closid and rmid.
648 	 * For monitor groups, can move the tasks only from
649 	 * their parent CTRL group.
650 	 */
651 	if (rdtgrp->type == RDTMON_GROUP &&
652 	    !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) {
653 		rdt_last_cmd_puts("Can't move task to different control group\n");
654 		return -EINVAL;
655 	}
656 
657 	if (rdtgrp->type == RDTMON_GROUP)
658 		resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid,
659 					     rdtgrp->mon.rmid);
660 	else
661 		resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid,
662 					     rdtgrp->mon.rmid);
663 
664 	/*
665 	 * Ensure the task's closid and rmid are written before determining if
666 	 * the task is current that will decide if it will be interrupted.
667 	 * This pairs with the full barrier between the rq->curr update and
668 	 * resctrl_sched_in() during context switch.
669 	 */
670 	smp_mb();
671 
672 	/*
673 	 * By now, the task's closid and rmid are set. If the task is current
674 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
675 	 * group go into effect. If the task is not current, the MSR will be
676 	 * updated when the task is scheduled in.
677 	 */
678 	update_task_closid_rmid(tsk);
679 
680 	return 0;
681 }
682 
683 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
684 {
685 	return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) &&
686 		resctrl_arch_match_closid(t, r->closid));
687 }
688 
689 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
690 {
691 	return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) &&
692 		resctrl_arch_match_rmid(t, r->mon.parent->closid,
693 					r->mon.rmid));
694 }
695 
696 /**
697  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
698  * @r: Resource group
699  *
700  * Return: 1 if tasks have been assigned to @r, 0 otherwise
701  */
702 int rdtgroup_tasks_assigned(struct rdtgroup *r)
703 {
704 	struct task_struct *p, *t;
705 	int ret = 0;
706 
707 	lockdep_assert_held(&rdtgroup_mutex);
708 
709 	rcu_read_lock();
710 	for_each_process_thread(p, t) {
711 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
712 			ret = 1;
713 			break;
714 		}
715 	}
716 	rcu_read_unlock();
717 
718 	return ret;
719 }
720 
721 static int rdtgroup_task_write_permission(struct task_struct *task,
722 					  struct kernfs_open_file *of)
723 {
724 	const struct cred *tcred = get_task_cred(task);
725 	const struct cred *cred = current_cred();
726 	int ret = 0;
727 
728 	/*
729 	 * Even if we're attaching all tasks in the thread group, we only
730 	 * need to check permissions on one of them.
731 	 */
732 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
733 	    !uid_eq(cred->euid, tcred->uid) &&
734 	    !uid_eq(cred->euid, tcred->suid)) {
735 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
736 		ret = -EPERM;
737 	}
738 
739 	put_cred(tcred);
740 	return ret;
741 }
742 
743 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
744 			      struct kernfs_open_file *of)
745 {
746 	struct task_struct *tsk;
747 	int ret;
748 
749 	rcu_read_lock();
750 	if (pid) {
751 		tsk = find_task_by_vpid(pid);
752 		if (!tsk) {
753 			rcu_read_unlock();
754 			rdt_last_cmd_printf("No task %d\n", pid);
755 			return -ESRCH;
756 		}
757 	} else {
758 		tsk = current;
759 	}
760 
761 	get_task_struct(tsk);
762 	rcu_read_unlock();
763 
764 	ret = rdtgroup_task_write_permission(tsk, of);
765 	if (!ret)
766 		ret = __rdtgroup_move_task(tsk, rdtgrp);
767 
768 	put_task_struct(tsk);
769 	return ret;
770 }
771 
772 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
773 				    char *buf, size_t nbytes, loff_t off)
774 {
775 	struct rdtgroup *rdtgrp;
776 	char *pid_str;
777 	int ret = 0;
778 	pid_t pid;
779 
780 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
781 	if (!rdtgrp) {
782 		rdtgroup_kn_unlock(of->kn);
783 		return -ENOENT;
784 	}
785 	rdt_last_cmd_clear();
786 
787 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
788 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
789 		ret = -EINVAL;
790 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
791 		goto unlock;
792 	}
793 
794 	while (buf && buf[0] != '\0' && buf[0] != '\n') {
795 		pid_str = strim(strsep(&buf, ","));
796 
797 		if (kstrtoint(pid_str, 0, &pid)) {
798 			rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
799 			ret = -EINVAL;
800 			break;
801 		}
802 
803 		if (pid < 0) {
804 			rdt_last_cmd_printf("Invalid pid %d\n", pid);
805 			ret = -EINVAL;
806 			break;
807 		}
808 
809 		ret = rdtgroup_move_task(pid, rdtgrp, of);
810 		if (ret) {
811 			rdt_last_cmd_printf("Error while processing task %d\n", pid);
812 			break;
813 		}
814 	}
815 
816 unlock:
817 	rdtgroup_kn_unlock(of->kn);
818 
819 	return ret ?: nbytes;
820 }
821 
822 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
823 {
824 	struct task_struct *p, *t;
825 	pid_t pid;
826 
827 	rcu_read_lock();
828 	for_each_process_thread(p, t) {
829 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
830 			pid = task_pid_vnr(t);
831 			if (pid)
832 				seq_printf(s, "%d\n", pid);
833 		}
834 	}
835 	rcu_read_unlock();
836 }
837 
838 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
839 			       struct seq_file *s, void *v)
840 {
841 	struct rdtgroup *rdtgrp;
842 	int ret = 0;
843 
844 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
845 	if (rdtgrp)
846 		show_rdt_tasks(rdtgrp, s);
847 	else
848 		ret = -ENOENT;
849 	rdtgroup_kn_unlock(of->kn);
850 
851 	return ret;
852 }
853 
854 static int rdtgroup_closid_show(struct kernfs_open_file *of,
855 				struct seq_file *s, void *v)
856 {
857 	struct rdtgroup *rdtgrp;
858 	int ret = 0;
859 
860 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
861 	if (rdtgrp)
862 		seq_printf(s, "%u\n", rdtgrp->closid);
863 	else
864 		ret = -ENOENT;
865 	rdtgroup_kn_unlock(of->kn);
866 
867 	return ret;
868 }
869 
870 static int rdtgroup_rmid_show(struct kernfs_open_file *of,
871 			      struct seq_file *s, void *v)
872 {
873 	struct rdtgroup *rdtgrp;
874 	int ret = 0;
875 
876 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
877 	if (rdtgrp)
878 		seq_printf(s, "%u\n", rdtgrp->mon.rmid);
879 	else
880 		ret = -ENOENT;
881 	rdtgroup_kn_unlock(of->kn);
882 
883 	return ret;
884 }
885 
886 #ifdef CONFIG_PROC_CPU_RESCTRL
887 
888 /*
889  * A task can only be part of one resctrl control group and of one monitor
890  * group which is associated to that control group.
891  *
892  * 1)   res:
893  *      mon:
894  *
895  *    resctrl is not available.
896  *
897  * 2)   res:/
898  *      mon:
899  *
900  *    Task is part of the root resctrl control group, and it is not associated
901  *    to any monitor group.
902  *
903  * 3)  res:/
904  *     mon:mon0
905  *
906  *    Task is part of the root resctrl control group and monitor group mon0.
907  *
908  * 4)  res:group0
909  *     mon:
910  *
911  *    Task is part of resctrl control group group0, and it is not associated
912  *    to any monitor group.
913  *
914  * 5) res:group0
915  *    mon:mon1
916  *
917  *    Task is part of resctrl control group group0 and monitor group mon1.
918  */
919 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
920 		      struct pid *pid, struct task_struct *tsk)
921 {
922 	struct rdtgroup *rdtg;
923 	int ret = 0;
924 
925 	mutex_lock(&rdtgroup_mutex);
926 
927 	/* Return empty if resctrl has not been mounted. */
928 	if (!resctrl_mounted) {
929 		seq_puts(s, "res:\nmon:\n");
930 		goto unlock;
931 	}
932 
933 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
934 		struct rdtgroup *crg;
935 
936 		/*
937 		 * Task information is only relevant for shareable
938 		 * and exclusive groups.
939 		 */
940 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
941 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
942 			continue;
943 
944 		if (!resctrl_arch_match_closid(tsk, rdtg->closid))
945 			continue;
946 
947 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
948 			   rdt_kn_name(rdtg->kn));
949 		seq_puts(s, "mon:");
950 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
951 				    mon.crdtgrp_list) {
952 			if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid,
953 						     crg->mon.rmid))
954 				continue;
955 			seq_printf(s, "%s", rdt_kn_name(crg->kn));
956 			break;
957 		}
958 		seq_putc(s, '\n');
959 		goto unlock;
960 	}
961 	/*
962 	 * The above search should succeed. Otherwise return
963 	 * with an error.
964 	 */
965 	ret = -ENOENT;
966 unlock:
967 	mutex_unlock(&rdtgroup_mutex);
968 
969 	return ret;
970 }
971 #endif
972 
973 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
974 				    struct seq_file *seq, void *v)
975 {
976 	int len;
977 
978 	mutex_lock(&rdtgroup_mutex);
979 	len = seq_buf_used(&last_cmd_status);
980 	if (len)
981 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
982 	else
983 		seq_puts(seq, "ok\n");
984 	mutex_unlock(&rdtgroup_mutex);
985 	return 0;
986 }
987 
988 static void *rdt_kn_parent_priv(struct kernfs_node *kn)
989 {
990 	/*
991 	 * The parent pointer is only valid within RCU section since it can be
992 	 * replaced.
993 	 */
994 	guard(rcu)();
995 	return rcu_dereference(kn->__parent)->priv;
996 }
997 
998 static int rdt_num_closids_show(struct kernfs_open_file *of,
999 				struct seq_file *seq, void *v)
1000 {
1001 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1002 
1003 	seq_printf(seq, "%u\n", s->num_closid);
1004 	return 0;
1005 }
1006 
1007 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
1008 			     struct seq_file *seq, void *v)
1009 {
1010 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1011 	struct rdt_resource *r = s->res;
1012 
1013 	seq_printf(seq, "%x\n", resctrl_get_default_ctrl(r));
1014 	return 0;
1015 }
1016 
1017 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
1018 			     struct seq_file *seq, void *v)
1019 {
1020 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1021 	struct rdt_resource *r = s->res;
1022 
1023 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
1024 	return 0;
1025 }
1026 
1027 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
1028 				   struct seq_file *seq, void *v)
1029 {
1030 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1031 	struct rdt_resource *r = s->res;
1032 
1033 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
1034 	return 0;
1035 }
1036 
1037 /*
1038  * rdt_bit_usage_show - Display current usage of resources
1039  *
1040  * A domain is a shared resource that can now be allocated differently. Here
1041  * we display the current regions of the domain as an annotated bitmask.
1042  * For each domain of this resource its allocation bitmask
1043  * is annotated as below to indicate the current usage of the corresponding bit:
1044  *   0 - currently unused
1045  *   X - currently available for sharing and used by software and hardware
1046  *   H - currently used by hardware only but available for software use
1047  *   S - currently used and shareable by software only
1048  *   E - currently used exclusively by one resource group
1049  *   P - currently pseudo-locked by one resource group
1050  */
1051 static int rdt_bit_usage_show(struct kernfs_open_file *of,
1052 			      struct seq_file *seq, void *v)
1053 {
1054 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1055 	/*
1056 	 * Use unsigned long even though only 32 bits are used to ensure
1057 	 * test_bit() is used safely.
1058 	 */
1059 	unsigned long sw_shareable = 0, hw_shareable = 0;
1060 	unsigned long exclusive = 0, pseudo_locked = 0;
1061 	struct rdt_resource *r = s->res;
1062 	struct rdt_ctrl_domain *dom;
1063 	int i, hwb, swb, excl, psl;
1064 	enum rdtgrp_mode mode;
1065 	bool sep = false;
1066 	u32 ctrl_val;
1067 
1068 	cpus_read_lock();
1069 	mutex_lock(&rdtgroup_mutex);
1070 	hw_shareable = r->cache.shareable_bits;
1071 	list_for_each_entry(dom, &r->ctrl_domains, hdr.list) {
1072 		if (sep)
1073 			seq_putc(seq, ';');
1074 		sw_shareable = 0;
1075 		exclusive = 0;
1076 		seq_printf(seq, "%d=", dom->hdr.id);
1077 		for (i = 0; i < closids_supported(); i++) {
1078 			if (!closid_allocated(i))
1079 				continue;
1080 			ctrl_val = resctrl_arch_get_config(r, dom, i,
1081 							   s->conf_type);
1082 			mode = rdtgroup_mode_by_closid(i);
1083 			switch (mode) {
1084 			case RDT_MODE_SHAREABLE:
1085 				sw_shareable |= ctrl_val;
1086 				break;
1087 			case RDT_MODE_EXCLUSIVE:
1088 				exclusive |= ctrl_val;
1089 				break;
1090 			case RDT_MODE_PSEUDO_LOCKSETUP:
1091 			/*
1092 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1093 			 * here but not included since the CBM
1094 			 * associated with this CLOSID in this mode
1095 			 * is not initialized and no task or cpu can be
1096 			 * assigned this CLOSID.
