1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Allocation in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* list of entries for the schemata file */ 43 LIST_HEAD(resctrl_schema_all); 44 45 /* Kernel fs node for "info" directory under root */ 46 static struct kernfs_node *kn_info; 47 48 /* Kernel fs node for "mon_groups" directory under root */ 49 static struct kernfs_node *kn_mongrp; 50 51 /* Kernel fs node for "mon_data" directory under root */ 52 static struct kernfs_node *kn_mondata; 53 54 static struct seq_buf last_cmd_status; 55 static char last_cmd_status_buf[512]; 56 57 struct dentry *debugfs_resctrl; 58 59 void rdt_last_cmd_clear(void) 60 { 61 lockdep_assert_held(&rdtgroup_mutex); 62 seq_buf_clear(&last_cmd_status); 63 } 64 65 void rdt_last_cmd_puts(const char *s) 66 { 67 lockdep_assert_held(&rdtgroup_mutex); 68 seq_buf_puts(&last_cmd_status, s); 69 } 70 71 void rdt_last_cmd_printf(const char *fmt, ...) 72 { 73 va_list ap; 74 75 va_start(ap, fmt); 76 lockdep_assert_held(&rdtgroup_mutex); 77 seq_buf_vprintf(&last_cmd_status, fmt, ap); 78 va_end(ap); 79 } 80 81 /* 82 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 83 * we can keep a bitmap of free CLOSIDs in a single integer. 84 * 85 * Using a global CLOSID across all resources has some advantages and 86 * some drawbacks: 87 * + We can simply set "current->closid" to assign a task to a resource 88 * group. 89 * + Context switch code can avoid extra memory references deciding which 90 * CLOSID to load into the PQR_ASSOC MSR 91 * - We give up some options in configuring resource groups across multi-socket 92 * systems. 93 * - Our choices on how to configure each resource become progressively more 94 * limited as the number of resources grows. 95 */ 96 static int closid_free_map; 97 static int closid_free_map_len; 98 99 int closids_supported(void) 100 { 101 return closid_free_map_len; 102 } 103 104 static void closid_init(void) 105 { 106 struct resctrl_schema *s; 107 u32 rdt_min_closid = 32; 108 109 /* Compute rdt_min_closid across all resources */ 110 list_for_each_entry(s, &resctrl_schema_all, list) 111 rdt_min_closid = min(rdt_min_closid, s->num_closid); 112 113 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 114 115 /* CLOSID 0 is always reserved for the default group */ 116 closid_free_map &= ~1; 117 closid_free_map_len = rdt_min_closid; 118 } 119 120 static int closid_alloc(void) 121 { 122 u32 closid = ffs(closid_free_map); 123 124 if (closid == 0) 125 return -ENOSPC; 126 closid--; 127 closid_free_map &= ~(1 << closid); 128 129 return closid; 130 } 131 132 void closid_free(int closid) 133 { 134 closid_free_map |= 1 << closid; 135 } 136 137 /** 138 * closid_allocated - test if provided closid is in use 139 * @closid: closid to be tested 140 * 141 * Return: true if @closid is currently associated with a resource group, 142 * false if @closid is free 143 */ 144 static bool closid_allocated(unsigned int closid) 145 { 146 return (closid_free_map & (1 << closid)) == 0; 147 } 148 149 /** 150 * rdtgroup_mode_by_closid - Return mode of resource group with closid 151 * @closid: closid if the resource group 152 * 153 * Each resource group is associated with a @closid. Here the mode 154 * of a resource group can be queried by searching for it using its closid. 155 * 156 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 157 */ 158 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 159 { 160 struct rdtgroup *rdtgrp; 161 162 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 163 if (rdtgrp->closid == closid) 164 return rdtgrp->mode; 165 } 166 167 return RDT_NUM_MODES; 168 } 169 170 static const char * const rdt_mode_str[] = { 171 [RDT_MODE_SHAREABLE] = "shareable", 172 [RDT_MODE_EXCLUSIVE] = "exclusive", 173 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 174 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 175 }; 176 177 /** 178 * rdtgroup_mode_str - Return the string representation of mode 179 * @mode: the resource group mode as &enum rdtgroup_mode 180 * 181 * Return: string representation of valid mode, "unknown" otherwise 182 */ 183 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 184 { 185 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 186 return "unknown"; 187 188 return rdt_mode_str[mode]; 189 } 190 191 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 192 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 193 { 194 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 195 .ia_uid = current_fsuid(), 196 .ia_gid = current_fsgid(), }; 197 198 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 199 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 200 return 0; 201 202 return kernfs_setattr(kn, &iattr); 203 } 204 205 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 206 { 207 struct kernfs_node *kn; 208 int ret; 209 210 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 211 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 212 0, rft->kf_ops, rft, NULL, NULL); 213 if (IS_ERR(kn)) 214 return PTR_ERR(kn); 215 216 ret = rdtgroup_kn_set_ugid(kn); 217 if (ret) { 218 kernfs_remove(kn); 219 return ret; 220 } 221 222 return 0; 223 } 224 225 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 226 { 227 struct kernfs_open_file *of = m->private; 228 struct rftype *rft = of->kn->priv; 229 230 if (rft->seq_show) 231 return rft->seq_show(of, m, arg); 232 return 0; 233 } 234 235 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 236 size_t nbytes, loff_t off) 237 { 238 struct rftype *rft = of->kn->priv; 239 240 if (rft->write) 241 return rft->write(of, buf, nbytes, off); 242 243 return -EINVAL; 244 } 245 246 static const struct kernfs_ops rdtgroup_kf_single_ops = { 247 .atomic_write_len = PAGE_SIZE, 248 .write = rdtgroup_file_write, 249 .seq_show = rdtgroup_seqfile_show, 250 }; 251 252 static const struct kernfs_ops kf_mondata_ops = { 253 .atomic_write_len = PAGE_SIZE, 254 .seq_show = rdtgroup_mondata_show, 255 }; 256 257 static bool is_cpu_list(struct kernfs_open_file *of) 258 { 259 struct rftype *rft = of->kn->priv; 260 261 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 262 } 263 264 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 265 struct seq_file *s, void *v) 266 { 267 struct rdtgroup *rdtgrp; 268 struct cpumask *mask; 269 int ret = 0; 270 271 rdtgrp = rdtgroup_kn_lock_live(of->kn); 272 273 if (rdtgrp) { 274 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 275 if (!rdtgrp->plr->d) { 276 rdt_last_cmd_clear(); 277 rdt_last_cmd_puts("Cache domain offline\n"); 278 ret = -ENODEV; 279 } else { 280 mask = &rdtgrp->plr->d->cpu_mask; 281 seq_printf(s, is_cpu_list(of) ? 282 "%*pbl\n" : "%*pb\n", 283 cpumask_pr_args(mask)); 284 } 285 } else { 286 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 287 cpumask_pr_args(&rdtgrp->cpu_mask)); 288 } 289 } else { 290 ret = -ENOENT; 291 } 292 rdtgroup_kn_unlock(of->kn); 293 294 return ret; 295 } 296 297 /* 298 * This is safe against resctrl_sched_in() called from __switch_to() 299 * because __switch_to() is executed with interrupts disabled. A local call 300 * from update_closid_rmid() is protected against __switch_to() because 301 * preemption is disabled. 302 */ 303 static void update_cpu_closid_rmid(void *info) 304 { 305 struct rdtgroup *r = info; 306 307 if (r) { 308 this_cpu_write(pqr_state.default_closid, r->closid); 309 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 310 } 311 312 /* 313 * We cannot unconditionally write the MSR because the current 314 * executing task might have its own closid selected. Just reuse 315 * the context switch code. 316 */ 317 resctrl_sched_in(); 318 } 319 320 /* 321 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 322 * 323 * Per task closids/rmids must have been set up before calling this function. 324 */ 325 static void 326 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 327 { 328 int cpu = get_cpu(); 329 330 if (cpumask_test_cpu(cpu, cpu_mask)) 331 update_cpu_closid_rmid(r); 332 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1); 333 put_cpu(); 334 } 335 336 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 337 cpumask_var_t tmpmask) 338 { 339 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 340 struct list_head *head; 341 342 /* Check whether cpus belong to parent ctrl group */ 343 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 344 if (!cpumask_empty(tmpmask)) { 345 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 346 return -EINVAL; 347 } 348 349 /* Check whether cpus are dropped from this group */ 350 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 351 if (!cpumask_empty(tmpmask)) { 352 /* Give any dropped cpus to parent rdtgroup */ 353 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 354 update_closid_rmid(tmpmask, prgrp); 355 } 356 357 /* 358 * If we added cpus, remove them from previous group that owned them 359 * and update per-cpu rmid 360 */ 361 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 362 if (!cpumask_empty(tmpmask)) { 363 head = &prgrp->mon.crdtgrp_list; 364 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 365 if (crgrp == rdtgrp) 366 continue; 367 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 368 tmpmask); 369 } 370 update_closid_rmid(tmpmask, rdtgrp); 371 } 372 373 /* Done pushing/pulling - update this group with new mask */ 374 cpumask_copy(&rdtgrp->cpu_mask, newmask); 375 376 return 0; 377 } 378 379 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 380 { 381 struct rdtgroup *crgrp; 382 383 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 384 /* update the child mon group masks as well*/ 385 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 386 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 387 } 388 389 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 390 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 391 { 392 struct rdtgroup *r, *crgrp; 393 struct list_head *head; 394 395 /* Check whether cpus are dropped from this group */ 396 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 397 if (!cpumask_empty(tmpmask)) { 398 /* Can't drop from default group */ 399 if (rdtgrp == &rdtgroup_default) { 400 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 401 return -EINVAL; 402 } 403 404 /* Give any dropped cpus to rdtgroup_default */ 405 cpumask_or(&rdtgroup_default.cpu_mask, 406 &rdtgroup_default.cpu_mask, tmpmask); 407 update_closid_rmid(tmpmask, &rdtgroup_default); 408 } 409 410 /* 411 * If we added cpus, remove them from previous group and 412 * the prev group's child groups that owned them 413 * and update per-cpu closid/rmid. 414 */ 415 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 416 if (!cpumask_empty(tmpmask)) { 417 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 418 if (r == rdtgrp) 419 continue; 420 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 421 if (!cpumask_empty(tmpmask1)) 422 cpumask_rdtgrp_clear(r, tmpmask1); 423 } 424 update_closid_rmid(tmpmask, rdtgrp); 425 } 426 427 /* Done pushing/pulling - update this group with new mask */ 428 cpumask_copy(&rdtgrp->cpu_mask, newmask); 429 430 /* 431 * Clear child mon group masks since there is a new parent mask 432 * now and update the rmid for the cpus the child lost. 433 */ 434 head = &rdtgrp->mon.crdtgrp_list; 435 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 436 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 437 update_closid_rmid(tmpmask, rdtgrp); 438 cpumask_clear(&crgrp->cpu_mask); 439 } 440 441 return 0; 442 } 443 444 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 445 char *buf, size_t nbytes, loff_t off) 446 { 447 cpumask_var_t tmpmask, newmask, tmpmask1; 448 struct rdtgroup *rdtgrp; 449 int ret; 450 451 if (!buf) 452 return -EINVAL; 453 454 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 455 return -ENOMEM; 456 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 457 free_cpumask_var(tmpmask); 458 return -ENOMEM; 459 } 460 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 461 free_cpumask_var(tmpmask); 462 free_cpumask_var(newmask); 463 return -ENOMEM; 464 } 465 466 rdtgrp = rdtgroup_kn_lock_live(of->kn); 467 if (!rdtgrp) { 468 ret = -ENOENT; 469 goto unlock; 470 } 471 472 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 473 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 474 ret = -EINVAL; 475 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 476 goto unlock; 477 } 478 479 if (is_cpu_list(of)) 480 ret = cpulist_parse(buf, newmask); 481 else 482 ret = cpumask_parse(buf, newmask); 483 484 if (ret) { 485 rdt_last_cmd_puts("Bad CPU list/mask\n"); 486 goto unlock; 487 } 488 489 /* check that user didn't specify any offline cpus */ 490 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 491 if (!cpumask_empty(tmpmask)) { 492 ret = -EINVAL; 493 rdt_last_cmd_puts("Can only assign online CPUs\n"); 494 goto unlock; 495 } 496 497 if (rdtgrp->type == RDTCTRL_GROUP) 498 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 499 else if (rdtgrp->type == RDTMON_GROUP) 500 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 501 else 502 ret = -EINVAL; 503 504 unlock: 505 rdtgroup_kn_unlock(of->kn); 506 free_cpumask_var(tmpmask); 507 free_cpumask_var(newmask); 508 free_cpumask_var(tmpmask1); 509 510 return ret ?: nbytes; 511 } 512 513 /** 514 * rdtgroup_remove - the helper to remove resource group safely 515 * @rdtgrp: resource group to remove 516 * 517 * On resource group creation via a mkdir, an extra kernfs_node reference is 518 * taken to ensure that the rdtgroup structure remains accessible for the 519 * rdtgroup_kn_unlock() calls where it is removed. 520 * 521 * Drop the extra reference here, then free the rdtgroup structure. 522 * 523 * Return: void 524 */ 525 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 526 { 527 kernfs_put(rdtgrp->kn); 528 kfree(rdtgrp); 529 } 530 531 static void _update_task_closid_rmid(void *task) 532 { 533 /* 534 * If the task is still current on this CPU, update PQR_ASSOC MSR. 535 * Otherwise, the MSR is updated when the task is scheduled in. 536 */ 537 if (task == current) 538 resctrl_sched_in(); 539 } 540 541 static void update_task_closid_rmid(struct task_struct *t) 542 { 543 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 544 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 545 else 546 _update_task_closid_rmid(t); 547 } 548 549 static int __rdtgroup_move_task(struct task_struct *tsk, 550 struct rdtgroup *rdtgrp) 551 { 552 /* If the task is already in rdtgrp, no need to move the task. */ 553 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid && 554 tsk->rmid == rdtgrp->mon.rmid) || 555 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid && 556 tsk->closid == rdtgrp->mon.parent->closid)) 557 return 0; 558 559 /* 560 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 561 * updated by them. 562 * 563 * For ctrl_mon groups, move both closid and rmid. 564 * For monitor groups, can move the tasks only from 565 * their parent CTRL group. 566 */ 567 568 if (rdtgrp->type == RDTCTRL_GROUP) { 569 WRITE_ONCE(tsk->closid, rdtgrp->closid); 570 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 571 } else if (rdtgrp->type == RDTMON_GROUP) { 572 if (rdtgrp->mon.parent->closid == tsk->closid) { 573 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 574 } else { 575 rdt_last_cmd_puts("Can't move task to different control group\n"); 576 return -EINVAL; 577 } 578 } 579 580 /* 581 * Ensure the task's closid and rmid are written before determining if 582 * the task is current that will decide if it will be interrupted. 583 * This pairs with the full barrier between the rq->curr update and 584 * resctrl_sched_in() during context switch. 