1097 			 */
1098 				break;
1099 			case RDT_MODE_PSEUDO_LOCKED:
1100 			case RDT_NUM_MODES:
1101 				WARN(1,
1102 				     "invalid mode for closid %d\n", i);
1103 				break;
1104 			}
1105 		}
1106 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1107 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1108 			hwb = test_bit(i, &hw_shareable);
1109 			swb = test_bit(i, &sw_shareable);
1110 			excl = test_bit(i, &exclusive);
1111 			psl = test_bit(i, &pseudo_locked);
1112 			if (hwb && swb)
1113 				seq_putc(seq, 'X');
1114 			else if (hwb && !swb)
1115 				seq_putc(seq, 'H');
1116 			else if (!hwb && swb)
1117 				seq_putc(seq, 'S');
1118 			else if (excl)
1119 				seq_putc(seq, 'E');
1120 			else if (psl)
1121 				seq_putc(seq, 'P');
1122 			else /* Unused bits remain */
1123 				seq_putc(seq, '0');
1124 		}
1125 		sep = true;
1126 	}
1127 	seq_putc(seq, '\n');
1128 	mutex_unlock(&rdtgroup_mutex);
1129 	cpus_read_unlock();
1130 	return 0;
1131 }
1132 
1133 static int rdt_min_bw_show(struct kernfs_open_file *of,
1134 			     struct seq_file *seq, void *v)
1135 {
1136 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1137 	struct rdt_resource *r = s->res;
1138 
1139 	seq_printf(seq, "%u\n", r->membw.min_bw);
1140 	return 0;
1141 }
1142 
1143 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1144 			      struct seq_file *seq, void *v)
1145 {
1146 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1147 
1148 	seq_printf(seq, "%d\n", r->num_rmid);
1149 
1150 	return 0;
1151 }
1152 
1153 static int rdt_mon_features_show(struct kernfs_open_file *of,
1154 				 struct seq_file *seq, void *v)
1155 {
1156 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1157 	struct mon_evt *mevt;
1158 
1159 	list_for_each_entry(mevt, &r->evt_list, list) {
1160 		seq_printf(seq, "%s\n", mevt->name);
1161 		if (mevt->configurable)
1162 			seq_printf(seq, "%s_config\n", mevt->name);
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1169 			     struct seq_file *seq, void *v)
1170 {
1171 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1172 	struct rdt_resource *r = s->res;
1173 
1174 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1175 	return 0;
1176 }
1177 
1178 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1179 			     struct seq_file *seq, void *v)
1180 {
1181 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1182 	struct rdt_resource *r = s->res;
1183 
1184 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1185 	return 0;
1186 }
1187 
1188 static int max_threshold_occ_show(struct kernfs_open_file *of,
1189 				  struct seq_file *seq, void *v)
1190 {
1191 	seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1192 
1193 	return 0;
1194 }
1195 
1196 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1197 					 struct seq_file *seq, void *v)
1198 {
1199 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1200 	struct rdt_resource *r = s->res;
1201 
1202 	switch (r->membw.throttle_mode) {
1203 	case THREAD_THROTTLE_PER_THREAD:
1204 		seq_puts(seq, "per-thread\n");
1205 		return 0;
1206 	case THREAD_THROTTLE_MAX:
1207 		seq_puts(seq, "max\n");
1208 		return 0;
1209 	case THREAD_THROTTLE_UNDEFINED:
1210 		seq_puts(seq, "undefined\n");
1211 		return 0;
1212 	}
1213 
1214 	WARN_ON_ONCE(1);
1215 
1216 	return 0;
1217 }
1218 
1219 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1220 				       char *buf, size_t nbytes, loff_t off)
1221 {
1222 	unsigned int bytes;
1223 	int ret;
1224 
1225 	ret = kstrtouint(buf, 0, &bytes);
1226 	if (ret)
1227 		return ret;
1228 
1229 	if (bytes > resctrl_rmid_realloc_limit)
1230 		return -EINVAL;
1231 
1232 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1233 
1234 	return nbytes;
1235 }
1236 
1237 /*
1238  * rdtgroup_mode_show - Display mode of this resource group
1239  */
1240 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1241 			      struct seq_file *s, void *v)
1242 {
1243 	struct rdtgroup *rdtgrp;
1244 
1245 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1246 	if (!rdtgrp) {
1247 		rdtgroup_kn_unlock(of->kn);
1248 		return -ENOENT;
1249 	}
1250 
1251 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1252 
1253 	rdtgroup_kn_unlock(of->kn);
1254 	return 0;
1255 }
1256 
1257 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1258 {
1259 	switch (my_type) {
1260 	case CDP_CODE:
1261 		return CDP_DATA;
1262 	case CDP_DATA:
1263 		return CDP_CODE;
1264 	default:
1265 	case CDP_NONE:
1266 		return CDP_NONE;
1267 	}
1268 }
1269 
1270 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1271 					struct seq_file *seq, void *v)
1272 {
1273 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1274 	struct rdt_resource *r = s->res;
1275 
1276 	seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1277 
1278 	return 0;
1279 }
1280 
1281 /**
1282  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1283  * @r: Resource to which domain instance @d belongs.
1284  * @d: The domain instance for which @closid is being tested.
1285  * @cbm: Capacity bitmask being tested.
1286  * @closid: Intended closid for @cbm.
1287  * @type: CDP type of @r.
1288  * @exclusive: Only check if overlaps with exclusive resource groups
1289  *
1290  * Checks if provided @cbm intended to be used for @closid on domain
1291  * @d overlaps with any other closids or other hardware usage associated
1292  * with this domain. If @exclusive is true then only overlaps with
1293  * resource groups in exclusive mode will be considered. If @exclusive
1294  * is false then overlaps with any resource group or hardware entities
1295  * will be considered.
1296  *
1297  * @cbm is unsigned long, even if only 32 bits are used, to make the
1298  * bitmap functions work correctly.
1299  *
1300  * Return: false if CBM does not overlap, true if it does.
1301  */
1302 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d,
1303 				    unsigned long cbm, int closid,
1304 				    enum resctrl_conf_type type, bool exclusive)
1305 {
1306 	enum rdtgrp_mode mode;
1307 	unsigned long ctrl_b;
1308 	int i;
1309 
1310 	/* Check for any overlap with regions used by hardware directly */
1311 	if (!exclusive) {
1312 		ctrl_b = r->cache.shareable_bits;
1313 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1314 			return true;
1315 	}
1316 
1317 	/* Check for overlap with other resource groups */
1318 	for (i = 0; i < closids_supported(); i++) {
1319 		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1320 		mode = rdtgroup_mode_by_closid(i);
1321 		if (closid_allocated(i) && i != closid &&
1322 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1323 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1324 				if (exclusive) {
1325 					if (mode == RDT_MODE_EXCLUSIVE)
1326 						return true;
1327 					continue;
1328 				}
1329 				return true;
1330 			}
1331 		}
1332 	}
1333 
1334 	return false;
1335 }
1336 
1337 /**
1338  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1339  * @s: Schema for the resource to which domain instance @d belongs.
1340  * @d: The domain instance for which @closid is being tested.
1341  * @cbm: Capacity bitmask being tested.
1342  * @closid: Intended closid for @cbm.
1343  * @exclusive: Only check if overlaps with exclusive resource groups
1344  *
1345  * Resources that can be allocated using a CBM can use the CBM to control
1346  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1347  * for overlap. Overlap test is not limited to the specific resource for
1348  * which the CBM is intended though - when dealing with CDP resources that
1349  * share the underlying hardware the overlap check should be performed on
1350  * the CDP resource sharing the hardware also.
1351  *
1352  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1353  * overlap test.
1354  *
1355  * Return: true if CBM overlap detected, false if there is no overlap
1356  */
1357 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d,
1358 			   unsigned long cbm, int closid, bool exclusive)
1359 {
1360 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1361 	struct rdt_resource *r = s->res;
1362 
1363 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1364 				    exclusive))
1365 		return true;
1366 
1367 	if (!resctrl_arch_get_cdp_enabled(r->rid))
1368 		return false;
1369 	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1370 }
1371 
1372 /**
1373  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1374  * @rdtgrp: Resource group identified through its closid.
1375  *
1376  * An exclusive resource group implies that there should be no sharing of
1377  * its allocated resources. At the time this group is considered to be
1378  * exclusive this test can determine if its current schemata supports this
1379  * setting by testing for overlap with all other resource groups.
1380  *
1381  * Return: true if resource group can be exclusive, false if there is overlap
1382  * with allocations of other resource groups and thus this resource group
1383  * cannot be exclusive.
1384  */
1385 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1386 {
1387 	int closid = rdtgrp->closid;
1388 	struct rdt_ctrl_domain *d;
1389 	struct resctrl_schema *s;
1390 	struct rdt_resource *r;
1391 	bool has_cache = false;
1392 	u32 ctrl;
1393 
1394 	/* Walking r->domains, ensure it can't race with cpuhp */
1395 	lockdep_assert_cpus_held();
1396 
1397 	list_for_each_entry(s, &resctrl_schema_all, list) {
1398 		r = s->res;
1399 		if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1400 			continue;
1401 		has_cache = true;
1402 		list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1403 			ctrl = resctrl_arch_get_config(r, d, closid,
1404 						       s->conf_type);
1405 			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1406 				rdt_last_cmd_puts("Schemata overlaps\n");
1407 				return false;
1408 			}
1409 		}
1410 	}
1411 
1412 	if (!has_cache) {
1413 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1414 		return false;
1415 	}
1416 
1417 	return true;
1418 }
1419 
1420 /*
1421  * rdtgroup_mode_write - Modify the resource group's mode
1422  */
1423 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1424 				   char *buf, size_t nbytes, loff_t off)
1425 {
1426 	struct rdtgroup *rdtgrp;
1427 	enum rdtgrp_mode mode;
1428 	int ret = 0;
1429 
1430 	/* Valid input requires a trailing newline */
1431 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1432 		return -EINVAL;
1433 	buf[nbytes - 1] = '\0';
1434 
1435 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1436 	if (!rdtgrp) {
1437 		rdtgroup_kn_unlock(of->kn);
1438 		return -ENOENT;
1439 	}
1440 
1441 	rdt_last_cmd_clear();
1442 
1443 	mode = rdtgrp->mode;
1444 
1445 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1446 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1447 	    (!strcmp(buf, "pseudo-locksetup") &&
1448 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1449 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1450 		goto out;
1451 
1452 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1453 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1454 		ret = -EINVAL;
1455 		goto out;
1456 	}
1457 
1458 	if (!strcmp(buf, "shareable")) {
1459 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1460 			ret = rdtgroup_locksetup_exit(rdtgrp);
1461 			if (ret)
1462 				goto out;
1463 		}
1464 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1465 	} else if (!strcmp(buf, "exclusive")) {
1466 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1467 			ret = -EINVAL;
1468 			goto out;
1469 		}
1470 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1471 			ret = rdtgroup_locksetup_exit(rdtgrp);
1472 			if (ret)
1473 				goto out;
1474 		}
1475 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1476 	} else if (IS_ENABLED(CONFIG_RESCTRL_FS_PSEUDO_LOCK) &&
1477 		   !strcmp(buf, "pseudo-locksetup")) {
1478 		ret = rdtgroup_locksetup_enter(rdtgrp);
1479 		if (ret)
1480 			goto out;
1481 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1482 	} else {
1483 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1484 		ret = -EINVAL;
1485 	}
1486 
1487 out:
1488 	rdtgroup_kn_unlock(of->kn);
1489 	return ret ?: nbytes;
1490 }
1491 
1492 /**
1493  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1494  * @r: RDT resource to which @d belongs.
1495  * @d: RDT domain instance.
1496  * @cbm: bitmask for which the size should be computed.
1497  *
1498  * The bitmask provided associated with the RDT domain instance @d will be
1499  * translated into how many bytes it represents. The size in bytes is
1500  * computed by first dividing the total cache size by the CBM length to
1501  * determine how many bytes each bit in the bitmask represents. The result
1502  * is multiplied with the number of bits set in the bitmask.
1503  *
1504  * @cbm is unsigned long, even if only 32 bits are used to make the
1505  * bitmap functions work correctly.
1506  */
1507 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1508 				  struct rdt_ctrl_domain *d, unsigned long cbm)
1509 {
1510 	unsigned int size = 0;
1511 	struct cacheinfo *ci;
1512 	int num_b;
1513 
1514 	if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE))
1515 		return size;
1516 
1517 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1518 	ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope);
1519 	if (ci)
1520 		size = ci->size / r->cache.cbm_len * num_b;
1521 
1522 	return size;
1523 }
1524 
1525 /*
1526  * rdtgroup_size_show - Display size in bytes of allocated regions
1527  *
1528  * The "size" file mirrors the layout of the "schemata" file, printing the
1529  * size in bytes of each region instead of the capacity bitmask.
1530  */
1531 static int rdtgroup_size_show(struct kernfs_open_file *of,
1532 			      struct seq_file *s, void *v)
1533 {
1534 	struct resctrl_schema *schema;
1535 	enum resctrl_conf_type type;
1536 	struct rdt_ctrl_domain *d;
1537 	struct rdtgroup *rdtgrp;
1538 	struct rdt_resource *r;
1539 	unsigned int size;
1540 	int ret = 0;
1541 	u32 closid;
1542 	bool sep;
1543 	u32 ctrl;
1544 
1545 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1546 	if (!rdtgrp) {
1547 		rdtgroup_kn_unlock(of->kn);
1548 		return -ENOENT;
1549 	}
1550 
1551 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1552 		if (!rdtgrp->plr->d) {
1553 			rdt_last_cmd_clear();
1554 			rdt_last_cmd_puts("Cache domain offline\n");
1555 			ret = -ENODEV;
1556 		} else {
1557 			seq_printf(s, "%*s:", max_name_width,
1558 				   rdtgrp->plr->s->name);
1559 			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1560 						    rdtgrp->plr->d,
1561 						    rdtgrp->plr->cbm);
1562 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size);
1563 		}
1564 		goto out;
1565 	}
1566 
1567 	closid = rdtgrp->closid;
1568 
1569 	list_for_each_entry(schema, &resctrl_schema_all, list) {
1570 		r = schema->res;
1571 		type = schema->conf_type;
1572 		sep = false;
1573 		seq_printf(s, "%*s:", max_name_width, schema->name);
1574 		list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1575 			if (sep)
1576 				seq_putc(s, ';');
1577 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1578 				size = 0;
1579 			} else {
1580 				if (is_mba_sc(r))
1581 					ctrl = d->mbps_val[closid];
1582 				else
1583 					ctrl = resctrl_arch_get_config(r, d,
1584 								       closid,
1585 								       type);
1586 				if (r->rid == RDT_RESOURCE_MBA ||
1587 				    r->rid == RDT_RESOURCE_SMBA)
1588 					size = ctrl;
1589 				else
1590 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1591 			}
1592 			seq_printf(s, "%d=%u", d->hdr.id, size);
1593 			sep = true;
1594 		}
1595 		seq_putc(s, '\n');
1596 	}
1597 
1598 out:
1599 	rdtgroup_kn_unlock(of->kn);
1600 
1601 	return ret;
1602 }
1603 
1604 #define INVALID_CONFIG_INDEX   UINT_MAX
1605 
1606 /**
1607  * mon_event_config_index_get - get the hardware index for the
1608  *                              configurable event
1609  * @evtid: event id.