585 */ 586 smp_mb(); 587 588 /* 589 * By now, the task's closid and rmid are set. If the task is current 590 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 591 * group go into effect. If the task is not current, the MSR will be 592 * updated when the task is scheduled in. 593 */ 594 update_task_closid_rmid(tsk); 595 596 return 0; 597 } 598 599 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 600 { 601 return (rdt_alloc_capable && 602 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 603 } 604 605 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 606 { 607 return (rdt_mon_capable && 608 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 609 } 610 611 /** 612 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 613 * @r: Resource group 614 * 615 * Return: 1 if tasks have been assigned to @r, 0 otherwise 616 */ 617 int rdtgroup_tasks_assigned(struct rdtgroup *r) 618 { 619 struct task_struct *p, *t; 620 int ret = 0; 621 622 lockdep_assert_held(&rdtgroup_mutex); 623 624 rcu_read_lock(); 625 for_each_process_thread(p, t) { 626 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 627 ret = 1; 628 break; 629 } 630 } 631 rcu_read_unlock(); 632 633 return ret; 634 } 635 636 static int rdtgroup_task_write_permission(struct task_struct *task, 637 struct kernfs_open_file *of) 638 { 639 const struct cred *tcred = get_task_cred(task); 640 const struct cred *cred = current_cred(); 641 int ret = 0; 642 643 /* 644 * Even if we're attaching all tasks in the thread group, we only 645 * need to check permissions on one of them. 646 */ 647 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 648 !uid_eq(cred->euid, tcred->uid) && 649 !uid_eq(cred->euid, tcred->suid)) { 650 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 651 ret = -EPERM; 652 } 653 654 put_cred(tcred); 655 return ret; 656 } 657 658 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 659 struct kernfs_open_file *of) 660 { 661 struct task_struct *tsk; 662 int ret; 663 664 rcu_read_lock(); 665 if (pid) { 666 tsk = find_task_by_vpid(pid); 667 if (!tsk) { 668 rcu_read_unlock(); 669 rdt_last_cmd_printf("No task %d\n", pid); 670 return -ESRCH; 671 } 672 } else { 673 tsk = current; 674 } 675 676 get_task_struct(tsk); 677 rcu_read_unlock(); 678 679 ret = rdtgroup_task_write_permission(tsk, of); 680 if (!ret) 681 ret = __rdtgroup_move_task(tsk, rdtgrp); 682 683 put_task_struct(tsk); 684 return ret; 685 } 686 687 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 688 char *buf, size_t nbytes, loff_t off) 689 { 690 struct rdtgroup *rdtgrp; 691 int ret = 0; 692 pid_t pid; 693 694 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 695 return -EINVAL; 696 rdtgrp = rdtgroup_kn_lock_live(of->kn); 697 if (!rdtgrp) { 698 rdtgroup_kn_unlock(of->kn); 699 return -ENOENT; 700 } 701 rdt_last_cmd_clear(); 702 703 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 704 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 705 ret = -EINVAL; 706 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 707 goto unlock; 708 } 709 710 ret = rdtgroup_move_task(pid, rdtgrp, of); 711 712 unlock: 713 rdtgroup_kn_unlock(of->kn); 714 715 return ret ?: nbytes; 716 } 717 718 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 719 { 720 struct task_struct *p, *t; 721 722 rcu_read_lock(); 723 for_each_process_thread(p, t) { 724 if (is_closid_match(t, r) || is_rmid_match(t, r)) 725 seq_printf(s, "%d\n", t->pid); 726 } 727 rcu_read_unlock(); 728 } 729 730 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 731 struct seq_file *s, void *v) 732 { 733 struct rdtgroup *rdtgrp; 734 int ret = 0; 735 736 rdtgrp = rdtgroup_kn_lock_live(of->kn); 737 if (rdtgrp) 738 show_rdt_tasks(rdtgrp, s); 739 else 740 ret = -ENOENT; 741 rdtgroup_kn_unlock(of->kn); 742 743 return ret; 744 } 745 746 #ifdef CONFIG_PROC_CPU_RESCTRL 747 748 /* 749 * A task can only be part of one resctrl control group and of one monitor 750 * group which is associated to that control group. 751 * 752 * 1) res: 753 * mon: 754 * 755 * resctrl is not available. 756 * 757 * 2) res:/ 758 * mon: 759 * 760 * Task is part of the root resctrl control group, and it is not associated 761 * to any monitor group. 762 * 763 * 3) res:/ 764 * mon:mon0 765 * 766 * Task is part of the root resctrl control group and monitor group mon0. 767 * 768 * 4) res:group0 769 * mon: 770 * 771 * Task is part of resctrl control group group0, and it is not associated 772 * to any monitor group. 773 * 774 * 5) res:group0 775 * mon:mon1 776 * 777 * Task is part of resctrl control group group0 and monitor group mon1. 778 */ 779 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 780 struct pid *pid, struct task_struct *tsk) 781 { 782 struct rdtgroup *rdtg; 783 int ret = 0; 784 785 mutex_lock(&rdtgroup_mutex); 786 787 /* Return empty if resctrl has not been mounted. */ 788 if (!static_branch_unlikely(&rdt_enable_key)) { 789 seq_puts(s, "res:\nmon:\n"); 790 goto unlock; 791 } 792 793 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 794 struct rdtgroup *crg; 795 796 /* 797 * Task information is only relevant for shareable 798 * and exclusive groups. 799 */ 800 if (rdtg->mode != RDT_MODE_SHAREABLE && 801 rdtg->mode != RDT_MODE_EXCLUSIVE) 802 continue; 803 804 if (rdtg->closid != tsk->closid) 805 continue; 806 807 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 808 rdtg->kn->name); 809 seq_puts(s, "mon:"); 810 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 811 mon.crdtgrp_list) { 812 if (tsk->rmid != crg->mon.rmid) 813 continue; 814 seq_printf(s, "%s", crg->kn->name); 815 break; 816 } 817 seq_putc(s, '\n'); 818 goto unlock; 819 } 820 /* 821 * The above search should succeed. Otherwise return 822 * with an error. 823 */ 824 ret = -ENOENT; 825 unlock: 826 mutex_unlock(&rdtgroup_mutex); 827 828 return ret; 829 } 830 #endif 831 832 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 833 struct seq_file *seq, void *v) 834 { 835 int len; 836 837 mutex_lock(&rdtgroup_mutex); 838 len = seq_buf_used(&last_cmd_status); 839 if (len) 840 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 841 else 842 seq_puts(seq, "ok\n"); 843 mutex_unlock(&rdtgroup_mutex); 844 return 0; 845 } 846 847 static int rdt_num_closids_show(struct kernfs_open_file *of, 848 struct seq_file *seq, void *v) 849 { 850 struct resctrl_schema *s = of->kn->parent->priv; 851 852 seq_printf(seq, "%u\n", s->num_closid); 853 return 0; 854 } 855 856 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 857 struct seq_file *seq, void *v) 858 { 859 struct resctrl_schema *s = of->kn->parent->priv; 860 struct rdt_resource *r = s->res; 861 862 seq_printf(seq, "%x\n", r->default_ctrl); 863 return 0; 864 } 865 866 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 867 struct seq_file *seq, void *v) 868 { 869 struct resctrl_schema *s = of->kn->parent->priv; 870 struct rdt_resource *r = s->res; 871 872 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 873 return 0; 874 } 875 876 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 877 struct seq_file *seq, void *v) 878 { 879 struct resctrl_schema *s = of->kn->parent->priv; 880 struct rdt_resource *r = s->res; 881 882 seq_printf(seq, "%x\n", r->cache.shareable_bits); 883 return 0; 884 } 885 886 /** 887 * rdt_bit_usage_show - Display current usage of resources 888 * 889 * A domain is a shared resource that can now be allocated differently. Here 890 * we display the current regions of the domain as an annotated bitmask. 891 * For each domain of this resource its allocation bitmask 892 * is annotated as below to indicate the current usage of the corresponding bit: 893 * 0 - currently unused 894 * X - currently available for sharing and used by software and hardware 895 * H - currently used by hardware only but available for software use 896 * S - currently used and shareable by software only 897 * E - currently used exclusively by one resource group 898 * P - currently pseudo-locked by one resource group 899 */ 900 static int rdt_bit_usage_show(struct kernfs_open_file *of, 901 struct seq_file *seq, void *v) 902 { 903 struct resctrl_schema *s = of->kn->parent->priv; 904 /* 905 * Use unsigned long even though only 32 bits are used to ensure 906 * test_bit() is used safely. 907 */ 908 unsigned long sw_shareable = 0, hw_shareable = 0; 909 unsigned long exclusive = 0, pseudo_locked = 0; 910 struct rdt_resource *r = s->res; 911 struct rdt_domain *dom; 912 int i, hwb, swb, excl, psl; 913 enum rdtgrp_mode mode; 914 bool sep = false; 915 u32 ctrl_val; 916 917 mutex_lock(&rdtgroup_mutex); 918 hw_shareable = r->cache.shareable_bits; 919 list_for_each_entry(dom, &r->domains, list) { 920 if (sep) 921 seq_putc(seq, ';'); 922 sw_shareable = 0; 923 exclusive = 0; 924 seq_printf(seq, "%d=", dom->id); 925 for (i = 0; i < closids_supported(); i++) { 926 if (!closid_allocated(i)) 927 continue; 928 ctrl_val = resctrl_arch_get_config(r, dom, i, 929 s->conf_type); 930 mode = rdtgroup_mode_by_closid(i); 931 switch (mode) { 932 case RDT_MODE_SHAREABLE: 933 sw_shareable |= ctrl_val; 934 break; 935 case RDT_MODE_EXCLUSIVE: 936 exclusive |= ctrl_val; 937 break; 938 case RDT_MODE_PSEUDO_LOCKSETUP: 939 /* 940 * RDT_MODE_PSEUDO_LOCKSETUP is possible 941 * here but not included since the CBM 942 * associated with this CLOSID in this mode 943 * is not initialized and no task or cpu can be 944 * assigned this CLOSID. 