1610  *
1611  * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1612  *         1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1613  *         INVALID_CONFIG_INDEX for invalid evtid
1614  */
1615 static inline unsigned int mon_event_config_index_get(u32 evtid)
1616 {
1617 	switch (evtid) {
1618 	case QOS_L3_MBM_TOTAL_EVENT_ID:
1619 		return 0;
1620 	case QOS_L3_MBM_LOCAL_EVENT_ID:
1621 		return 1;
1622 	default:
1623 		/* Should never reach here */
1624 		return INVALID_CONFIG_INDEX;
1625 	}
1626 }
1627 
1628 void resctrl_arch_mon_event_config_read(void *_config_info)
1629 {
1630 	struct resctrl_mon_config_info *config_info = _config_info;
1631 	unsigned int index;
1632 	u64 msrval;
1633 
1634 	index = mon_event_config_index_get(config_info->evtid);
1635 	if (index == INVALID_CONFIG_INDEX) {
1636 		pr_warn_once("Invalid event id %d\n", config_info->evtid);
1637 		return;
1638 	}
1639 	rdmsrq(MSR_IA32_EVT_CFG_BASE + index, msrval);
1640 
1641 	/* Report only the valid event configuration bits */
1642 	config_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1643 }
1644 
1645 static void mondata_config_read(struct resctrl_mon_config_info *mon_info)
1646 {
1647 	smp_call_function_any(&mon_info->d->hdr.cpu_mask,
1648 			      resctrl_arch_mon_event_config_read, mon_info, 1);
1649 }
1650 
1651 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1652 {
1653 	struct resctrl_mon_config_info mon_info;
1654 	struct rdt_mon_domain *dom;
1655 	bool sep = false;
1656 
1657 	cpus_read_lock();
1658 	mutex_lock(&rdtgroup_mutex);
1659 
1660 	list_for_each_entry(dom, &r->mon_domains, hdr.list) {
1661 		if (sep)
1662 			seq_puts(s, ";");
1663 
1664 		memset(&mon_info, 0, sizeof(struct resctrl_mon_config_info));
1665 		mon_info.r = r;
1666 		mon_info.d = dom;
1667 		mon_info.evtid = evtid;
1668 		mondata_config_read(&mon_info);
1669 
1670 		seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config);
1671 		sep = true;
1672 	}
1673 	seq_puts(s, "\n");
1674 
1675 	mutex_unlock(&rdtgroup_mutex);
1676 	cpus_read_unlock();
1677 
1678 	return 0;
1679 }
1680 
1681 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1682 				       struct seq_file *seq, void *v)
1683 {
1684 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1685 
1686 	mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1687 
1688 	return 0;
1689 }
1690 
1691 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1692 				       struct seq_file *seq, void *v)
1693 {
1694 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1695 
1696 	mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1697 
1698 	return 0;
1699 }
1700 
1701 void resctrl_arch_mon_event_config_write(void *_config_info)
1702 {
1703 	struct resctrl_mon_config_info *config_info = _config_info;
1704 	unsigned int index;
1705 
1706 	index = mon_event_config_index_get(config_info->evtid);
1707 	if (index == INVALID_CONFIG_INDEX) {
1708 		pr_warn_once("Invalid event id %d\n", config_info->evtid);
1709 		return;
1710 	}
1711 	wrmsrq(MSR_IA32_EVT_CFG_BASE + index, config_info->mon_config);
1712 }
1713 
1714 static void mbm_config_write_domain(struct rdt_resource *r,
1715 				    struct rdt_mon_domain *d, u32 evtid, u32 val)
1716 {
1717 	struct resctrl_mon_config_info mon_info = {0};
1718 
1719 	/*
1720 	 * Read the current config value first. If both are the same then
1721 	 * no need to write it again.
1722 	 */
1723 	mon_info.r = r;
1724 	mon_info.d = d;
1725 	mon_info.evtid = evtid;
1726 	mondata_config_read(&mon_info);
1727 	if (mon_info.mon_config == val)
1728 		return;
1729 
1730 	mon_info.mon_config = val;
1731 
1732 	/*
1733 	 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1734 	 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1735 	 * are scoped at the domain level. Writing any of these MSRs
1736 	 * on one CPU is observed by all the CPUs in the domain.
1737 	 */
1738 	smp_call_function_any(&d->hdr.cpu_mask, resctrl_arch_mon_event_config_write,
1739 			      &mon_info, 1);
1740 
1741 	/*
1742 	 * When an Event Configuration is changed, the bandwidth counters
1743 	 * for all RMIDs and Events will be cleared by the hardware. The
1744 	 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1745 	 * every RMID on the next read to any event for every RMID.
1746 	 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1747 	 * cleared while it is tracked by the hardware. Clear the
1748 	 * mbm_local and mbm_total counts for all the RMIDs.
1749 	 */
1750 	resctrl_arch_reset_rmid_all(r, d);
1751 }
1752 
1753 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1754 {
1755 	char *dom_str = NULL, *id_str;
1756 	unsigned long dom_id, val;
1757 	struct rdt_mon_domain *d;
1758 
1759 	/* Walking r->domains, ensure it can't race with cpuhp */
1760 	lockdep_assert_cpus_held();
1761 
1762 next:
1763 	if (!tok || tok[0] == '\0')
1764 		return 0;
1765 
1766 	/* Start processing the strings for each domain */
1767 	dom_str = strim(strsep(&tok, ";"));
1768 	id_str = strsep(&dom_str, "=");
1769 
1770 	if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1771 		rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1772 		return -EINVAL;
1773 	}
1774 
1775 	if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1776 		rdt_last_cmd_puts("Non-numeric event configuration value\n");
1777 		return -EINVAL;
1778 	}
1779 
1780 	/* Value from user cannot be more than the supported set of events */
1781 	if ((val & r->mbm_cfg_mask) != val) {
1782 		rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1783 				    r->mbm_cfg_mask);
1784 		return -EINVAL;
1785 	}
1786 
1787 	list_for_each_entry(d, &r->mon_domains, hdr.list) {
1788 		if (d->hdr.id == dom_id) {
1789 			mbm_config_write_domain(r, d, evtid, val);
1790 			goto next;
1791 		}
1792 	}
1793 
1794 	return -EINVAL;
1795 }
1796 
1797 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1798 					    char *buf, size_t nbytes,
1799 					    loff_t off)
1800 {
1801 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1802 	int ret;
1803 
1804 	/* Valid input requires a trailing newline */
1805 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1806 		return -EINVAL;
1807 
1808 	cpus_read_lock();
1809 	mutex_lock(&rdtgroup_mutex);
1810 
1811 	rdt_last_cmd_clear();
1812 
1813 	buf[nbytes - 1] = '\0';
1814 
1815 	ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1816 
1817 	mutex_unlock(&rdtgroup_mutex);
1818 	cpus_read_unlock();
1819 
1820 	return ret ?: nbytes;
1821 }
1822 
1823 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1824 					    char *buf, size_t nbytes,
1825 					    loff_t off)
1826 {
1827 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1828 	int ret;
1829 
1830 	/* Valid input requires a trailing newline */
1831 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1832 		return -EINVAL;
1833 
1834 	cpus_read_lock();
1835 	mutex_lock(&rdtgroup_mutex);
1836 
1837 	rdt_last_cmd_clear();
1838 
1839 	buf[nbytes - 1] = '\0';
1840 
1841 	ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1842 
1843 	mutex_unlock(&rdtgroup_mutex);
1844 	cpus_read_unlock();
1845 
1846 	return ret ?: nbytes;
1847 }
1848 
1849 /* rdtgroup information files for one cache resource. */
1850 static struct rftype res_common_files[] = {
1851 	{
1852 		.name		= "last_cmd_status",
1853 		.mode		= 0444,
1854 		.kf_ops		= &rdtgroup_kf_single_ops,
1855 		.seq_show	= rdt_last_cmd_status_show,
1856 		.fflags		= RFTYPE_TOP_INFO,
1857 	},
1858 	{
1859 		.name		= "num_closids",
1860 		.mode		= 0444,
1861 		.kf_ops		= &rdtgroup_kf_single_ops,
1862 		.seq_show	= rdt_num_closids_show,
1863 		.fflags		= RFTYPE_CTRL_INFO,
1864 	},
1865 	{
1866 		.name		= "mon_features",
1867 		.mode		= 0444,
1868 		.kf_ops		= &rdtgroup_kf_single_ops,
1869 		.seq_show	= rdt_mon_features_show,
1870 		.fflags		= RFTYPE_MON_INFO,
1871 	},
1872 	{
1873 		.name		= "num_rmids",
1874 		.mode		= 0444,
1875 		.kf_ops		= &rdtgroup_kf_single_ops,
1876 		.seq_show	= rdt_num_rmids_show,
1877 		.fflags		= RFTYPE_MON_INFO,
1878 	},
1879 	{
1880 		.name		= "cbm_mask",
1881 		.mode		= 0444,
1882 		.kf_ops		= &rdtgroup_kf_single_ops,
1883 		.seq_show	= rdt_default_ctrl_show,
1884 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1885 	},
1886 	{
1887 		.name		= "min_cbm_bits",
1888 		.mode		= 0444,
1889 		.kf_ops		= &rdtgroup_kf_single_ops,
1890 		.seq_show	= rdt_min_cbm_bits_show,
1891 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1892 	},
1893 	{
1894 		.name		= "shareable_bits",
1895 		.mode		= 0444,
1896 		.kf_ops		= &rdtgroup_kf_single_ops,
1897 		.seq_show	= rdt_shareable_bits_show,
1898 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1899 	},
1900 	{
1901 		.name		= "bit_usage",
1902 		.mode		= 0444,
1903 		.kf_ops		= &rdtgroup_kf_single_ops,
1904 		.seq_show	= rdt_bit_usage_show,
1905 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1906 	},
1907 	{
1908 		.name		= "min_bandwidth",
1909 		.mode		= 0444,
1910 		.kf_ops		= &rdtgroup_kf_single_ops,
1911 		.seq_show	= rdt_min_bw_show,
1912 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1913 	},
1914 	{
1915 		.name		= "bandwidth_gran",
1916 		.mode		= 0444,
1917 		.kf_ops		= &rdtgroup_kf_single_ops,
1918 		.seq_show	= rdt_bw_gran_show,
1919 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1920 	},
1921 	{
1922 		.name		= "delay_linear",
1923 		.mode		= 0444,
1924 		.kf_ops		= &rdtgroup_kf_single_ops,
1925 		.seq_show	= rdt_delay_linear_show,
1926 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1927 	},
1928 	/*
1929 	 * Platform specific which (if any) capabilities are provided by
1930 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1931 	 * discovery.
1932 	 */
1933 	{
1934 		.name		= "thread_throttle_mode",
1935 		.mode		= 0444,
1936 		.kf_ops		= &rdtgroup_kf_single_ops,
1937 		.seq_show	= rdt_thread_throttle_mode_show,
1938 	},
1939 	{
1940 		.name		= "max_threshold_occupancy",
1941 		.mode		= 0644,
1942 		.kf_ops		= &rdtgroup_kf_single_ops,
1943 		.write		= max_threshold_occ_write,
1944 		.seq_show	= max_threshold_occ_show,
1945 		.fflags		= RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1946 	},
1947 	{
1948 		.name		= "mbm_total_bytes_config",
1949 		.mode		= 0644,
1950 		.kf_ops		= &rdtgroup_kf_single_ops,
1951 		.seq_show	= mbm_total_bytes_config_show,
1952 		.write		= mbm_total_bytes_config_write,
1953 	},
1954 	{
1955 		.name		= "mbm_local_bytes_config",
1956 		.mode		= 0644,
1957 		.kf_ops		= &rdtgroup_kf_single_ops,
1958 		.seq_show	= mbm_local_bytes_config_show,
1959 		.write		= mbm_local_bytes_config_write,
1960 	},
1961 	{
1962 		.name		= "cpus",
1963 		.mode		= 0644,
1964 		.kf_ops		= &rdtgroup_kf_single_ops,
1965 		.write		= rdtgroup_cpus_write,
1966 		.seq_show	= rdtgroup_cpus_show,
1967 		.fflags		= RFTYPE_BASE,
1968 	},
1969 	{
1970 		.name		= "cpus_list",
1971 		.mode		= 0644,
1972 		.kf_ops		= &rdtgroup_kf_single_ops,
1973 		.write		= rdtgroup_cpus_write,
1974 		.seq_show	= rdtgroup_cpus_show,
1975 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1976 		.fflags		= RFTYPE_BASE,
1977 	},
1978 	{
1979 		.name		= "tasks",
1980 		.mode		= 0644,
1981 		.kf_ops		= &rdtgroup_kf_single_ops,
1982 		.write		= rdtgroup_tasks_write,
1983 		.seq_show	= rdtgroup_tasks_show,
1984 		.fflags		= RFTYPE_BASE,
1985 	},
1986 	{
1987 		.name		= "mon_hw_id",
1988 		.mode		= 0444,
1989 		.kf_ops		= &rdtgroup_kf_single_ops,
1990 		.seq_show	= rdtgroup_rmid_show,
1991 		.fflags		= RFTYPE_MON_BASE | RFTYPE_DEBUG,
1992 	},
1993 	{
1994 		.name		= "schemata",
1995 		.mode		= 0644,
1996 		.kf_ops		= &rdtgroup_kf_single_ops,
1997 		.write		= rdtgroup_schemata_write,
1998 		.seq_show	= rdtgroup_schemata_show,
1999 		.fflags		= RFTYPE_CTRL_BASE,
2000 	},
2001 	{
2002 		.name		= "mba_MBps_event",
2003 		.mode		= 0644,
2004 		.kf_ops		= &rdtgroup_kf_single_ops,
2005 		.write		= rdtgroup_mba_mbps_event_write,
2006 		.seq_show	= rdtgroup_mba_mbps_event_show,
2007 	},
2008 	{
2009 		.name		= "mode",
2010 		.mode		= 0644,
2011 		.kf_ops		= &rdtgroup_kf_single_ops,
2012 		.write		= rdtgroup_mode_write,
2013 		.seq_show	= rdtgroup_mode_show,
2014 		.fflags		= RFTYPE_CTRL_BASE,
2015 	},
2016 	{
2017 		.name		= "size",
2018 		.mode		= 0444,
2019 		.kf_ops		= &rdtgroup_kf_single_ops,
2020 		.seq_show	= rdtgroup_size_show,
2021 		.fflags		= RFTYPE_CTRL_BASE,
2022 	},
2023 	{
2024 		.name		= "sparse_masks",
2025 		.mode		= 0444,
2026 		.kf_ops		= &rdtgroup_kf_single_ops,
2027 		.seq_show	= rdt_has_sparse_bitmasks_show,
2028 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
2029 	},
2030 	{
2031 		.name		= "ctrl_hw_id",
2032 		.mode		= 0444,
2033 		.kf_ops		= &rdtgroup_kf_single_ops,
2034 		.seq_show	= rdtgroup_closid_show,
2035 		.fflags		= RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
2036 	},
2037 
2038 };
2039 
2040 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
2041 {
2042 	struct rftype *rfts, *rft;
2043 	int ret, len;
2044 
2045 	rfts = res_common_files;
2046 	len = ARRAY_SIZE(res_common_files);
2047 
2048 	lockdep_assert_held(&rdtgroup_mutex);
2049 
2050 	if (resctrl_debug)
2051 		fflags |= RFTYPE_DEBUG;
2052 
2053 	for (rft = rfts; rft < rfts + len; rft++) {
2054 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
2055 			ret = rdtgroup_add_file(kn, rft);
2056 			if (ret)
2057 				goto error;
2058 		}
2059 	}
2060 
2061 	return 0;
2062 error:
2063 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
2064 	while (--rft >= rfts) {
2065 		if ((fflags & rft->fflags) == rft->fflags)
2066 			kernfs_remove_by_name(kn, rft->name);
2067 	}
2068 	return ret;
2069 }
2070 
2071 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
2072 {
2073 	struct rftype *rfts, *rft;
2074 	int len;
2075 
2076 	rfts = res_common_files;
2077 	len = ARRAY_SIZE(res_common_files);
2078 
2079 	for (rft = rfts; rft < rfts + len; rft++) {
2080 		if (!strcmp(rft->name, name))
2081 			return rft;
2082 	}
2083 
2084 	return NULL;
2085 }
2086 
2087 static void thread_throttle_mode_init(void)
2088 {
2089 	enum membw_throttle_mode throttle_mode = THREAD_THROTTLE_UNDEFINED;
2090 	struct rdt_resource *r_mba, *r_smba;
2091 
2092 	r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
2093 	if (r_mba->alloc_capable &&
2094 	    r_mba->membw.throttle_mode != THREAD_THROTTLE_UNDEFINED)
2095 		throttle_mode = r_mba->membw.throttle_mode;
2096 
2097 	r_smba = resctrl_arch_get_resource(RDT_RESOURCE_SMBA);
2098 	if (r_smba->alloc_capable &&
2099 	    r_smba->membw.throttle_mode != THREAD_THROTTLE_UNDEFINED)
2100 		throttle_mode = r_smba->membw.throttle_mode;
2101 
2102 	if (throttle_mode == THREAD_THROTTLE_UNDEFINED)
2103 		return;
2104 
2105 	resctrl_file_fflags_init("thread_throttle_mode",
2106 				 RFTYPE_CTRL_INFO | RFTYPE_RES_MB);
2107 }
2108 
2109 void resctrl_file_fflags_init(const char *config, unsigned long fflags)
2110 {
2111 	struct rftype *rft;
2112 
2113 	rft = rdtgroup_get_rftype_by_name(config);
2114 	if (rft)
2115 		rft->fflags = fflags;
2116 }
2117 
2118 /**
2119  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2120  * @r: The resource group with which the file is associated.
2121  * @name: Name of the file
2122  *
2123  * The permissions of named resctrl file, directory, or link are modified
2124  * to not allow read, write, or execute by any user.
2125  *
2126  * WARNING: This function is intended to communicate to the user that the
2127  * resctrl file has been locked down - that it is not relevant to the
2128  * particular state the system finds itself in. It should not be relied
2129  * on to protect from user access because after the file's permissions
2130  * are restricted the user can still change the permissions using chmod
2131  * from the command line.
2132  *
2133  * Return: 0 on success, <0 on failure.
2134  */
2135 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2136 {
2137 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2138 	struct kernfs_node *kn;
2139 	int ret = 0;
2140 
2141 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2142 	if (!kn)
2143 		return -ENOENT;
2144 
2145 	switch (kernfs_type(kn)) {
2146 	case KERNFS_DIR:
2147 		iattr.ia_mode = S_IFDIR;
2148 		break;
2149 	case KERNFS_FILE:
2150 		iattr.ia_mode = S_IFREG;
2151 		break;
2152 	case KERNFS_LINK:
2153 		iattr.ia_mode = S_IFLNK;
2154 		break;
2155 	}
2156 
2157 	ret = kernfs_setattr(kn, &iattr);
2158 	kernfs_put(kn);
2159 	return ret;
2160 }
2161 
2162 /**
2163  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2164  * @r: The resource group with which the file is associated.
2165  * @name: Name of the file
2166  * @mask: Mask of permissions that should be restored
2167  *
2168  * Restore the permissions of the named file. If @name is a directory the
2169  * permissions of its parent will be used.
2170  *
2171  * Return: 0 on success, <0 on failure.
2172  */
2173 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2174 			     umode_t mask)
2175 {
2176 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2177 	struct kernfs_node *kn, *parent;
2178 	struct rftype *rfts, *rft;
2179 	int ret, len;
2180 
2181 	rfts = res_common_files;
2182 	len = ARRAY_SIZE(res_common_files);
2183 
2184 	for (rft = rfts; rft < rfts + len; rft++) {
2185 		if (!strcmp(rft->name, name))
2186 			iattr.ia_mode = rft->mode & mask;
2187 	}
2188 
2189 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2190 	if (!kn)
2191 		return -ENOENT;
2192 
2193 	switch (kernfs_type(kn)) {
2194 	case KERNFS_DIR:
2195 		parent = kernfs_get_parent(kn);
2196 		if (parent) {
2197 			iattr.ia_mode |= parent->mode;
2198 			kernfs_put(parent);
2199 		}
2200 		iattr.ia_mode |= S_IFDIR;
2201 		break;
2202 	case KERNFS_FILE:
2203 		iattr.ia_mode |= S_IFREG;
2204 		break;
2205 	case KERNFS_LINK:
2206 		iattr.ia_mode |= S_IFLNK;
2207 		break;
2208 	}
2209 
2210 	ret = kernfs_setattr(kn, &iattr);
2211 	kernfs_put(kn);
2212 	return ret;
2213 }
2214 
2215 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2216 				      unsigned long fflags)
2217 {
2218 	struct kernfs_node *kn_subdir;
2219 	int ret;
2220 
2221 	kn_subdir = kernfs_create_dir(kn_info, name,
2222 				      kn_info->mode, priv);
2223 	if (IS_ERR(kn_subdir))
2224 		return PTR_ERR(kn_subdir);
2225 
2226 	ret = rdtgroup_kn_set_ugid(kn_subdir);
2227 	if (ret)
2228 		return ret;
2229 
2230 	ret = rdtgroup_add_files(kn_subdir, fflags);
2231 	if (!ret)
2232 		kernfs_activate(kn_subdir);
2233 
2234 	return ret;
2235 }
2236 
2237 static unsigned long fflags_from_resource(struct rdt_resource *r)
2238 {
2239 	switch (r->rid) {
2240 	case RDT_RESOURCE_L3:
2241 	case RDT_RESOURCE_L2:
2242 		return RFTYPE_RES_CACHE;
2243 	case RDT_RESOURCE_MBA:
2244 	case RDT_RESOURCE_SMBA:
2245 		return RFTYPE_RES_MB;
2246 	}
2247 
2248 	return WARN_ON_ONCE(1);
2249 }
2250 
2251 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2252 {
2253 	struct resctrl_schema *s;
2254 	struct rdt_resource *r;
2255 	unsigned long fflags;
2256 	char name[32];
2257 	int ret;
2258 
2259 	/* create the directory */
2260 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2261 	if (IS_ERR(kn_info))
2262 		return PTR_ERR(kn_info);
2263 
2264 	ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2265 	if (ret)
2266 		goto out_destroy;
2267 
2268 	/* loop over enabled controls, these are all alloc_capable */
2269 	list_for_each_entry(s, &resctrl_schema_all, list) {
2270 		r = s->res;
2271 		fflags = fflags_from_resource(r) | RFTYPE_CTRL_INFO;
2272 		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2273 		if (ret)
2274 			goto out_destroy;
2275 	}
2276 
2277 	for_each_mon_capable_rdt_resource(r) {
2278 		fflags = fflags_from_resource(r) | RFTYPE_MON_INFO;
2279 		sprintf(name, "%s_MON", r->name);
2280 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2281 		if (ret)
2282 			goto out_destroy;
2283 	}
2284 
2285 	ret = rdtgroup_kn_set_ugid(kn_info);
2286 	if (ret)
2287 		goto out_destroy;
2288 
2289 	kernfs_activate(kn_info);
2290 
2291 	return 0;
2292 
2293 out_destroy:
2294 	kernfs_remove(kn_info);
2295 	return ret;
2296 }
2297 
2298 static int
2299 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2300 		    char *name, struct kernfs_node **dest_kn)
2301 {
2302 	struct kernfs_node *kn;
2303 	int ret;
2304 
2305 	/* create the directory */
2306 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2307 	if (IS_ERR(kn))
2308 		return PTR_ERR(kn);
2309 
2310 	if (dest_kn)
2311 		*dest_kn = kn;
2312 
2313 	ret = rdtgroup_kn_set_ugid(kn);
2314 	if (ret)
2315 		goto out_destroy;
2316 
2317 	kernfs_activate(kn);
2318 
2319 	return 0;
2320 
2321 out_destroy:
2322 	kernfs_remove(kn);
2323 	return ret;
2324 }
2325 
2326 static void l3_qos_cfg_update(void *arg)
2327 {
2328 	bool *enable = arg;
2329 
2330 	wrmsrq(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2331 }
2332 
2333 static void l2_qos_cfg_update(void *arg)
2334 {
2335 	bool *enable = arg;
2336 
2337 	wrmsrq(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2338 }
2339 
2340 static inline bool is_mba_linear(void)
2341 {
2342 	return resctrl_arch_get_resource(RDT_RESOURCE_MBA)->membw.delay_linear;
2343 }
2344 
2345 static int set_cache_qos_cfg(int level, bool enable)
2346 {
2347 	void (*update)(void *arg);
2348 	struct rdt_ctrl_domain *d;
2349 	struct rdt_resource *r_l;
2350 	cpumask_var_t cpu_mask;
2351 	int cpu;
2352 
2353 	/* Walking r->domains, ensure it can't race with cpuhp */
2354 	lockdep_assert_cpus_held();
2355 
2356 	if (level == RDT_RESOURCE_L3)
2357 		update = l3_qos_cfg_update;
2358 	else if (level == RDT_RESOURCE_L2)
2359 		update = l2_qos_cfg_update;
2360 	else
2361 		return -EINVAL;
2362 
2363 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2364 		return -ENOMEM;
2365 
2366 	r_l = &rdt_resources_all[level].r_resctrl;
2367 	list_for_each_entry(d, &r_l->ctrl_domains, hdr.list) {
2368 		if (r_l->cache.arch_has_per_cpu_cfg)
2369 			/* Pick all the CPUs in the domain instance */
2370 			for_each_cpu(cpu, &d->hdr.cpu_mask)
2371 				cpumask_set_cpu(cpu, cpu_mask);
2372 		else
2373 			/* Pick one CPU from each domain instance to update MSR */
2374 			cpumask_set_cpu(cpumask_any(&d->hdr.cpu_mask), cpu_mask);
2375 	}
2376 
2377 	/* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2378 	on_each_cpu_mask(cpu_mask, update, &enable, 1);
2379 
2380 	free_cpumask_var(cpu_mask);
2381 
2382 	return 0;
2383 }
2384 
2385 /* Restore the qos cfg state when a domain comes online */
2386 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2387 {
2388 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2389 
2390 	if (!r->cdp_capable)
2391 		return;
2392 
2393 	if (r->rid == RDT_RESOURCE_L2)
2394 		l2_qos_cfg_update(&hw_res->cdp_enabled);
2395 
2396 	if (r->rid == RDT_RESOURCE_L3)
2397 		l3_qos_cfg_update(&hw_res->cdp_enabled);
2398 }
2399 
2400 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d)
2401 {
2402 	u32 num_closid = resctrl_arch_get_num_closid(r);
2403 	int cpu = cpumask_any(&d->hdr.cpu_mask);
2404 	int i;
2405 
2406 	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2407 				   GFP_KERNEL, cpu_to_node(cpu));
2408 	if (!d->mbps_val)
2409 		return -ENOMEM;
2410 
2411 	for (i = 0; i < num_closid; i++)
2412 		d->mbps_val[i] = MBA_MAX_MBPS;
2413 
2414 	return 0;
2415 }
2416 
2417 static void mba_sc_domain_destroy(struct rdt_resource *r,
2418 				  struct rdt_ctrl_domain *d)
2419 {
2420 	kfree(d->mbps_val);
2421 	d->mbps_val = NULL;
2422 }
2423 
2424 /*
2425  * MBA software controller is supported only if
2426  * MBM is supported and MBA is in linear scale,
2427  * and the MBM monitor scope is the same as MBA
2428  * control scope.
2429  */
2430 static bool supports_mba_mbps(void)
2431 {
2432 	struct rdt_resource *rmbm = resctrl_arch_get_resource(RDT_RESOURCE_L3);
2433 	struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
2434 
2435 	return (resctrl_is_mbm_enabled() &&
2436 		r->alloc_capable && is_mba_linear() &&
2437 		r->ctrl_scope == rmbm->mon_scope);
2438 }
2439 
2440 /*
2441  * Enable or disable the MBA software controller
2442  * which helps user specify bandwidth in MBps.
2443  */
2444 static int set_mba_sc(bool mba_sc)
2445 {
2446 	struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
2447 	u32 num_closid = resctrl_arch_get_num_closid(r);
2448 	struct rdt_ctrl_domain *d;
2449 	unsigned long fflags;
2450 	int i;
2451 
2452 	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2453 		return -EINVAL;
2454 
2455 	r->membw.mba_sc = mba_sc;
2456 
2457 	rdtgroup_default.mba_mbps_event = mba_mbps_default_event;
2458 
2459 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2460 		for (i = 0; i < num_closid; i++)
2461 			d->mbps_val[i] = MBA_MAX_MBPS;
2462 	}
2463 
2464 	fflags = mba_sc ? RFTYPE_CTRL_BASE | RFTYPE_MON_BASE : 0;
2465 	resctrl_file_fflags_init("mba_MBps_event", fflags);
2466 
2467 	return 0;
2468 }
2469 
2470 static int cdp_enable(int level)
2471 {
2472 	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2473 	int ret;
2474 
2475 	if (!r_l->alloc_capable)
2476 		return -EINVAL;
2477 
2478 	ret = set_cache_qos_cfg(level, true);
2479 	if (!ret)
2480 		rdt_resources_all[level].cdp_enabled = true;
2481 
2482 	return ret;
2483 }
2484 
2485 static void cdp_disable(int level)
2486 {
2487 	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2488 
2489 	if (r_hw->cdp_enabled) {
2490 		set_cache_qos_cfg(level, false);
2491 		r_hw->cdp_enabled = false;
2492 	}
2493 }
2494 
2495 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2496 {
2497 	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2498 
2499 	if (!hw_res->r_resctrl.cdp_capable)
2500 		return -EINVAL;
2501 
2502 	if (enable)
2503 		return cdp_enable(l);
2504 
2505 	cdp_disable(l);
2506 
2507 	return 0;
2508 }
2509 
2510 /*
2511  * We don't allow rdtgroup directories to be created anywhere
2512  * except the root directory. Thus when looking for the rdtgroup
2513  * structure for a kernfs node we are either looking at a directory,
2514  * in which case the rdtgroup structure is pointed at by the "priv"
2515  * field, otherwise we have a file, and need only look to the parent
2516  * to find the rdtgroup.
2517  */
2518 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2519 {
2520 	if (kernfs_type(kn) == KERNFS_DIR) {
2521 		/*
2522 		 * All the resource directories use "kn->priv"
2523 		 * to point to the "struct rdtgroup" for the
2524 		 * resource. "info" and its subdirectories don't
2525 		 * have rdtgroup structures, so return NULL here.