945 */ 946 break; 947 case RDT_MODE_PSEUDO_LOCKED: 948 case RDT_NUM_MODES: 949 WARN(1, 950 "invalid mode for closid %d\n", i); 951 break; 952 } 953 } 954 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 955 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 956 hwb = test_bit(i, &hw_shareable); 957 swb = test_bit(i, &sw_shareable); 958 excl = test_bit(i, &exclusive); 959 psl = test_bit(i, &pseudo_locked); 960 if (hwb && swb) 961 seq_putc(seq, 'X'); 962 else if (hwb && !swb) 963 seq_putc(seq, 'H'); 964 else if (!hwb && swb) 965 seq_putc(seq, 'S'); 966 else if (excl) 967 seq_putc(seq, 'E'); 968 else if (psl) 969 seq_putc(seq, 'P'); 970 else /* Unused bits remain */ 971 seq_putc(seq, '0'); 972 } 973 sep = true; 974 } 975 seq_putc(seq, '\n'); 976 mutex_unlock(&rdtgroup_mutex); 977 return 0; 978 } 979 980 static int rdt_min_bw_show(struct kernfs_open_file *of, 981 struct seq_file *seq, void *v) 982 { 983 struct resctrl_schema *s = of->kn->parent->priv; 984 struct rdt_resource *r = s->res; 985 986 seq_printf(seq, "%u\n", r->membw.min_bw); 987 return 0; 988 } 989 990 static int rdt_num_rmids_show(struct kernfs_open_file *of, 991 struct seq_file *seq, void *v) 992 { 993 struct rdt_resource *r = of->kn->parent->priv; 994 995 seq_printf(seq, "%d\n", r->num_rmid); 996 997 return 0; 998 } 999 1000 static int rdt_mon_features_show(struct kernfs_open_file *of, 1001 struct seq_file *seq, void *v) 1002 { 1003 struct rdt_resource *r = of->kn->parent->priv; 1004 struct mon_evt *mevt; 1005 1006 list_for_each_entry(mevt, &r->evt_list, list) 1007 seq_printf(seq, "%s\n", mevt->name); 1008 1009 return 0; 1010 } 1011 1012 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1013 struct seq_file *seq, void *v) 1014 { 1015 struct resctrl_schema *s = of->kn->parent->priv; 1016 struct rdt_resource *r = s->res; 1017 1018 seq_printf(seq, "%u\n", r->membw.bw_gran); 1019 return 0; 1020 } 1021 1022 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1023 struct seq_file *seq, void *v) 1024 { 1025 struct resctrl_schema *s = of->kn->parent->priv; 1026 struct rdt_resource *r = s->res; 1027 1028 seq_printf(seq, "%u\n", r->membw.delay_linear); 1029 return 0; 1030 } 1031 1032 static int max_threshold_occ_show(struct kernfs_open_file *of, 1033 struct seq_file *seq, void *v) 1034 { 1035 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold); 1036 1037 return 0; 1038 } 1039 1040 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1041 struct seq_file *seq, void *v) 1042 { 1043 struct resctrl_schema *s = of->kn->parent->priv; 1044 struct rdt_resource *r = s->res; 1045 1046 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD) 1047 seq_puts(seq, "per-thread\n"); 1048 else 1049 seq_puts(seq, "max\n"); 1050 1051 return 0; 1052 } 1053 1054 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1055 char *buf, size_t nbytes, loff_t off) 1056 { 1057 unsigned int bytes; 1058 int ret; 1059 1060 ret = kstrtouint(buf, 0, &bytes); 1061 if (ret) 1062 return ret; 1063 1064 if (bytes > resctrl_rmid_realloc_limit) 1065 return -EINVAL; 1066 1067 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes); 1068 1069 return nbytes; 1070 } 1071 1072 /* 1073 * rdtgroup_mode_show - Display mode of this resource group 1074 */ 1075 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1076 struct seq_file *s, void *v) 1077 { 1078 struct rdtgroup *rdtgrp; 1079 1080 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1081 if (!rdtgrp) { 1082 rdtgroup_kn_unlock(of->kn); 1083 return -ENOENT; 1084 } 1085 1086 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1087 1088 rdtgroup_kn_unlock(of->kn); 1089 return 0; 1090 } 1091 1092 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type) 1093 { 1094 switch (my_type) { 1095 case CDP_CODE: 1096 return CDP_DATA; 1097 case CDP_DATA: 1098 return CDP_CODE; 1099 default: 1100 case CDP_NONE: 1101 return CDP_NONE; 1102 } 1103 } 1104 1105 /** 1106 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1107 * @r: Resource to which domain instance @d belongs. 1108 * @d: The domain instance for which @closid is being tested. 1109 * @cbm: Capacity bitmask being tested. 1110 * @closid: Intended closid for @cbm. 1111 * @exclusive: Only check if overlaps with exclusive resource groups 1112 * 1113 * Checks if provided @cbm intended to be used for @closid on domain 1114 * @d overlaps with any other closids or other hardware usage associated 1115 * with this domain. If @exclusive is true then only overlaps with 1116 * resource groups in exclusive mode will be considered. If @exclusive 1117 * is false then overlaps with any resource group or hardware entities 1118 * will be considered. 1119 * 1120 * @cbm is unsigned long, even if only 32 bits are used, to make the 1121 * bitmap functions work correctly. 1122 * 1123 * Return: false if CBM does not overlap, true if it does. 1124 */ 1125 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1126 unsigned long cbm, int closid, 1127 enum resctrl_conf_type type, bool exclusive) 1128 { 1129 enum rdtgrp_mode mode; 1130 unsigned long ctrl_b; 1131 int i; 1132 1133 /* Check for any overlap with regions used by hardware directly */ 1134 if (!exclusive) { 1135 ctrl_b = r->cache.shareable_bits; 1136 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1137 return true; 1138 } 1139 1140 /* Check for overlap with other resource groups */ 1141 for (i = 0; i < closids_supported(); i++) { 1142 ctrl_b = resctrl_arch_get_config(r, d, i, type); 1143 mode = rdtgroup_mode_by_closid(i); 1144 if (closid_allocated(i) && i != closid && 1145 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1146 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1147 if (exclusive) { 1148 if (mode == RDT_MODE_EXCLUSIVE) 1149 return true; 1150 continue; 1151 } 1152 return true; 1153 } 1154 } 1155 } 1156 1157 return false; 1158 } 1159 1160 /** 1161 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1162 * @s: Schema for the resource to which domain instance @d belongs. 1163 * @d: The domain instance for which @closid is being tested. 1164 * @cbm: Capacity bitmask being tested. 1165 * @closid: Intended closid for @cbm. 1166 * @exclusive: Only check if overlaps with exclusive resource groups 1167 * 1168 * Resources that can be allocated using a CBM can use the CBM to control 1169 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1170 * for overlap. Overlap test is not limited to the specific resource for 1171 * which the CBM is intended though - when dealing with CDP resources that 1172 * share the underlying hardware the overlap check should be performed on 1173 * the CDP resource sharing the hardware also. 1174 * 1175 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1176 * overlap test. 1177 * 1178 * Return: true if CBM overlap detected, false if there is no overlap 1179 */ 1180 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d, 1181 unsigned long cbm, int closid, bool exclusive) 1182 { 1183 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 1184 struct rdt_resource *r = s->res; 1185 1186 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type, 1187 exclusive)) 1188 return true; 1189 1190 if (!resctrl_arch_get_cdp_enabled(r->rid)) 1191 return false; 1192 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive); 1193 } 1194 1195 /** 1196 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1197 * 1198 * An exclusive resource group implies that there should be no sharing of 1199 * its allocated resources. At the time this group is considered to be 1200 * exclusive this test can determine if its current schemata supports this 1201 * setting by testing for overlap with all other resource groups. 1202 * 1203 * Return: true if resource group can be exclusive, false if there is overlap 1204 * with allocations of other resource groups and thus this resource group 1205 * cannot be exclusive. 1206 */ 1207 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1208 { 1209 int closid = rdtgrp->closid; 1210 struct resctrl_schema *s; 1211 struct rdt_resource *r; 1212 bool has_cache = false; 1213 struct rdt_domain *d; 1214 u32 ctrl; 1215 1216 list_for_each_entry(s, &resctrl_schema_all, list) { 1217 r = s->res; 1218 if (r->rid == RDT_RESOURCE_MBA) 1219 continue; 1220 has_cache = true; 1221 list_for_each_entry(d, &r->domains, list) { 1222 ctrl = resctrl_arch_get_config(r, d, closid, 1223 s->conf_type); 1224 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) { 1225 rdt_last_cmd_puts("Schemata overlaps\n"); 1226 return false; 1227 } 1228 } 1229 } 1230 1231 if (!has_cache) { 1232 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1233 return false; 1234 } 1235 1236 return true; 1237 } 1238 1239 /** 1240 * rdtgroup_mode_write - Modify the resource group's mode 1241 * 1242 */ 1243 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1244 char *buf, size_t nbytes, loff_t off) 1245 { 1246 struct rdtgroup *rdtgrp; 1247 enum rdtgrp_mode mode; 1248 int ret = 0; 1249 1250 /* Valid input requires a trailing newline */ 1251 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1252 return -EINVAL; 1253 buf[nbytes - 1] = '\0'; 1254 1255 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1256 if (!rdtgrp) { 1257 rdtgroup_kn_unlock(of->kn); 1258 return -ENOENT; 1259 } 1260 1261 rdt_last_cmd_clear(); 1262 1263 mode = rdtgrp->mode; 1264 1265 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1266 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1267 (!strcmp(buf, "pseudo-locksetup") && 1268 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1269 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1270 goto out; 1271 1272 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1273 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1274 ret = -EINVAL; 1275 goto out; 1276 } 1277 1278 if (!strcmp(buf, "shareable")) { 1279 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1280 ret = rdtgroup_locksetup_exit(rdtgrp); 1281 if (ret) 1282 goto out; 1283 } 1284 rdtgrp->mode = RDT_MODE_SHAREABLE; 1285 } else if (!strcmp(buf, "exclusive")) { 1286 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1287 ret = -EINVAL; 1288 goto out; 1289 } 1290 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1291 ret = rdtgroup_locksetup_exit(rdtgrp); 1292 if (ret) 1293 goto out; 1294 } 1295 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1296 } else if (!strcmp(buf, "pseudo-locksetup")) { 1297 ret = rdtgroup_locksetup_enter(rdtgrp); 1298 if (ret) 1299 goto out; 1300 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1301 } else { 1302 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1303 ret = -EINVAL; 1304 } 1305 1306 out: 1307 rdtgroup_kn_unlock(of->kn); 1308 return ret ?: nbytes; 1309 } 1310 1311 /** 1312 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1313 * @r: RDT resource to which @d belongs. 1314 * @d: RDT domain instance. 1315 * @cbm: bitmask for which the size should be computed. 1316 * 1317 * The bitmask provided associated with the RDT domain instance @d will be 1318 * translated into how many bytes it represents. The size in bytes is 1319 * computed by first dividing the total cache size by the CBM length to 1320 * determine how many bytes each bit in the bitmask represents. The result 1321 * is multiplied with the number of bits set in the bitmask. 1322 * 1323 * @cbm is unsigned long, even if only 32 bits are used to make the 1324 * bitmap functions work correctly. 1325 */ 1326 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1327 struct rdt_domain *d, unsigned long cbm) 1328 { 1329 struct cpu_cacheinfo *ci; 1330 unsigned int size = 0; 1331 int num_b, i; 1332 1333 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1334 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1335 for (i = 0; i < ci->num_leaves; i++) { 1336 if (ci->info_list[i].level == r->cache_level) { 1337 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1338 break; 1339 } 1340 } 1341 1342 return size; 1343 } 1344 1345 /** 1346 * rdtgroup_size_show - Display size in bytes of allocated regions 1347 * 1348 * The "size" file mirrors the layout of the "schemata" file, printing the 1349 * size in bytes of each region instead of the capacity bitmask. 1350 * 1351 */ 1352 static int rdtgroup_size_show(struct kernfs_open_file *of, 1353 struct seq_file *s, void *v) 1354 { 1355 struct resctrl_schema *schema; 1356 enum resctrl_conf_type type; 1357 struct rdtgroup *rdtgrp; 1358 struct rdt_resource *r; 1359 struct rdt_domain *d; 1360 unsigned int size; 1361 int ret = 0; 1362 u32 closid; 1363 bool sep; 1364 u32 ctrl; 1365 1366 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1367 if (!rdtgrp) { 1368 rdtgroup_kn_unlock(of->kn); 1369 return -ENOENT; 1370 } 1371 1372 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1373 if (!rdtgrp->plr->d) { 1374 rdt_last_cmd_clear(); 1375 rdt_last_cmd_puts("Cache domain offline\n"); 1376 ret = -ENODEV; 1377 } else { 1378 seq_printf(s, "%*s:", max_name_width, 1379 rdtgrp->plr->s->name); 1380 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res, 1381 rdtgrp->plr->d, 1382 rdtgrp->plr->cbm); 1383 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1384 } 1385 goto out; 1386 } 1387 1388 closid = rdtgrp->closid; 1389 1390 list_for_each_entry(schema, &resctrl_schema_all, list) { 1391 r = schema->res; 1392 type = schema->conf_type; 1393 sep = false; 1394 seq_printf(s, "%*s:", max_name_width, schema->name); 1395 list_for_each_entry(d, &r->domains, list) { 1396 if (sep) 1397 seq_putc(s, ';'); 1398 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1399 size = 0; 1400 } else { 1401 if (is_mba_sc(r)) 1402 ctrl = d->mbps_val[closid]; 1403 else 1404 ctrl = resctrl_arch_get_config(r, d, 1405 closid, 1406 type); 1407 if (r->rid == RDT_RESOURCE_MBA) 1408 size = ctrl; 1409 else 1410 size = rdtgroup_cbm_to_size(r, d, ctrl); 1411 } 1412 seq_printf(s, "%d=%u", d->id, size); 1413 sep = true; 1414 } 1415 seq_putc(s, '\n'); 1416 } 1417 1418 out: 1419 rdtgroup_kn_unlock(of->kn); 1420 1421 return ret; 1422 } 1423 1424 /* rdtgroup information files for one cache resource. */ 1425 static struct rftype res_common_files[] = { 1426 { 1427 .name = "last_cmd_status", 1428 .mode = 0444, 1429 .kf_ops = &rdtgroup_kf_single_ops, 1430 .seq_show = rdt_last_cmd_status_show, 1431 .fflags = RF_TOP_INFO, 1432 }, 1433 { 1434 .name = "num_closids", 1435 .mode = 0444, 1436 .kf_ops = &rdtgroup_kf_single_ops, 1437 .seq_show = rdt_num_closids_show, 1438 .fflags = RF_CTRL_INFO, 1439 }, 1440 { 1441 .name = "mon_features", 1442 .mode = 0444, 1443 .kf_ops = &rdtgroup_kf_single_ops, 1444 .seq_show = rdt_mon_features_show, 1445 .fflags = RF_MON_INFO, 1446 }, 1447 { 1448 .name = "num_rmids", 1449 .mode = 0444, 1450 .kf_ops = &rdtgroup_kf_single_ops, 1451 .seq_show = rdt_num_rmids_show, 1452 .fflags = RF_MON_INFO, 1453 }, 1454 { 1455 .name = "cbm_mask", 1456 .mode = 0444, 1457 .kf_ops = &rdtgroup_kf_single_ops, 1458 .seq_show = rdt_default_ctrl_show, 1459 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1460 }, 1461 { 1462 .name = "min_cbm_bits", 1463 .mode = 0444, 1464 .kf_ops = &rdtgroup_kf_single_ops, 1465 .seq_show = rdt_min_cbm_bits_show, 1466 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1467 }, 1468 { 1469 .name = "shareable_bits", 1470 .mode = 0444, 1471 .kf_ops = &rdtgroup_kf_single_ops, 1472 .seq_show = rdt_shareable_bits_show, 1473 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1474 }, 1475 { 1476 .name = "bit_usage", 1477 .mode = 0444, 1478 .kf_ops = &rdtgroup_kf_single_ops, 1479 .seq_show = rdt_bit_usage_show, 1480 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1481 }, 1482 { 1483 .name = "min_bandwidth", 1484 .mode = 0444, 1485 .kf_ops = &rdtgroup_kf_single_ops, 1486 .seq_show = rdt_min_bw_show, 1487 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1488 }, 1489 { 1490 .name = "bandwidth_gran", 1491 .mode = 0444, 1492 .kf_ops = &rdtgroup_kf_single_ops, 1493 .seq_show = rdt_bw_gran_show, 1494 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1495 }, 1496 { 1497 .name = "delay_linear", 1498 .mode = 0444, 1499 .kf_ops = &rdtgroup_kf_single_ops, 1500 .seq_show = rdt_delay_linear_show, 1501 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1502 }, 1503 /* 1504 * Platform specific which (if any) capabilities are provided by 1505 * thread_throttle_mode. Defer "fflags" initialization to platform 1506 * discovery. 