2526 		 */
2527 		if (kn == kn_info ||
2528 		    rcu_access_pointer(kn->__parent) == kn_info)
2529 			return NULL;
2530 		else
2531 			return kn->priv;
2532 	} else {
2533 		return rdt_kn_parent_priv(kn);
2534 	}
2535 }
2536 
2537 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2538 {
2539 	atomic_inc(&rdtgrp->waitcount);
2540 	kernfs_break_active_protection(kn);
2541 }
2542 
2543 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2544 {
2545 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2546 	    (rdtgrp->flags & RDT_DELETED)) {
2547 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2548 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2549 			rdtgroup_pseudo_lock_remove(rdtgrp);
2550 		kernfs_unbreak_active_protection(kn);
2551 		rdtgroup_remove(rdtgrp);
2552 	} else {
2553 		kernfs_unbreak_active_protection(kn);
2554 	}
2555 }
2556 
2557 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2558 {
2559 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2560 
2561 	if (!rdtgrp)
2562 		return NULL;
2563 
2564 	rdtgroup_kn_get(rdtgrp, kn);
2565 
2566 	cpus_read_lock();
2567 	mutex_lock(&rdtgroup_mutex);
2568 
2569 	/* Was this group deleted while we waited? */
2570 	if (rdtgrp->flags & RDT_DELETED)
2571 		return NULL;
2572 
2573 	return rdtgrp;
2574 }
2575 
2576 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2577 {
2578 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2579 
2580 	if (!rdtgrp)
2581 		return;
2582 
2583 	mutex_unlock(&rdtgroup_mutex);
2584 	cpus_read_unlock();
2585 
2586 	rdtgroup_kn_put(rdtgrp, kn);
2587 }
2588 
2589 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2590 			     struct rdtgroup *prgrp,
2591 			     struct kernfs_node **mon_data_kn);
2592 
2593 static void rdt_disable_ctx(void)
2594 {
2595 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2596 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2597 	set_mba_sc(false);
2598 
2599 	resctrl_debug = false;
2600 }
2601 
2602 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2603 {
2604 	int ret = 0;
2605 
2606 	if (ctx->enable_cdpl2) {
2607 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2608 		if (ret)
2609 			goto out_done;
2610 	}
2611 
2612 	if (ctx->enable_cdpl3) {
2613 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2614 		if (ret)
2615 			goto out_cdpl2;
2616 	}
2617 
2618 	if (ctx->enable_mba_mbps) {
2619 		ret = set_mba_sc(true);
2620 		if (ret)
2621 			goto out_cdpl3;
2622 	}
2623 
2624 	if (ctx->enable_debug)
2625 		resctrl_debug = true;
2626 
2627 	return 0;
2628 
2629 out_cdpl3:
2630 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2631 out_cdpl2:
2632 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2633 out_done:
2634 	return ret;
2635 }
2636 
2637 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2638 {
2639 	struct resctrl_schema *s;
2640 	const char *suffix = "";
2641 	int ret, cl;
2642 
2643 	s = kzalloc(sizeof(*s), GFP_KERNEL);
2644 	if (!s)
2645 		return -ENOMEM;
2646 
2647 	s->res = r;
2648 	s->num_closid = resctrl_arch_get_num_closid(r);
2649 	if (resctrl_arch_get_cdp_enabled(r->rid))
2650 		s->num_closid /= 2;
2651 
2652 	s->conf_type = type;
2653 	switch (type) {
2654 	case CDP_CODE:
2655 		suffix = "CODE";
2656 		break;
2657 	case CDP_DATA:
2658 		suffix = "DATA";
2659 		break;
2660 	case CDP_NONE:
2661 		suffix = "";
2662 		break;
2663 	}
2664 
2665 	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2666 	if (ret >= sizeof(s->name)) {
2667 		kfree(s);
2668 		return -EINVAL;
2669 	}
2670 
2671 	cl = strlen(s->name);
2672 
2673 	/*
2674 	 * If CDP is supported by this resource, but not enabled,
2675 	 * include the suffix. This ensures the tabular format of the
2676 	 * schemata file does not change between mounts of the filesystem.
2677 	 */
2678 	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2679 		cl += 4;
2680 
2681 	if (cl > max_name_width)
2682 		max_name_width = cl;
2683 
2684 	switch (r->schema_fmt) {
2685 	case RESCTRL_SCHEMA_BITMAP:
2686 		s->fmt_str = "%d=%x";
2687 		break;
2688 	case RESCTRL_SCHEMA_RANGE:
2689 		s->fmt_str = "%d=%u";
2690 		break;
2691 	}
2692 
2693 	if (WARN_ON_ONCE(!s->fmt_str)) {
2694 		kfree(s);
2695 		return -EINVAL;
2696 	}
2697 
2698 	INIT_LIST_HEAD(&s->list);
2699 	list_add(&s->list, &resctrl_schema_all);
2700 
2701 	return 0;
2702 }
2703 
2704 static int schemata_list_create(void)
2705 {
2706 	struct rdt_resource *r;
2707 	int ret = 0;
2708 
2709 	for_each_alloc_capable_rdt_resource(r) {
2710 		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2711 			ret = schemata_list_add(r, CDP_CODE);
2712 			if (ret)
2713 				break;
2714 
2715 			ret = schemata_list_add(r, CDP_DATA);
2716 		} else {
2717 			ret = schemata_list_add(r, CDP_NONE);
2718 		}
2719 
2720 		if (ret)
2721 			break;
2722 	}
2723 
2724 	return ret;
2725 }
2726 
2727 static void schemata_list_destroy(void)
2728 {
2729 	struct resctrl_schema *s, *tmp;
2730 
2731 	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2732 		list_del(&s->list);
2733 		kfree(s);
2734 	}
2735 }
2736 
2737 static int rdt_get_tree(struct fs_context *fc)
2738 {
2739 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2740 	unsigned long flags = RFTYPE_CTRL_BASE;
2741 	struct rdt_mon_domain *dom;
2742 	struct rdt_resource *r;
2743 	int ret;
2744 
2745 	cpus_read_lock();
2746 	mutex_lock(&rdtgroup_mutex);
2747 	/*
2748 	 * resctrl file system can only be mounted once.
2749 	 */
2750 	if (resctrl_mounted) {
2751 		ret = -EBUSY;
2752 		goto out;
2753 	}
2754 
2755 	ret = rdtgroup_setup_root(ctx);
2756 	if (ret)
2757 		goto out;
2758 
2759 	ret = rdt_enable_ctx(ctx);
2760 	if (ret)
2761 		goto out_root;
2762 
2763 	ret = schemata_list_create();
2764 	if (ret) {
2765 		schemata_list_destroy();
2766 		goto out_ctx;
2767 	}
2768 
2769 	closid_init();
2770 
2771 	if (resctrl_arch_mon_capable())
2772 		flags |= RFTYPE_MON;
2773 
2774 	ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2775 	if (ret)
2776 		goto out_schemata_free;
2777 
2778 	kernfs_activate(rdtgroup_default.kn);
2779 
2780 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2781 	if (ret < 0)
2782 		goto out_schemata_free;
2783 
2784 	if (resctrl_arch_mon_capable()) {
2785 		ret = mongroup_create_dir(rdtgroup_default.kn,
2786 					  &rdtgroup_default, "mon_groups",
2787 					  &kn_mongrp);
2788 		if (ret < 0)
2789 			goto out_info;
2790 
2791 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2792 					&rdtgroup_default, &kn_mondata);
2793 		if (ret < 0)
2794 			goto out_mongrp;
2795 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2796 	}
2797 
2798 	ret = rdt_pseudo_lock_init();
2799 	if (ret)
2800 		goto out_mondata;
2801 
2802 	ret = kernfs_get_tree(fc);
2803 	if (ret < 0)
2804 		goto out_psl;
2805 
2806 	if (resctrl_arch_alloc_capable())
2807 		resctrl_arch_enable_alloc();
2808 	if (resctrl_arch_mon_capable())
2809 		resctrl_arch_enable_mon();
2810 
2811 	if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2812 		resctrl_mounted = true;
2813 
2814 	if (resctrl_is_mbm_enabled()) {
2815 		r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
2816 		list_for_each_entry(dom, &r->mon_domains, hdr.list)
2817 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL,
2818 						   RESCTRL_PICK_ANY_CPU);
2819 	}
2820 
2821 	goto out;
2822 
2823 out_psl:
2824 	rdt_pseudo_lock_release();
2825 out_mondata:
2826 	if (resctrl_arch_mon_capable())
2827 		kernfs_remove(kn_mondata);
2828 out_mongrp:
2829 	if (resctrl_arch_mon_capable())
2830 		kernfs_remove(kn_mongrp);
2831 out_info:
2832 	kernfs_remove(kn_info);
2833 out_schemata_free:
2834 	schemata_list_destroy();
2835 out_ctx:
2836 	rdt_disable_ctx();
2837 out_root:
2838 	rdtgroup_destroy_root();
2839 out:
2840 	rdt_last_cmd_clear();
2841 	mutex_unlock(&rdtgroup_mutex);
2842 	cpus_read_unlock();
2843 	return ret;
2844 }
2845 
2846 enum rdt_param {
2847 	Opt_cdp,
2848 	Opt_cdpl2,
2849 	Opt_mba_mbps,
2850 	Opt_debug,
2851 	nr__rdt_params
2852 };
2853 
2854 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2855 	fsparam_flag("cdp",		Opt_cdp),
2856 	fsparam_flag("cdpl2",		Opt_cdpl2),
2857 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2858 	fsparam_flag("debug",		Opt_debug),
2859 	{}
2860 };
2861 
2862 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2863 {
2864 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2865 	struct fs_parse_result result;
2866 	const char *msg;
2867 	int opt;
2868 
2869 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2870 	if (opt < 0)
2871 		return opt;
2872 
2873 	switch (opt) {
2874 	case Opt_cdp:
2875 		ctx->enable_cdpl3 = true;
2876 		return 0;
2877 	case Opt_cdpl2:
2878 		ctx->enable_cdpl2 = true;
2879 		return 0;
2880 	case Opt_mba_mbps:
2881 		msg = "mba_MBps requires MBM and linear scale MBA at L3 scope";
2882 		if (!supports_mba_mbps())
2883 			return invalfc(fc, msg);
2884 		ctx->enable_mba_mbps = true;
2885 		return 0;
2886 	case Opt_debug:
2887 		ctx->enable_debug = true;
2888 		return 0;
2889 	}
2890 
2891 	return -EINVAL;
2892 }
2893 
2894 static void rdt_fs_context_free(struct fs_context *fc)
2895 {
2896 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2897 
2898 	kernfs_free_fs_context(fc);
2899 	kfree(ctx);
2900 }
2901 
2902 static const struct fs_context_operations rdt_fs_context_ops = {
2903 	.free		= rdt_fs_context_free,
2904 	.parse_param	= rdt_parse_param,
2905 	.get_tree	= rdt_get_tree,
2906 };
2907 
2908 static int rdt_init_fs_context(struct fs_context *fc)
2909 {
2910 	struct rdt_fs_context *ctx;
2911 
2912 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2913 	if (!ctx)
2914 		return -ENOMEM;
2915 
2916 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2917 	fc->fs_private = &ctx->kfc;
2918 	fc->ops = &rdt_fs_context_ops;
2919 	put_user_ns(fc->user_ns);
2920 	fc->user_ns = get_user_ns(&init_user_ns);
2921 	fc->global = true;
2922 	return 0;
2923 }
2924 
2925 void resctrl_arch_reset_all_ctrls(struct rdt_resource *r)
2926 {
2927 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2928 	struct rdt_hw_ctrl_domain *hw_dom;
2929 	struct msr_param msr_param;
2930 	struct rdt_ctrl_domain *d;
2931 	int i;
2932 
2933 	/* Walking r->domains, ensure it can't race with cpuhp */
2934 	lockdep_assert_cpus_held();
2935 
2936 	msr_param.res = r;
2937 	msr_param.low = 0;
2938 	msr_param.high = hw_res->num_closid;
2939 
2940 	/*
2941 	 * Disable resource control for this resource by setting all
2942 	 * CBMs in all ctrl_domains to the maximum mask value. Pick one CPU
2943 	 * from each domain to update the MSRs below.
2944 	 */
2945 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2946 		hw_dom = resctrl_to_arch_ctrl_dom(d);
2947 
2948 		for (i = 0; i < hw_res->num_closid; i++)
2949 			hw_dom->ctrl_val[i] = resctrl_get_default_ctrl(r);
2950 		msr_param.dom = d;
2951 		smp_call_function_any(&d->hdr.cpu_mask, rdt_ctrl_update, &msr_param, 1);
2952 	}
2953 
2954 	return;
2955 }
2956 
2957 /*
2958  * Move tasks from one to the other group. If @from is NULL, then all tasks
2959  * in the systems are moved unconditionally (used for teardown).
2960  *
2961  * If @mask is not NULL the cpus on which moved tasks are running are set
2962  * in that mask so the update smp function call is restricted to affected
2963  * cpus.
2964  */
2965 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2966 				 struct cpumask *mask)
2967 {
2968 	struct task_struct *p, *t;
2969 
2970 	read_lock(&tasklist_lock);
2971 	for_each_process_thread(p, t) {
2972 		if (!from || is_closid_match(t, from) ||
2973 		    is_rmid_match(t, from)) {
2974 			resctrl_arch_set_closid_rmid(t, to->closid,
2975 						     to->mon.rmid);
2976 
2977 			/*
2978 			 * Order the closid/rmid stores above before the loads
2979 			 * in task_curr(). This pairs with the full barrier
2980 			 * between the rq->curr update and resctrl_sched_in()
2981 			 * during context switch.
2982 			 */
2983 			smp_mb();
2984 
2985 			/*
2986 			 * If the task is on a CPU, set the CPU in the mask.
2987 			 * The detection is inaccurate as tasks might move or
2988 			 * schedule before the smp function call takes place.
2989 			 * In such a case the function call is pointless, but
2990 			 * there is no other side effect.
2991 			 */
2992 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2993 				cpumask_set_cpu(task_cpu(t), mask);
2994 		}
2995 	}
2996 	read_unlock(&tasklist_lock);
2997 }
2998 
2999 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
3000 {
3001 	struct rdtgroup *sentry, *stmp;
3002 	struct list_head *head;
3003 
3004 	head = &rdtgrp->mon.crdtgrp_list;
3005 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
3006 		free_rmid(sentry->closid, sentry->mon.rmid);
3007 		list_del(&sentry->mon.crdtgrp_list);
3008 
3009 		if (atomic_read(&sentry->waitcount) != 0)
3010 			sentry->flags = RDT_DELETED;
3011 		else
3012 			rdtgroup_remove(sentry);
3013 	}
3014 }
3015 
3016 /*
3017  * Forcibly remove all of subdirectories under root.