1507 */ 1508 { 1509 .name = "thread_throttle_mode", 1510 .mode = 0444, 1511 .kf_ops = &rdtgroup_kf_single_ops, 1512 .seq_show = rdt_thread_throttle_mode_show, 1513 }, 1514 { 1515 .name = "max_threshold_occupancy", 1516 .mode = 0644, 1517 .kf_ops = &rdtgroup_kf_single_ops, 1518 .write = max_threshold_occ_write, 1519 .seq_show = max_threshold_occ_show, 1520 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1521 }, 1522 { 1523 .name = "cpus", 1524 .mode = 0644, 1525 .kf_ops = &rdtgroup_kf_single_ops, 1526 .write = rdtgroup_cpus_write, 1527 .seq_show = rdtgroup_cpus_show, 1528 .fflags = RFTYPE_BASE, 1529 }, 1530 { 1531 .name = "cpus_list", 1532 .mode = 0644, 1533 .kf_ops = &rdtgroup_kf_single_ops, 1534 .write = rdtgroup_cpus_write, 1535 .seq_show = rdtgroup_cpus_show, 1536 .flags = RFTYPE_FLAGS_CPUS_LIST, 1537 .fflags = RFTYPE_BASE, 1538 }, 1539 { 1540 .name = "tasks", 1541 .mode = 0644, 1542 .kf_ops = &rdtgroup_kf_single_ops, 1543 .write = rdtgroup_tasks_write, 1544 .seq_show = rdtgroup_tasks_show, 1545 .fflags = RFTYPE_BASE, 1546 }, 1547 { 1548 .name = "schemata", 1549 .mode = 0644, 1550 .kf_ops = &rdtgroup_kf_single_ops, 1551 .write = rdtgroup_schemata_write, 1552 .seq_show = rdtgroup_schemata_show, 1553 .fflags = RF_CTRL_BASE, 1554 }, 1555 { 1556 .name = "mode", 1557 .mode = 0644, 1558 .kf_ops = &rdtgroup_kf_single_ops, 1559 .write = rdtgroup_mode_write, 1560 .seq_show = rdtgroup_mode_show, 1561 .fflags = RF_CTRL_BASE, 1562 }, 1563 { 1564 .name = "size", 1565 .mode = 0444, 1566 .kf_ops = &rdtgroup_kf_single_ops, 1567 .seq_show = rdtgroup_size_show, 1568 .fflags = RF_CTRL_BASE, 1569 }, 1570 1571 }; 1572 1573 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1574 { 1575 struct rftype *rfts, *rft; 1576 int ret, len; 1577 1578 rfts = res_common_files; 1579 len = ARRAY_SIZE(res_common_files); 1580 1581 lockdep_assert_held(&rdtgroup_mutex); 1582 1583 for (rft = rfts; rft < rfts + len; rft++) { 1584 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 1585 ret = rdtgroup_add_file(kn, rft); 1586 if (ret) 1587 goto error; 1588 } 1589 } 1590 1591 return 0; 1592 error: 1593 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1594 while (--rft >= rfts) { 1595 if ((fflags & rft->fflags) == rft->fflags) 1596 kernfs_remove_by_name(kn, rft->name); 1597 } 1598 return ret; 1599 } 1600 1601 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 1602 { 1603 struct rftype *rfts, *rft; 1604 int len; 1605 1606 rfts = res_common_files; 1607 len = ARRAY_SIZE(res_common_files); 1608 1609 for (rft = rfts; rft < rfts + len; rft++) { 1610 if (!strcmp(rft->name, name)) 1611 return rft; 1612 } 1613 1614 return NULL; 1615 } 1616 1617 void __init thread_throttle_mode_init(void) 1618 { 1619 struct rftype *rft; 1620 1621 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode"); 1622 if (!rft) 1623 return; 1624 1625 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB; 1626 } 1627 1628 /** 1629 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1630 * @r: The resource group with which the file is associated. 1631 * @name: Name of the file 1632 * 1633 * The permissions of named resctrl file, directory, or link are modified 1634 * to not allow read, write, or execute by any user. 1635 * 1636 * WARNING: This function is intended to communicate to the user that the 1637 * resctrl file has been locked down - that it is not relevant to the 1638 * particular state the system finds itself in. It should not be relied 1639 * on to protect from user access because after the file's permissions 1640 * are restricted the user can still change the permissions using chmod 1641 * from the command line. 1642 * 1643 * Return: 0 on success, <0 on failure. 1644 */ 1645 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1646 { 1647 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1648 struct kernfs_node *kn; 1649 int ret = 0; 1650 1651 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1652 if (!kn) 1653 return -ENOENT; 1654 1655 switch (kernfs_type(kn)) { 1656 case KERNFS_DIR: 1657 iattr.ia_mode = S_IFDIR; 1658 break; 1659 case KERNFS_FILE: 1660 iattr.ia_mode = S_IFREG; 1661 break; 1662 case KERNFS_LINK: 1663 iattr.ia_mode = S_IFLNK; 1664 break; 1665 } 1666 1667 ret = kernfs_setattr(kn, &iattr); 1668 kernfs_put(kn); 1669 return ret; 1670 } 1671 1672 /** 1673 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1674 * @r: The resource group with which the file is associated. 1675 * @name: Name of the file 1676 * @mask: Mask of permissions that should be restored 1677 * 1678 * Restore the permissions of the named file. If @name is a directory the 1679 * permissions of its parent will be used. 1680 * 1681 * Return: 0 on success, <0 on failure. 1682 */ 1683 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1684 umode_t mask) 1685 { 1686 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1687 struct kernfs_node *kn, *parent; 1688 struct rftype *rfts, *rft; 1689 int ret, len; 1690 1691 rfts = res_common_files; 1692 len = ARRAY_SIZE(res_common_files); 1693 1694 for (rft = rfts; rft < rfts + len; rft++) { 1695 if (!strcmp(rft->name, name)) 1696 iattr.ia_mode = rft->mode & mask; 1697 } 1698 1699 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1700 if (!kn) 1701 return -ENOENT; 1702 1703 switch (kernfs_type(kn)) { 1704 case KERNFS_DIR: 1705 parent = kernfs_get_parent(kn); 1706 if (parent) { 1707 iattr.ia_mode |= parent->mode; 1708 kernfs_put(parent); 1709 } 1710 iattr.ia_mode |= S_IFDIR; 1711 break; 1712 case KERNFS_FILE: 1713 iattr.ia_mode |= S_IFREG; 1714 break; 1715 case KERNFS_LINK: 1716 iattr.ia_mode |= S_IFLNK; 1717 break; 1718 } 1719 1720 ret = kernfs_setattr(kn, &iattr); 1721 kernfs_put(kn); 1722 return ret; 1723 } 1724 1725 static int rdtgroup_mkdir_info_resdir(void *priv, char *name, 1726 unsigned long fflags) 1727 { 1728 struct kernfs_node *kn_subdir; 1729 int ret; 1730 1731 kn_subdir = kernfs_create_dir(kn_info, name, 1732 kn_info->mode, priv); 1733 if (IS_ERR(kn_subdir)) 1734 return PTR_ERR(kn_subdir); 1735 1736 ret = rdtgroup_kn_set_ugid(kn_subdir); 1737 if (ret) 1738 return ret; 1739 1740 ret = rdtgroup_add_files(kn_subdir, fflags); 1741 if (!ret) 1742 kernfs_activate(kn_subdir); 1743 1744 return ret; 1745 } 1746 1747 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 1748 { 1749 struct resctrl_schema *s; 1750 struct rdt_resource *r; 1751 unsigned long fflags; 1752 char name[32]; 1753 int ret; 1754 1755 /* create the directory */ 1756 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 1757 if (IS_ERR(kn_info)) 1758 return PTR_ERR(kn_info); 1759 1760 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 1761 if (ret) 1762 goto out_destroy; 1763 1764 /* loop over enabled controls, these are all alloc_capable */ 1765 list_for_each_entry(s, &resctrl_schema_all, list) { 1766 r = s->res; 1767 fflags = r->fflags | RF_CTRL_INFO; 1768 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags); 1769 if (ret) 1770 goto out_destroy; 1771 } 1772 1773 for_each_mon_capable_rdt_resource(r) { 1774 fflags = r->fflags | RF_MON_INFO; 1775 sprintf(name, "%s_MON", r->name); 1776 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 1777 if (ret) 1778 goto out_destroy; 1779 } 1780 1781 ret = rdtgroup_kn_set_ugid(kn_info); 1782 if (ret) 1783 goto out_destroy; 1784 1785 kernfs_activate(kn_info); 1786 1787 return 0; 1788 1789 out_destroy: 1790 kernfs_remove(kn_info); 1791 return ret; 1792 } 1793 1794 static int 1795 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 1796 char *name, struct kernfs_node **dest_kn) 1797 { 1798 struct kernfs_node *kn; 1799 int ret; 1800 1801 /* create the directory */ 1802 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 1803 if (IS_ERR(kn)) 1804 return PTR_ERR(kn); 1805 1806 if (dest_kn) 1807 *dest_kn = kn; 1808 1809 ret = rdtgroup_kn_set_ugid(kn); 1810 if (ret) 1811 goto out_destroy; 1812 1813 kernfs_activate(kn); 1814 1815 return 0; 1816 1817 out_destroy: 1818 kernfs_remove(kn); 1819 return ret; 1820 } 1821 1822 static void l3_qos_cfg_update(void *arg) 1823 { 1824 bool *enable = arg; 1825 1826 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 1827 } 1828 1829 static void l2_qos_cfg_update(void *arg) 1830 { 1831 bool *enable = arg; 1832 1833 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 1834 } 1835 1836 static inline bool is_mba_linear(void) 1837 { 1838 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear; 1839 } 1840 1841 static int set_cache_qos_cfg(int level, bool enable) 1842 { 1843 void (*update)(void *arg); 1844 struct rdt_resource *r_l; 1845 cpumask_var_t cpu_mask; 1846 struct rdt_domain *d; 1847 int cpu; 1848 1849 if (level == RDT_RESOURCE_L3) 1850 update = l3_qos_cfg_update; 1851 else if (level == RDT_RESOURCE_L2) 1852 update = l2_qos_cfg_update; 1853 else 1854 return -EINVAL; 1855 1856 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 1857 return -ENOMEM; 1858 1859 r_l = &rdt_resources_all[level].r_resctrl; 1860 list_for_each_entry(d, &r_l->domains, list) { 1861 if (r_l->cache.arch_has_per_cpu_cfg) 1862 /* Pick all the CPUs in the domain instance */ 1863 for_each_cpu(cpu, &d->cpu_mask) 1864 cpumask_set_cpu(cpu, cpu_mask); 1865 else 1866 /* Pick one CPU from each domain instance to update MSR */ 1867 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 1868 } 1869 cpu = get_cpu(); 1870 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */ 1871 if (cpumask_test_cpu(cpu, cpu_mask)) 1872 update(&enable); 1873 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */ 1874 smp_call_function_many(cpu_mask, update, &enable, 1); 1875 put_cpu(); 1876 1877 free_cpumask_var(cpu_mask); 1878 1879 return 0; 1880 } 1881 1882 /* Restore the qos cfg state when a domain comes online */ 1883 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 1884 { 1885 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 1886 1887 if (!r->cdp_capable) 1888 return; 1889 1890 if (r->rid == RDT_RESOURCE_L2) 1891 l2_qos_cfg_update(&hw_res->cdp_enabled); 1892 1893 if (r->rid == RDT_RESOURCE_L3) 1894 l3_qos_cfg_update(&hw_res->cdp_enabled); 1895 } 1896 1897 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d) 1898 { 1899 u32 num_closid = resctrl_arch_get_num_closid(r); 1900 int cpu = cpumask_any(&d->cpu_mask); 1901 int i; 1902 1903 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val), 1904 GFP_KERNEL, cpu_to_node(cpu)); 1905 if (!d->mbps_val) 1906 return -ENOMEM; 1907 1908 for (i = 0; i < num_closid; i++) 1909 d->mbps_val[i] = MBA_MAX_MBPS; 1910 1911 return 0; 1912 } 1913 1914 static void mba_sc_domain_destroy(struct rdt_resource *r, 1915 struct rdt_domain *d) 1916 { 1917 kfree(d->mbps_val); 1918 d->mbps_val = NULL; 1919 } 1920 1921 /* 1922 * MBA software controller is supported only if 1923 * MBM is supported and MBA is in linear scale. 1924 */ 1925 static bool supports_mba_mbps(void) 1926 { 1927 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 1928 1929 return (is_mbm_local_enabled() && 1930 r->alloc_capable && is_mba_linear()); 1931 } 1932 1933 /* 1934 * Enable or disable the MBA software controller 1935 * which helps user specify bandwidth in MBps. 1936 */ 1937 static int set_mba_sc(bool mba_sc) 1938 { 1939 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 1940 u32 num_closid = resctrl_arch_get_num_closid(r); 1941 struct rdt_domain *d; 1942 int i; 1943 1944 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r)) 1945 return -EINVAL; 1946 1947 r->membw.mba_sc = mba_sc; 1948 1949 list_for_each_entry(d, &r->domains, list) { 1950 for (i = 0; i < num_closid; i++) 1951 d->mbps_val[i] = MBA_MAX_MBPS; 1952 } 1953 1954 return 0; 1955 } 1956 1957 static int cdp_enable(int level) 1958 { 1959 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl; 1960 int ret; 1961 1962 if (!r_l->alloc_capable) 1963 return -EINVAL; 1964 1965 ret = set_cache_qos_cfg(level, true); 1966 if (!ret) 1967 rdt_resources_all[level].cdp_enabled = true; 1968 1969 return ret; 1970 } 1971 1972 static void cdp_disable(int level) 1973 { 1974 struct rdt_hw_resource *r_hw = &rdt_resources_all[level]; 1975 1976 if (r_hw->cdp_enabled) { 1977 set_cache_qos_cfg(level, false); 1978 r_hw->cdp_enabled = false; 1979 } 1980 } 1981 1982 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable) 1983 { 1984 struct rdt_hw_resource *hw_res = &rdt_resources_all[l]; 1985 1986 if (!hw_res->r_resctrl.cdp_capable) 1987 return -EINVAL; 1988 1989 if (enable) 1990 return cdp_enable(l); 1991 1992 cdp_disable(l); 1993 1994 return 0; 1995 } 1996 1997 static void cdp_disable_all(void) 1998 { 1999 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 2000 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2001 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 2002 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2003 } 2004 2005 /* 2006 * We don't allow rdtgroup directories to be created anywhere 2007 * except the root directory. Thus when looking for the rdtgroup 2008 * structure for a kernfs node we are either looking at a directory, 2009 * in which case the rdtgroup structure is pointed at by the "priv" 2010 * field, otherwise we have a file, and need only look to the parent 2011 * to find the rdtgroup. 2012 */ 2013 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2014 { 2015 if (kernfs_type(kn) == KERNFS_DIR) { 2016 /* 2017 * All the resource directories use "kn->priv" 2018 * to point to the "struct rdtgroup" for the 2019 * resource. "info" and its subdirectories don't 2020 * have rdtgroup structures, so return NULL here. 2021 */ 2022 if (kn == kn_info || kn->parent == kn_info) 2023 return NULL; 2024 else 2025 return kn->priv; 2026 } else { 2027 return kn->parent->priv; 2028 } 2029 } 2030 2031 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2032 { 2033 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2034 2035 if (!rdtgrp) 2036 return NULL; 2037 2038 atomic_inc(&rdtgrp->waitcount); 2039 kernfs_break_active_protection(kn); 2040 2041 mutex_lock(&rdtgroup_mutex); 2042 2043 /* Was this group deleted while we waited? */ 2044 if (rdtgrp->flags & RDT_DELETED) 2045 return NULL; 2046 2047 return rdtgrp; 2048 } 2049 2050 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2051 { 2052 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2053 2054 if (!rdtgrp) 2055 return; 2056 2057 mutex_unlock(&rdtgroup_mutex); 2058 2059 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2060 (rdtgrp->flags & RDT_DELETED)) { 2061 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2062 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2063 rdtgroup_pseudo_lock_remove(rdtgrp); 2064 kernfs_unbreak_active_protection(kn); 2065 rdtgroup_remove(rdtgrp); 2066 } else { 2067 kernfs_unbreak_active_protection(kn); 2068 } 2069 } 2070 2071 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2072 struct rdtgroup *prgrp, 2073 struct kernfs_node **mon_data_kn); 2074 2075 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2076 { 2077 int ret = 0; 2078 2079 if (ctx->enable_cdpl2) 2080 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true); 2081 2082 if (!ret && ctx->enable_cdpl3) 2083 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true); 2084 2085 if (!ret && ctx->enable_mba_mbps) 2086 ret = set_mba_sc(true); 2087 2088 return ret; 2089 } 2090 2091 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type) 2092 { 2093 struct resctrl_schema *s; 2094 const char *suffix = ""; 2095 int ret, cl; 2096 2097 s = kzalloc(sizeof(*s), GFP_KERNEL); 2098 if (!s) 2099 return -ENOMEM; 2100 2101 s->res = r; 2102 s->num_closid = resctrl_arch_get_num_closid(r); 2103 if (resctrl_arch_get_cdp_enabled(r->rid)) 2104 s->num_closid /= 2; 2105 2106 s->conf_type = type; 2107 switch (type) { 2108 case CDP_CODE: 2109 suffix = "CODE"; 2110 break; 2111 case CDP_DATA: 2112 suffix = "DATA"; 2113 break; 2114 case CDP_NONE: 2115 suffix = ""; 2116 break; 2117 } 2118 2119 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix); 2120 if (ret >= sizeof(s->name)) { 2121 kfree(s); 2122 return -EINVAL; 2123 } 2124 2125 cl = strlen(s->name); 2126 2127 /* 2128 * If CDP is supported by this resource, but not enabled, 2129 * include the suffix. This ensures the tabular format of the 2130 * schemata file does not change between mounts of the filesystem. 