3018  */
3019 static void rmdir_all_sub(void)
3020 {
3021 	struct rdtgroup *rdtgrp, *tmp;
3022 
3023 	/* Move all tasks to the default resource group */
3024 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
3025 
3026 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
3027 		/* Free any child rmids */
3028 		free_all_child_rdtgrp(rdtgrp);
3029 
3030 		/* Remove each rdtgroup other than root */
3031 		if (rdtgrp == &rdtgroup_default)
3032 			continue;
3033 
3034 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3035 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
3036 			rdtgroup_pseudo_lock_remove(rdtgrp);
3037 
3038 		/*
3039 		 * Give any CPUs back to the default group. We cannot copy
3040 		 * cpu_online_mask because a CPU might have executed the
3041 		 * offline callback already, but is still marked online.
3042 		 */
3043 		cpumask_or(&rdtgroup_default.cpu_mask,
3044 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3045 
3046 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3047 
3048 		kernfs_remove(rdtgrp->kn);
3049 		list_del(&rdtgrp->rdtgroup_list);
3050 
3051 		if (atomic_read(&rdtgrp->waitcount) != 0)
3052 			rdtgrp->flags = RDT_DELETED;
3053 		else
3054 			rdtgroup_remove(rdtgrp);
3055 	}
3056 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
3057 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
3058 
3059 	kernfs_remove(kn_info);
3060 	kernfs_remove(kn_mongrp);
3061 	kernfs_remove(kn_mondata);
3062 }
3063 
3064 static void rdt_kill_sb(struct super_block *sb)
3065 {
3066 	struct rdt_resource *r;
3067 
3068 	cpus_read_lock();
3069 	mutex_lock(&rdtgroup_mutex);
3070 
3071 	rdt_disable_ctx();
3072 
3073 	/* Put everything back to default values. */
3074 	for_each_alloc_capable_rdt_resource(r)
3075 		resctrl_arch_reset_all_ctrls(r);
3076 
3077 	rmdir_all_sub();
3078 	rdt_pseudo_lock_release();
3079 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
3080 	schemata_list_destroy();
3081 	rdtgroup_destroy_root();
3082 	if (resctrl_arch_alloc_capable())
3083 		resctrl_arch_disable_alloc();
3084 	if (resctrl_arch_mon_capable())
3085 		resctrl_arch_disable_mon();
3086 	resctrl_mounted = false;
3087 	kernfs_kill_sb(sb);
3088 	mutex_unlock(&rdtgroup_mutex);
3089 	cpus_read_unlock();
3090 }
3091 
3092 static struct file_system_type rdt_fs_type = {
3093 	.name			= "resctrl",
3094 	.init_fs_context	= rdt_init_fs_context,
3095 	.parameters		= rdt_fs_parameters,
3096 	.kill_sb		= rdt_kill_sb,
3097 };
3098 
3099 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
3100 		       void *priv)
3101 {
3102 	struct kernfs_node *kn;
3103 	int ret = 0;
3104 
3105 	kn = __kernfs_create_file(parent_kn, name, 0444,
3106 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
3107 				  &kf_mondata_ops, priv, NULL, NULL);
3108 	if (IS_ERR(kn))
3109 		return PTR_ERR(kn);
3110 
3111 	ret = rdtgroup_kn_set_ugid(kn);
3112 	if (ret) {
3113 		kernfs_remove(kn);
3114 		return ret;
3115 	}
3116 
3117 	return ret;
3118 }
3119 
3120 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname)
3121 {
3122 	struct kernfs_node *kn;
3123 
3124 	kn = kernfs_find_and_get(pkn, name);
3125 	if (!kn)
3126 		return;
3127 	kernfs_put(kn);
3128 
3129 	if (kn->dir.subdirs <= 1)
3130 		kernfs_remove(kn);
3131 	else
3132 		kernfs_remove_by_name(kn, subname);
3133 }
3134 
3135 /*
3136  * Remove all subdirectories of mon_data of ctrl_mon groups
3137  * and monitor groups for the given domain.
3138  * Remove files and directories containing "sum" of domain data
3139  * when last domain being summed is removed.
3140  */
3141 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3142 					   struct rdt_mon_domain *d)
3143 {
3144 	struct rdtgroup *prgrp, *crgrp;
3145 	char subname[32];
3146 	bool snc_mode;
3147 	char name[32];
3148 
3149 	snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3150 	sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3151 	if (snc_mode)
3152 		sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id);
3153 
3154 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3155 		mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname);
3156 
3157 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
3158 			mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname);
3159 	}
3160 }
3161 
3162 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d,
3163 			     struct rdt_resource *r, struct rdtgroup *prgrp,
3164 			     bool do_sum)
3165 {
3166 	struct rmid_read rr = {0};
3167 	union mon_data_bits priv;
3168 	struct mon_evt *mevt;
3169 	int ret;
3170 
3171 	if (WARN_ON(list_empty(&r->evt_list)))
3172 		return -EPERM;
3173 
3174 	priv.u.rid = r->rid;
3175 	priv.u.domid = do_sum ? d->ci->id : d->hdr.id;
3176 	priv.u.sum = do_sum;
3177 	list_for_each_entry(mevt, &r->evt_list, list) {
3178 		priv.u.evtid = mevt->evtid;
3179 		ret = mon_addfile(kn, mevt->name, priv.priv);
3180 		if (ret)
3181 			return ret;
3182 
3183 		if (!do_sum && resctrl_is_mbm_event(mevt->evtid))
3184 			mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true);
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
3191 				struct rdt_mon_domain *d,
3192 				struct rdt_resource *r, struct rdtgroup *prgrp)
3193 {
3194 	struct kernfs_node *kn, *ckn;
3195 	char name[32];
3196 	bool snc_mode;
3197 	int ret = 0;
3198 
3199 	lockdep_assert_held(&rdtgroup_mutex);
3200 
3201 	snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3202 	sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3203 	kn = kernfs_find_and_get(parent_kn, name);
3204 	if (kn) {
3205 		/*
3206 		 * rdtgroup_mutex will prevent this directory from being
3207 		 * removed. No need to keep this hold.
3208 		 */
3209 		kernfs_put(kn);
3210 	} else {
3211 		kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
3212 		if (IS_ERR(kn))
3213 			return PTR_ERR(kn);
3214 
3215 		ret = rdtgroup_kn_set_ugid(kn);
3216 		if (ret)
3217 			goto out_destroy;
3218 		ret = mon_add_all_files(kn, d, r, prgrp, snc_mode);
3219 		if (ret)
3220 			goto out_destroy;
3221 	}
3222 
3223 	if (snc_mode) {
3224 		sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id);
3225 		ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp);
3226 		if (IS_ERR(ckn)) {
3227 			ret = -EINVAL;
3228 			goto out_destroy;
3229 		}
3230 
3231 		ret = rdtgroup_kn_set_ugid(ckn);
3232 		if (ret)
3233 			goto out_destroy;
3234 
3235 		ret = mon_add_all_files(ckn, d, r, prgrp, false);
3236 		if (ret)
3237 			goto out_destroy;
3238 	}
3239 
3240 	kernfs_activate(kn);
3241 	return 0;
3242 
3243 out_destroy:
3244 	kernfs_remove(kn);
3245 	return ret;
3246 }
3247 
3248 /*
3249  * Add all subdirectories of mon_data for "ctrl_mon" groups
3250  * and "monitor" groups with given domain id.
3251  */
3252 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3253 					   struct rdt_mon_domain *d)
3254 {
3255 	struct kernfs_node *parent_kn;
3256 	struct rdtgroup *prgrp, *crgrp;
3257 	struct list_head *head;
3258 
3259 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3260 		parent_kn = prgrp->mon.mon_data_kn;
3261 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3262 
3263 		head = &prgrp->mon.crdtgrp_list;
3264 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3265 			parent_kn = crgrp->mon.mon_data_kn;
3266 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3267 		}
3268 	}
3269 }
3270 
3271 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3272 				       struct rdt_resource *r,
3273 				       struct rdtgroup *prgrp)
3274 {
3275 	struct rdt_mon_domain *dom;
3276 	int ret;
3277 
3278 	/* Walking r->domains, ensure it can't race with cpuhp */
3279 	lockdep_assert_cpus_held();
3280 
3281 	list_for_each_entry(dom, &r->mon_domains, hdr.list) {
3282 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3283 		if (ret)
3284 			return ret;
3285 	}
3286 
3287 	return 0;
3288 }
3289 
3290 /*
3291  * This creates a directory mon_data which contains the monitored data.
3292  *
3293  * mon_data has one directory for each domain which are named
3294  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3295  * with L3 domain looks as below:
3296  * ./mon_data:
3297  * mon_L3_00
3298  * mon_L3_01
3299  * mon_L3_02
3300  * ...
3301  *
3302  * Each domain directory has one file per event:
3303  * ./mon_L3_00/:
3304  * llc_occupancy
3305  *
3306  */
3307 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3308 			     struct rdtgroup *prgrp,
3309 			     struct kernfs_node **dest_kn)
3310 {
3311 	struct rdt_resource *r;
3312 	struct kernfs_node *kn;
3313 	int ret;
3314 
3315 	/*
3316 	 * Create the mon_data directory first.
3317 	 */
3318 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3319 	if (ret)
3320 		return ret;
3321 
3322 	if (dest_kn)
3323 		*dest_kn = kn;
3324 
3325 	/*
3326 	 * Create the subdirectories for each domain. Note that all events
3327 	 * in a domain like L3 are grouped into a resource whose domain is L3
3328 	 */
3329 	for_each_mon_capable_rdt_resource(r) {
3330 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3331 		if (ret)
3332 			goto out_destroy;
3333 	}
3334 
3335 	return 0;
3336 
3337 out_destroy:
3338 	kernfs_remove(kn);
3339 	return ret;
3340 }
3341 
3342 /**
3343  * cbm_ensure_valid - Enforce validity on provided CBM
3344  * @_val:	Candidate CBM
3345  * @r:		RDT resource to which the CBM belongs
3346  *
3347  * The provided CBM represents all cache portions available for use. This
3348  * may be represented by a bitmap that does not consist of contiguous ones
3349  * and thus be an invalid CBM.
3350  * Here the provided CBM is forced to be a valid CBM by only considering
3351  * the first set of contiguous bits as valid and clearing all bits.
3352  * The intention here is to provide a valid default CBM with which a new
3353  * resource group is initialized. The user can follow this with a
3354  * modification to the CBM if the default does not satisfy the
3355  * requirements.
3356  */
3357 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3358 {
3359 	unsigned int cbm_len = r->cache.cbm_len;
3360 	unsigned long first_bit, zero_bit;
3361 	unsigned long val = _val;
3362 
3363 	if (!val)
3364 		return 0;
3365 
3366 	first_bit = find_first_bit(&val, cbm_len);
3367 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3368 
3369 	/* Clear any remaining bits to ensure contiguous region */
3370 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3371 	return (u32)val;
3372 }
3373 
3374 /*
3375  * Initialize cache resources per RDT domain
3376  *
3377  * Set the RDT domain up to start off with all usable allocations. That is,
3378  * all shareable and unused bits. All-zero CBM is invalid.
3379  */
3380 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s,
3381 				 u32 closid)
3382 {
3383 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3384 	enum resctrl_conf_type t = s->conf_type;
3385 	struct resctrl_staged_config *cfg;
3386 	struct rdt_resource *r = s->res;
3387 	u32 used_b = 0, unused_b = 0;
3388 	unsigned long tmp_cbm;
3389 	enum rdtgrp_mode mode;
3390 	u32 peer_ctl, ctrl_val;
3391 	int i;
3392 
3393 	cfg = &d->staged_config[t];
3394 	cfg->have_new_ctrl = false;
3395 	cfg->new_ctrl = r->cache.shareable_bits;
3396 	used_b = r->cache.shareable_bits;
3397 	for (i = 0; i < closids_supported(); i++) {
3398 		if (closid_allocated(i) && i != closid) {
3399 			mode = rdtgroup_mode_by_closid(i);
3400 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3401 				/*
3402 				 * ctrl values for locksetup aren't relevant
3403 				 * until the schemata is written, and the mode
3404 				 * becomes RDT_MODE_PSEUDO_LOCKED.
3405 				 */
3406 				continue;
3407 			/*
3408 			 * If CDP is active include peer domain's
3409 			 * usage to ensure there is no overlap
3410 			 * with an exclusive group.
3411 			 */
3412 			if (resctrl_arch_get_cdp_enabled(r->rid))
3413 				peer_ctl = resctrl_arch_get_config(r, d, i,
3414 								   peer_type);
3415 			else
3416 				peer_ctl = 0;
3417 			ctrl_val = resctrl_arch_get_config(r, d, i,
3418 							   s->conf_type);
3419 			used_b |= ctrl_val | peer_ctl;
3420 			if (mode == RDT_MODE_SHAREABLE)
3421 				cfg->new_ctrl |= ctrl_val | peer_ctl;
3422 		}
3423 	}
3424 	if (d->plr && d->plr->cbm > 0)
3425 		used_b |= d->plr->cbm;
3426 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3427 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3428 	cfg->new_ctrl |= unused_b;
3429 	/*
3430 	 * Force the initial CBM to be valid, user can
3431 	 * modify the CBM based on system availability.
3432 	 */
3433 	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3434 	/*
3435 	 * Assign the u32 CBM to an unsigned long to ensure that
3436 	 * bitmap_weight() does not access out-of-bound memory.
3437 	 */
3438 	tmp_cbm = cfg->new_ctrl;
3439 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3440 		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id);
3441 		return -ENOSPC;
3442 	}
3443 	cfg->have_new_ctrl = true;
3444 
3445 	return 0;
3446 }
3447 
3448 /*
3449  * Initialize cache resources with default values.
3450  *
3451  * A new RDT group is being created on an allocation capable (CAT)
3452  * supporting system. Set this group up to start off with all usable
3453  * allocations.
3454  *
3455  * If there are no more shareable bits available on any domain then
3456  * the entire allocation will fail.
3457  */
3458 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3459 {
3460 	struct rdt_ctrl_domain *d;
3461 	int ret;
3462 
3463 	list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) {
3464 		ret = __init_one_rdt_domain(d, s, closid);
3465 		if (ret < 0)
3466 			return ret;
3467 	}
3468 
3469 	return 0;
3470 }
3471 
3472 /* Initialize MBA resource with default values. */
3473 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3474 {
3475 	struct resctrl_staged_config *cfg;
3476 	struct rdt_ctrl_domain *d;
3477 
3478 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
3479 		if (is_mba_sc(r)) {
3480 			d->mbps_val[closid] = MBA_MAX_MBPS;
3481 			continue;
3482 		}
3483 
3484 		cfg = &d->staged_config[CDP_NONE];
3485 		cfg->new_ctrl = resctrl_get_default_ctrl(r);
3486 		cfg->have_new_ctrl = true;
3487 	}
3488 }
3489 
3490 /* Initialize the RDT group's allocations. */
3491 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3492 {
3493 	struct resctrl_schema *s;
3494 	struct rdt_resource *r;
3495 	int ret = 0;
3496 
3497 	rdt_staged_configs_clear();
3498 
3499 	list_for_each_entry(s, &resctrl_schema_all, list) {
3500 		r = s->res;
3501 		if (r->rid == RDT_RESOURCE_MBA ||
3502 		    r->rid == RDT_RESOURCE_SMBA) {
3503 			rdtgroup_init_mba(r, rdtgrp->closid);
3504 			if (is_mba_sc(r))
3505 				continue;
3506 		} else {
3507 			ret = rdtgroup_init_cat(s, rdtgrp->closid);
3508 			if (ret < 0)
3509 				goto out;
3510 		}
3511 
3512 		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3513 		if (ret < 0) {
3514 			rdt_last_cmd_puts("Failed to initialize allocations\n");
3515 			goto out;
3516 		}
3517 
3518 	}
3519 
3520 	rdtgrp->mode = RDT_MODE_SHAREABLE;
3521 
3522 out:
3523 	rdt_staged_configs_clear();
3524 	return ret;
3525 }
3526 
3527 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp)
3528 {
3529 	int ret;
3530 
3531 	if (!resctrl_arch_mon_capable())
3532 		return 0;
3533 
3534 	ret = alloc_rmid(rdtgrp->closid);
3535 	if (ret < 0) {
3536 		rdt_last_cmd_puts("Out of RMIDs\n");
3537 		return ret;
3538 	}
3539 	rdtgrp->mon.rmid = ret;
3540 
3541 	ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3542 	if (ret) {
3543 		rdt_last_cmd_puts("kernfs subdir error\n");
3544 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3545 		return ret;
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp)
3552 {
3553 	if (resctrl_arch_mon_capable())
3554 		free_rmid(rgrp->closid, rgrp->mon.rmid);
3555 }
3556 
3557 /*
3558  * We allow creating mon groups only with in a directory called "mon_groups"
3559  * which is present in every ctrl_mon group. Check if this is a valid
3560  * "mon_groups" directory.
3561  *
3562  * 1. The directory should be named "mon_groups".
3563  * 2. The mon group itself should "not" be named "mon_groups".
3564  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3565  *   as parent.
3566  */
3567 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3568 {
3569 	return (!strcmp(rdt_kn_name(kn), "mon_groups") &&
3570 		strcmp(name, "mon_groups"));
3571 }
3572 
3573 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3574 			     const char *name, umode_t mode,
3575 			     enum rdt_group_type rtype, struct rdtgroup **r)
3576 {
3577 	struct rdtgroup *prdtgrp, *rdtgrp;
3578 	unsigned long files = 0;
3579 	struct kernfs_node *kn;
3580 	int ret;
3581 
3582 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3583 	if (!prdtgrp) {
3584 		ret = -ENODEV;
3585 		goto out_unlock;
3586 	}
3587 
3588 	/*
3589 	 * Check that the parent directory for a monitor group is a "mon_groups"
3590 	 * directory.
3591 	 */
3592 	if (rtype == RDTMON_GROUP && !is_mon_groups(parent_kn, name)) {
3593 		ret = -EPERM;
3594 		goto out_unlock;
3595 	}
3596 
3597 	if (rtype == RDTMON_GROUP &&
3598 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3599 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3600 		ret = -EINVAL;
3601 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
3602 		goto out_unlock;
3603 	}
3604 
3605 	/* allocate the rdtgroup. */
3606 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3607 	if (!rdtgrp) {
3608 		ret = -ENOSPC;
3609 		rdt_last_cmd_puts("Kernel out of memory\n");
3610 		goto out_unlock;
3611 	}
3612 	*r = rdtgrp;
3613 	rdtgrp->mon.parent = prdtgrp;
3614 	rdtgrp->type = rtype;
3615 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3616 
3617 	/* kernfs creates the directory for rdtgrp */
3618 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3619 	if (IS_ERR(kn)) {
3620 		ret = PTR_ERR(kn);
3621 		rdt_last_cmd_puts("kernfs create error\n");
3622 		goto out_free_rgrp;
3623 	}
3624 	rdtgrp->kn = kn;
3625 
3626 	/*
3627 	 * kernfs_remove() will drop the reference count on "kn" which
3628 	 * will free it. But we still need it to stick around for the
3629 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3630 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
3631 	 */
3632 	kernfs_get(kn);
3633 
3634 	ret = rdtgroup_kn_set_ugid(kn);
3635 	if (ret) {
3636 		rdt_last_cmd_puts("kernfs perm error\n");
3637 		goto out_destroy;
3638 	}
3639 
3640 	if (rtype == RDTCTRL_GROUP) {
3641 		files = RFTYPE_BASE | RFTYPE_CTRL;
3642 		if (resctrl_arch_mon_capable())
3643 			files |= RFTYPE_MON;
3644 	} else {
3645 		files = RFTYPE_BASE | RFTYPE_MON;
3646 	}
3647 
3648 	ret = rdtgroup_add_files(kn, files);
3649 	if (ret) {
3650 		rdt_last_cmd_puts("kernfs fill error\n");
3651 		goto out_destroy;
3652 	}
3653 
3654 	/*
3655 	 * The caller unlocks the parent_kn upon success.
3656 	 */
3657 	return 0;
3658 
3659 out_destroy:
3660 	kernfs_put(rdtgrp->kn);
3661 	kernfs_remove(rdtgrp->kn);
3662 out_free_rgrp:
3663 	kfree(rdtgrp);
3664 out_unlock:
3665 	rdtgroup_kn_unlock(parent_kn);
3666 	return ret;
3667 }
3668 
3669 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3670 {
3671 	kernfs_remove(rgrp->kn);
3672 	rdtgroup_remove(rgrp);
3673 }
3674 
3675 /*
3676  * Create a monitor group under "mon_groups" directory of a control
3677  * and monitor group(ctrl_mon). This is a resource group
3678  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3679  */
3680 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3681 			      const char *name, umode_t mode)
3682 {
3683 	struct rdtgroup *rdtgrp, *prgrp;
3684 	int ret;
3685 
3686 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3687 	if (ret)
3688 		return ret;
3689 
3690 	prgrp = rdtgrp->mon.parent;
3691 	rdtgrp->closid = prgrp->closid;
3692 
3693 	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3694 	if (ret) {
3695 		mkdir_rdt_prepare_clean(rdtgrp);
3696 		goto out_unlock;
3697 	}
3698 
3699 	kernfs_activate(rdtgrp->kn);
3700 
3701 	/*
3702 	 * Add the rdtgrp to the list of rdtgrps the parent
3703 	 * ctrl_mon group has to track.
3704 	 */
3705 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3706 
3707 out_unlock:
3708 	rdtgroup_kn_unlock(parent_kn);
3709 	return ret;
3710 }
3711 
3712 /*
3713  * These are rdtgroups created under the root directory. Can be used
3714  * to allocate and monitor resources.
3715  */
3716 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3717 				   const char *name, umode_t mode)
3718 {
3719 	struct rdtgroup *rdtgrp;
3720 	struct kernfs_node *kn;
3721 	u32 closid;
3722 	int ret;
3723 
3724 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3725 	if (ret)
3726 		return ret;
3727 
3728 	kn = rdtgrp->kn;
3729 	ret = closid_alloc();
3730 	if (ret < 0) {
3731 		rdt_last_cmd_puts("Out of CLOSIDs\n");
3732 		goto out_common_fail;
3733 	}
3734 	closid = ret;
3735 	ret = 0;
3736 
3737 	rdtgrp->closid = closid;
3738 
3739 	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3740 	if (ret)
3741 		goto out_closid_free;
3742 
3743 	kernfs_activate(rdtgrp->kn);
3744 
3745 	ret = rdtgroup_init_alloc(rdtgrp);
3746 	if (ret < 0)
3747 		goto out_rmid_free;
3748 
3749 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3750 
3751 	if (resctrl_arch_mon_capable()) {
3752 		/*
3753 		 * Create an empty mon_groups directory to hold the subset
3754 		 * of tasks and cpus to monitor.
3755 		 */
3756 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3757 		if (ret) {
3758 			rdt_last_cmd_puts("kernfs subdir error\n");
3759 			goto out_del_list;
3760 		}
3761 		if (is_mba_sc(NULL))
3762 			rdtgrp->mba_mbps_event = mba_mbps_default_event;
3763 	}
3764 
3765 	goto out_unlock;
3766 
3767 out_del_list:
3768 	list_del(&rdtgrp->rdtgroup_list);
3769 out_rmid_free:
3770 	mkdir_rdt_prepare_rmid_free(rdtgrp);
3771 out_closid_free:
3772 	closid_free(closid);
3773 out_common_fail:
3774 	mkdir_rdt_prepare_clean(rdtgrp);
3775 out_unlock:
3776 	rdtgroup_kn_unlock(parent_kn);
3777 	return ret;
3778 }
3779 
3780 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3781 			  umode_t mode)
3782 {
3783 	/* Do not accept '\n' to avoid unparsable situation. */
3784 	if (strchr(name, '\n'))
3785 		return -EINVAL;
3786 
3787 	/*
3788 	 * If the parent directory is the root directory and RDT
3789 	 * allocation is supported, add a control and monitoring
3790 	 * subdirectory
3791 	 */
3792 	if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn)
3793 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3794 
3795 	/* Else, attempt to add a monitoring subdirectory. */
3796 	if (resctrl_arch_mon_capable())
3797 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3798 
3799 	return -EPERM;
3800 }
3801 
3802 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3803 {
3804 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3805 	u32 closid, rmid;
3806 	int cpu;
3807 
3808 	/* Give any tasks back to the parent group */
3809 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3810 
3811 	/*
3812 	 * Update per cpu closid/rmid of the moved CPUs first.
3813 	 * Note: the closid will not change, but the arch code still needs it.
3814 	 */
3815 	closid = prdtgrp->closid;
3816 	rmid = prdtgrp->mon.rmid;
3817 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3818 		resctrl_arch_set_cpu_default_closid_rmid(cpu, closid, rmid);
3819 
3820 	/*
3821 	 * Update the MSR on moved CPUs and CPUs which have moved
3822 	 * task running on them.
3823 	 */
3824 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3825 	update_closid_rmid(tmpmask, NULL);
3826 
3827 	rdtgrp->flags = RDT_DELETED;
3828 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3829 
3830 	/*
3831 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3832 	 */
3833 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3834 	list_del(&rdtgrp->mon.crdtgrp_list);
3835 
3836 	kernfs_remove(rdtgrp->kn);
3837 
3838 	return 0;
3839 }
3840 
3841 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3842 {
3843 	rdtgrp->flags = RDT_DELETED;
3844 	list_del(&rdtgrp->rdtgroup_list);
3845 
3846 	kernfs_remove(rdtgrp->kn);
3847 	return 0;
3848 }
3849 
3850 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3851 {
3852 	u32 closid, rmid;
3853 	int cpu;
3854 
3855 	/* Give any tasks back to the default group */
3856 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3857 
3858 	/* Give any CPUs back to the default group */
3859 	cpumask_or(&rdtgroup_default.cpu_mask,
3860 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3861 
3862 	/* Update per cpu closid and rmid of the moved CPUs first */
3863 	closid = rdtgroup_default.closid;
3864 	rmid = rdtgroup_default.mon.rmid;
3865 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3866 		resctrl_arch_set_cpu_default_closid_rmid(cpu, closid, rmid);
3867 
3868 	/*
3869 	 * Update the MSR on moved CPUs and CPUs which have moved
3870 	 * task running on them.
3871 	 */
3872 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3873 	update_closid_rmid(tmpmask, NULL);
3874 
3875 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3876 	closid_free(rdtgrp->closid);
3877 
3878 	rdtgroup_ctrl_remove(rdtgrp);
3879 
3880 	/*
3881 	 * Free all the child monitor group rmids.
3882 	 */
3883 	free_all_child_rdtgrp(rdtgrp);
3884 
3885 	return 0;
3886 }
3887 
3888 static struct kernfs_node *rdt_kn_parent(struct kernfs_node *kn)
3889 {
3890 	/*
3891 	 * Valid within the RCU section it was obtained or while rdtgroup_mutex
3892 	 * is held.
3893 	 */
3894 	return rcu_dereference_check(kn->__parent, lockdep_is_held(&rdtgroup_mutex));
3895 }
3896 
3897 static int rdtgroup_rmdir(struct kernfs_node *kn)
3898 {
3899 	struct kernfs_node *parent_kn;
3900 	struct rdtgroup *rdtgrp;
3901 	cpumask_var_t tmpmask;
3902 	int ret = 0;
3903 
3904 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3905 		return -ENOMEM;
3906 
3907 	rdtgrp = rdtgroup_kn_lock_live(kn);
3908 	if (!rdtgrp) {
3909 		ret = -EPERM;
3910 		goto out;
3911 	}
3912 	parent_kn = rdt_kn_parent(kn);
3913 
3914 	/*
3915 	 * If the rdtgroup is a ctrl_mon group and parent directory
3916 	 * is the root directory, remove the ctrl_mon group.
3917 	 *
3918 	 * If the rdtgroup is a mon group and parent directory
3919 	 * is a valid "mon_groups" directory, remove the mon group.
3920 	 */
3921 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3922 	    rdtgrp != &rdtgroup_default) {
3923 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3924 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3925 			ret = rdtgroup_ctrl_remove(rdtgrp);
3926 		} else {
3927 			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3928 		}
3929 	} else if (rdtgrp->type == RDTMON_GROUP &&
3930 		 is_mon_groups(parent_kn, rdt_kn_name(kn))) {
3931 		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3932 	} else {
3933 		ret = -EPERM;
3934 	}
3935 
3936 out:
3937 	rdtgroup_kn_unlock(kn);
3938 	free_cpumask_var(tmpmask);
3939 	return ret;
3940 }
3941 
3942 /**
3943  * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3944  * @rdtgrp:		the MON group whose parent should be replaced
3945  * @new_prdtgrp:	replacement parent CTRL_MON group for @rdtgrp
3946  * @cpus:		cpumask provided by the caller for use during this call
3947  *
3948  * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3949  * tasks' CLOSID immediately changing to that of the new parent group.
3950  * Monitoring data for the group is unaffected by this operation.
3951  */
3952 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3953 			    struct rdtgroup *new_prdtgrp,
3954 			    cpumask_var_t cpus)
3955 {
3956 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3957 
3958 	WARN_ON(rdtgrp->type != RDTMON_GROUP);
3959 	WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3960 
3961 	/* Nothing to do when simply renaming a MON group. */
3962 	if (prdtgrp == new_prdtgrp)
3963 		return;
3964 
3965 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3966 	list_move_tail(&rdtgrp->mon.crdtgrp_list,
3967 		       &new_prdtgrp->mon.crdtgrp_list);
3968 
3969 	rdtgrp->mon.parent = new_prdtgrp;
3970 	rdtgrp->closid = new_prdtgrp->closid;
3971 
3972 	/* Propagate updated closid to all tasks in this group. */
3973 	rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3974 
3975 	update_closid_rmid(cpus, NULL);
3976 }
3977 
3978 static int rdtgroup_rename(struct kernfs_node *kn,
3979 			   struct kernfs_node *new_parent, const char *new_name)
3980 {
3981 	struct kernfs_node *kn_parent;
3982 	struct rdtgroup *new_prdtgrp;
3983 	struct rdtgroup *rdtgrp;
3984 	cpumask_var_t tmpmask;
3985 	int ret;
3986 
3987 	rdtgrp = kernfs_to_rdtgroup(kn);
3988 	new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3989 	if (!rdtgrp || !new_prdtgrp)
3990 		return -ENOENT;
3991 
3992 	/* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3993 	rdtgroup_kn_get(rdtgrp, kn);
3994 	rdtgroup_kn_get(new_prdtgrp, new_parent);
3995 
3996 	mutex_lock(&rdtgroup_mutex);
3997 
3998 	rdt_last_cmd_clear();
3999 
4000 	/*
4001 	 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
4002 	 * either kernfs_node is a file.
4003 	 */
4004 	if (kernfs_type(kn) != KERNFS_DIR ||
4005 	    kernfs_type(new_parent) != KERNFS_DIR) {
4006 		rdt_last_cmd_puts("Source and destination must be directories");
4007 		ret = -EPERM;
4008 		goto out;
4009 	}
4010 
4011 	if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
4012 		ret = -ENOENT;
4013 		goto out;
4014 	}
4015 
4016 	kn_parent = rdt_kn_parent(kn);
4017 	if (rdtgrp->type != RDTMON_GROUP || !kn_parent ||
4018 	    !is_mon_groups(kn_parent, rdt_kn_name(kn))) {
4019 		rdt_last_cmd_puts("Source must be a MON group\n");
4020 		ret = -EPERM;
4021 		goto out;
4022 	}
4023 
4024 	if (!is_mon_groups(new_parent, new_name)) {
4025 		rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
4026 		ret = -EPERM;
4027 		goto out;
4028 	}
4029 
4030 	/*
4031 	 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
4032 	 * current parent CTRL_MON group and therefore cannot be assigned to
4033 	 * the new parent, making the move illegal.
4034 	 */
4035 	if (!cpumask_empty(&rdtgrp->cpu_mask) &&
4036 	    rdtgrp->mon.parent != new_prdtgrp) {
4037 		rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
4038 		ret = -EPERM;
4039 		goto out;
4040 	}
4041 
4042 	/*
4043 	 * Allocate the cpumask for use in mongrp_reparent() to avoid the
4044 	 * possibility of failing to allocate it after kernfs_rename() has
4045 	 * succeeded.
4046 	 */
4047 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
4048 		ret = -ENOMEM;
4049 		goto out;
4050 	}
4051 
4052 	/*
4053 	 * Perform all input validation and allocations needed to ensure
4054 	 * mongrp_reparent() will succeed before calling kernfs_rename(),
4055 	 * otherwise it would be necessary to revert this call if
4056 	 * mongrp_reparent() failed.
4057 	 */
4058 	ret = kernfs_rename(kn, new_parent, new_name);
4059 	if (!ret)
4060 		mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
4061 
4062 	free_cpumask_var(tmpmask);
4063 
4064 out:
4065 	mutex_unlock(&rdtgroup_mutex);
4066 	rdtgroup_kn_put(rdtgrp, kn);
4067 	rdtgroup_kn_put(new_prdtgrp, new_parent);
4068 	return ret;
4069 }
4070 
4071 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
4072 {
4073 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
4074 		seq_puts(seq, ",cdp");
4075 
4076 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
4077 		seq_puts(seq, ",cdpl2");
4078 
4079 	if (is_mba_sc(resctrl_arch_get_resource(RDT_RESOURCE_MBA)))
4080 		seq_puts(seq, ",mba_MBps");
4081 
4082 	if (resctrl_debug)
4083 		seq_puts(seq, ",debug");
4084 
4085 	return 0;
4086 }
4087 
4088 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
4089 	.mkdir		= rdtgroup_mkdir,
4090 	.rmdir		= rdtgroup_rmdir,
4091 	.rename		= rdtgroup_rename,
4092 	.show_options	= rdtgroup_show_options,
4093 };
4094 
4095 static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
4096 {
4097 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
4098 				      KERNFS_ROOT_CREATE_DEACTIVATED |
4099 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
4100 				      &rdtgroup_default);
4101 	if (IS_ERR(rdt_root))
4102 		return PTR_ERR(rdt_root);
4103 
4104 	ctx->kfc.root = rdt_root;
4105 	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
4106 
4107 	return 0;
4108 }
4109 
4110 static void rdtgroup_destroy_root(void)
4111 {
4112 	kernfs_destroy_root(rdt_root);
4113 	rdtgroup_default.kn = NULL;
4114 }
4115 
4116 static void __init rdtgroup_setup_default(void)
4117 {
4118 	mutex_lock(&rdtgroup_mutex);
4119 
4120 	rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID;
4121 	rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID;
4122 	rdtgroup_default.type = RDTCTRL_GROUP;
4123 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
4124 
4125 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
4126 
4127 	mutex_unlock(&rdtgroup_mutex);
4128 }
4129 
4130 static void domain_destroy_mon_state(struct rdt_mon_domain *d)
4131 {
4132 	bitmap_free(d->rmid_busy_llc);
4133 	kfree(d->mbm_total);
4134 	kfree(d->mbm_local);
4135 }
4136 
4137 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4138 {
4139 	mutex_lock(&rdtgroup_mutex);
4140 
4141 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
4142 		mba_sc_domain_destroy(r, d);
4143 
4144 	mutex_unlock(&rdtgroup_mutex);
4145 }
4146 
4147 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4148 {
4149 	mutex_lock(&rdtgroup_mutex);
4150 
4151 	/*
4152 	 * If resctrl is mounted, remove all the
4153 	 * per domain monitor data directories.
4154 	 */
4155 	if (resctrl_mounted && resctrl_arch_mon_capable())
4156 		rmdir_mondata_subdir_allrdtgrp(r, d);
4157 
4158 	if (resctrl_is_mbm_enabled())
4159 		cancel_delayed_work(&d->mbm_over);
4160 	if (resctrl_arch_is_llc_occupancy_enabled() && has_busy_rmid(d)) {
4161 		/*
4162 		 * When a package is going down, forcefully
4163 		 * decrement rmid->ebusy. There is no way to know
4164 		 * that the L3 was flushed and hence may lead to
4165 		 * incorrect counts in rare scenarios, but leaving
4166 		 * the RMID as busy creates RMID leaks if the
4167 		 * package never comes back.
4168 		 */
4169 		__check_limbo(d, true);
4170 		cancel_delayed_work(&d->cqm_limbo);
4171 	}
4172 
4173 	domain_destroy_mon_state(d);
4174 
4175 	mutex_unlock(&rdtgroup_mutex);
4176 }
4177 
4178 /**
4179  * domain_setup_mon_state() -  Initialise domain monitoring structures.
4180  * @r:	The resource for the newly online domain.
4181  * @d:	The newly online domain.
4182  *
4183  * Allocate monitor resources that belong to this domain.
4184  * Called when the first CPU of a domain comes online, regardless of whether
4185  * the filesystem is mounted.
4186  * During boot this may be called before global allocations have been made by
4187  * resctrl_mon_resource_init().
4188  *
4189  * Returns 0 for success, or -ENOMEM.
4190  */
4191 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d)
4192 {
4193 	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
4194 	size_t tsize;
4195 
4196 	if (resctrl_arch_is_llc_occupancy_enabled()) {
4197 		d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL);
4198 		if (!d->rmid_busy_llc)
4199 			return -ENOMEM;
4200 	}
4201 	if (resctrl_arch_is_mbm_total_enabled()) {
4202 		tsize = sizeof(*d->mbm_total);
4203 		d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL);
4204 		if (!d->mbm_total) {
4205 			bitmap_free(d->rmid_busy_llc);
4206 			return -ENOMEM;
4207 		}
4208 	}
4209 	if (resctrl_arch_is_mbm_local_enabled()) {
4210 		tsize = sizeof(*d->mbm_local);
4211 		d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL);
4212 		if (!d->mbm_local) {
4213 			bitmap_free(d->rmid_busy_llc);
4214 			kfree(d->mbm_total);
4215 			return -ENOMEM;
4216 		}
4217 	}
4218 
4219 	return 0;
4220 }
4221 
4222 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4223 {
4224 	int err = 0;
4225 
4226 	mutex_lock(&rdtgroup_mutex);
4227 
4228 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) {
4229 		/* RDT_RESOURCE_MBA is never mon_capable */
4230 		err = mba_sc_domain_allocate(r, d);
4231 	}
4232 
4233 	mutex_unlock(&rdtgroup_mutex);
4234 
4235 	return err;
4236 }
4237 
4238 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4239 {
4240 	int err;
4241 
4242 	mutex_lock(&rdtgroup_mutex);
4243 
4244 	err = domain_setup_mon_state(r, d);
4245 	if (err)
4246 		goto out_unlock;
4247 
4248 	if (resctrl_is_mbm_enabled()) {
4249 		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
4250 		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL,
4251 					   RESCTRL_PICK_ANY_CPU);
4252 	}
4253 
4254 	if (resctrl_arch_is_llc_occupancy_enabled())
4255 		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
4256 
4257 	/*
4258 	 * If the filesystem is not mounted then only the default resource group
4259 	 * exists. Creation of its directories is deferred until mount time
4260 	 * by rdt_get_tree() calling mkdir_mondata_all().
4261 	 * If resctrl is mounted, add per domain monitor data directories.
4262 	 */
4263 	if (resctrl_mounted && resctrl_arch_mon_capable())
4264 		mkdir_mondata_subdir_allrdtgrp(r, d);
4265 
4266 out_unlock:
4267 	mutex_unlock(&rdtgroup_mutex);
4268 
4269 	return err;
4270 }
4271 
4272 void resctrl_online_cpu(unsigned int cpu)
4273 {
4274 	mutex_lock(&rdtgroup_mutex);
4275 	/* The CPU is set in default rdtgroup after online. */
4276 	cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
4277 	mutex_unlock(&rdtgroup_mutex);
4278 }
4279 
4280 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
4281 {
4282 	struct rdtgroup *cr;
4283 
4284 	list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
4285 		if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask))
4286 			break;
4287 	}
4288 }
4289 
4290 static struct rdt_mon_domain *get_mon_domain_from_cpu(int cpu,
4291 						      struct rdt_resource *r)
4292 {
4293 	struct rdt_mon_domain *d;
4294 
4295 	lockdep_assert_cpus_held();
4296 
4297 	list_for_each_entry(d, &r->mon_domains, hdr.list) {
4298 		/* Find the domain that contains this CPU */
4299 		if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
4300 			return d;
4301 	}
4302 
4303 	return NULL;
4304 }
4305 
4306 void resctrl_offline_cpu(unsigned int cpu)
4307 {
4308 	struct rdt_resource *l3 = resctrl_arch_get_resource(RDT_RESOURCE_L3);
4309 	struct rdt_mon_domain *d;
4310 	struct rdtgroup *rdtgrp;
4311 
4312 	mutex_lock(&rdtgroup_mutex);
4313 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
4314 		if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
4315 			clear_childcpus(rdtgrp, cpu);
4316 			break;
4317 		}
4318 	}
4319 
4320 	if (!l3->mon_capable)
4321 		goto out_unlock;
4322 
4323 	d = get_mon_domain_from_cpu(cpu, l3);
4324 	if (d) {
4325 		if (resctrl_is_mbm_enabled() && cpu == d->mbm_work_cpu) {
4326 			cancel_delayed_work(&d->mbm_over);
4327 			mbm_setup_overflow_handler(d, 0, cpu);
4328 		}
4329 		if (resctrl_arch_is_llc_occupancy_enabled() &&
4330 		    cpu == d->cqm_work_cpu && has_busy_rmid(d)) {
4331 			cancel_delayed_work(&d->cqm_limbo);
4332 			cqm_setup_limbo_handler(d, 0, cpu);
4333 		}
4334 	}
4335 
4336 out_unlock:
4337 	mutex_unlock(&rdtgroup_mutex);
4338 }
4339 
4340 /*
4341  * resctrl_init - resctrl filesystem initialization
4342  *
4343  * Setup resctrl file system including set up root, create mount point,
4344  * register resctrl filesystem, and initialize files under root directory.
4345  *
4346  * Return: 0 on success or -errno
4347  */
4348 int __init resctrl_init(void)
4349 {
4350 	int ret = 0;
4351 
4352 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
4353 		     sizeof(last_cmd_status_buf));
4354 
4355 	rdtgroup_setup_default();
4356 
4357 	thread_throttle_mode_init();
4358 
4359 	ret = resctrl_mon_resource_init();
4360 	if (ret)
4361 		return ret;
4362 
4363 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
4364 	if (ret) {
4365 		resctrl_mon_resource_exit();
4366 		return ret;
4367 	}
4368 
4369 	ret = register_filesystem(&rdt_fs_type);
4370 	if (ret)
4371 		goto cleanup_mountpoint;
4372 
4373 	/*
4374 	 * Adding the resctrl debugfs directory here may not be ideal since
4375 	 * it would let the resctrl debugfs directory appear on the debugfs
4376 	 * filesystem before the resctrl filesystem is mounted.
4377 	 * It may also be ok since that would enable debugging of RDT before
4378 	 * resctrl is mounted.
4379 	 * The reason why the debugfs directory is created here and not in
4380 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4381 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
4382 	 * (the lockdep class of inode->i_rwsem). Other filesystem
4383 	 * interactions (eg. SyS_getdents) have the lock ordering:
4384 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4385 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4386 	 * is taken, thus creating dependency:
4387 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4388 	 * issues considering the other two lock dependencies.
4389 	 * By creating the debugfs directory here we avoid a dependency
4390 	 * that may cause deadlock (even though file operations cannot
4391 	 * occur until the filesystem is mounted, but I do not know how to
4392 	 * tell lockdep that).
4393 	 */
4394 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
4395 
4396 	return 0;
4397 
4398 cleanup_mountpoint:
4399 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4400 	resctrl_mon_resource_exit();
4401 
4402 	return ret;
4403 }
4404 
4405 void __exit resctrl_exit(void)
4406 {
4407 	debugfs_remove_recursive(debugfs_resctrl);
4408 	unregister_filesystem(&rdt_fs_type);
4409 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4410 
4411 	resctrl_mon_resource_exit();
4412 }
4413