2131 */ 2132 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid)) 2133 cl += 4; 2134 2135 if (cl > max_name_width) 2136 max_name_width = cl; 2137 2138 INIT_LIST_HEAD(&s->list); 2139 list_add(&s->list, &resctrl_schema_all); 2140 2141 return 0; 2142 } 2143 2144 static int schemata_list_create(void) 2145 { 2146 struct rdt_resource *r; 2147 int ret = 0; 2148 2149 for_each_alloc_capable_rdt_resource(r) { 2150 if (resctrl_arch_get_cdp_enabled(r->rid)) { 2151 ret = schemata_list_add(r, CDP_CODE); 2152 if (ret) 2153 break; 2154 2155 ret = schemata_list_add(r, CDP_DATA); 2156 } else { 2157 ret = schemata_list_add(r, CDP_NONE); 2158 } 2159 2160 if (ret) 2161 break; 2162 } 2163 2164 return ret; 2165 } 2166 2167 static void schemata_list_destroy(void) 2168 { 2169 struct resctrl_schema *s, *tmp; 2170 2171 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) { 2172 list_del(&s->list); 2173 kfree(s); 2174 } 2175 } 2176 2177 static int rdt_get_tree(struct fs_context *fc) 2178 { 2179 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2180 struct rdt_domain *dom; 2181 struct rdt_resource *r; 2182 int ret; 2183 2184 cpus_read_lock(); 2185 mutex_lock(&rdtgroup_mutex); 2186 /* 2187 * resctrl file system can only be mounted once. 2188 */ 2189 if (static_branch_unlikely(&rdt_enable_key)) { 2190 ret = -EBUSY; 2191 goto out; 2192 } 2193 2194 ret = rdt_enable_ctx(ctx); 2195 if (ret < 0) 2196 goto out_cdp; 2197 2198 ret = schemata_list_create(); 2199 if (ret) { 2200 schemata_list_destroy(); 2201 goto out_mba; 2202 } 2203 2204 closid_init(); 2205 2206 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2207 if (ret < 0) 2208 goto out_schemata_free; 2209 2210 if (rdt_mon_capable) { 2211 ret = mongroup_create_dir(rdtgroup_default.kn, 2212 &rdtgroup_default, "mon_groups", 2213 &kn_mongrp); 2214 if (ret < 0) 2215 goto out_info; 2216 2217 ret = mkdir_mondata_all(rdtgroup_default.kn, 2218 &rdtgroup_default, &kn_mondata); 2219 if (ret < 0) 2220 goto out_mongrp; 2221 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2222 } 2223 2224 ret = rdt_pseudo_lock_init(); 2225 if (ret) 2226 goto out_mondata; 2227 2228 ret = kernfs_get_tree(fc); 2229 if (ret < 0) 2230 goto out_psl; 2231 2232 if (rdt_alloc_capable) 2233 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 2234 if (rdt_mon_capable) 2235 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 2236 2237 if (rdt_alloc_capable || rdt_mon_capable) 2238 static_branch_enable_cpuslocked(&rdt_enable_key); 2239 2240 if (is_mbm_enabled()) { 2241 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 2242 list_for_each_entry(dom, &r->domains, list) 2243 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2244 } 2245 2246 goto out; 2247 2248 out_psl: 2249 rdt_pseudo_lock_release(); 2250 out_mondata: 2251 if (rdt_mon_capable) 2252 kernfs_remove(kn_mondata); 2253 out_mongrp: 2254 if (rdt_mon_capable) 2255 kernfs_remove(kn_mongrp); 2256 out_info: 2257 kernfs_remove(kn_info); 2258 out_schemata_free: 2259 schemata_list_destroy(); 2260 out_mba: 2261 if (ctx->enable_mba_mbps) 2262 set_mba_sc(false); 2263 out_cdp: 2264 cdp_disable_all(); 2265 out: 2266 rdt_last_cmd_clear(); 2267 mutex_unlock(&rdtgroup_mutex); 2268 cpus_read_unlock(); 2269 return ret; 2270 } 2271 2272 enum rdt_param { 2273 Opt_cdp, 2274 Opt_cdpl2, 2275 Opt_mba_mbps, 2276 nr__rdt_params 2277 }; 2278 2279 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2280 fsparam_flag("cdp", Opt_cdp), 2281 fsparam_flag("cdpl2", Opt_cdpl2), 2282 fsparam_flag("mba_MBps", Opt_mba_mbps), 2283 {} 2284 }; 2285 2286 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2287 { 2288 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2289 struct fs_parse_result result; 2290 int opt; 2291 2292 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2293 if (opt < 0) 2294 return opt; 2295 2296 switch (opt) { 2297 case Opt_cdp: 2298 ctx->enable_cdpl3 = true; 2299 return 0; 2300 case Opt_cdpl2: 2301 ctx->enable_cdpl2 = true; 2302 return 0; 2303 case Opt_mba_mbps: 2304 if (!supports_mba_mbps()) 2305 return -EINVAL; 2306 ctx->enable_mba_mbps = true; 2307 return 0; 2308 } 2309 2310 return -EINVAL; 2311 } 2312 2313 static void rdt_fs_context_free(struct fs_context *fc) 2314 { 2315 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2316 2317 kernfs_free_fs_context(fc); 2318 kfree(ctx); 2319 } 2320 2321 static const struct fs_context_operations rdt_fs_context_ops = { 2322 .free = rdt_fs_context_free, 2323 .parse_param = rdt_parse_param, 2324 .get_tree = rdt_get_tree, 2325 }; 2326 2327 static int rdt_init_fs_context(struct fs_context *fc) 2328 { 2329 struct rdt_fs_context *ctx; 2330 2331 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2332 if (!ctx) 2333 return -ENOMEM; 2334 2335 ctx->kfc.root = rdt_root; 2336 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2337 fc->fs_private = &ctx->kfc; 2338 fc->ops = &rdt_fs_context_ops; 2339 put_user_ns(fc->user_ns); 2340 fc->user_ns = get_user_ns(&init_user_ns); 2341 fc->global = true; 2342 return 0; 2343 } 2344 2345 static int reset_all_ctrls(struct rdt_resource *r) 2346 { 2347 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2348 struct rdt_hw_domain *hw_dom; 2349 struct msr_param msr_param; 2350 cpumask_var_t cpu_mask; 2351 struct rdt_domain *d; 2352 int i, cpu; 2353 2354 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2355 return -ENOMEM; 2356 2357 msr_param.res = r; 2358 msr_param.low = 0; 2359 msr_param.high = hw_res->num_closid; 2360 2361 /* 2362 * Disable resource control for this resource by setting all 2363 * CBMs in all domains to the maximum mask value. Pick one CPU 2364 * from each domain to update the MSRs below. 2365 */ 2366 list_for_each_entry(d, &r->domains, list) { 2367 hw_dom = resctrl_to_arch_dom(d); 2368 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2369 2370 for (i = 0; i < hw_res->num_closid; i++) 2371 hw_dom->ctrl_val[i] = r->default_ctrl; 2372 } 2373 cpu = get_cpu(); 2374 /* Update CBM on this cpu if it's in cpu_mask. */ 2375 if (cpumask_test_cpu(cpu, cpu_mask)) 2376 rdt_ctrl_update(&msr_param); 2377 /* Update CBM on all other cpus in cpu_mask. */ 2378 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2379 put_cpu(); 2380 2381 free_cpumask_var(cpu_mask); 2382 2383 return 0; 2384 } 2385 2386 /* 2387 * Move tasks from one to the other group. If @from is NULL, then all tasks 2388 * in the systems are moved unconditionally (used for teardown). 2389 * 2390 * If @mask is not NULL the cpus on which moved tasks are running are set 2391 * in that mask so the update smp function call is restricted to affected 2392 * cpus. 2393 */ 2394 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2395 struct cpumask *mask) 2396 { 2397 struct task_struct *p, *t; 2398 2399 read_lock(&tasklist_lock); 2400 for_each_process_thread(p, t) { 2401 if (!from || is_closid_match(t, from) || 2402 is_rmid_match(t, from)) { 2403 WRITE_ONCE(t->closid, to->closid); 2404 WRITE_ONCE(t->rmid, to->mon.rmid); 2405 2406 /* 2407 * Order the closid/rmid stores above before the loads 2408 * in task_curr(). This pairs with the full barrier 2409 * between the rq->curr update and resctrl_sched_in() 2410 * during context switch. 2411 */ 2412 smp_mb(); 2413 2414 /* 2415 * If the task is on a CPU, set the CPU in the mask. 2416 * The detection is inaccurate as tasks might move or 2417 * schedule before the smp function call takes place. 2418 * In such a case the function call is pointless, but 2419 * there is no other side effect. 2420 */ 2421 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t)) 2422 cpumask_set_cpu(task_cpu(t), mask); 2423 } 2424 } 2425 read_unlock(&tasklist_lock); 2426 } 2427 2428 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2429 { 2430 struct rdtgroup *sentry, *stmp; 2431 struct list_head *head; 2432 2433 head = &rdtgrp->mon.crdtgrp_list; 2434 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2435 free_rmid(sentry->mon.rmid); 2436 list_del(&sentry->mon.crdtgrp_list); 2437 2438 if (atomic_read(&sentry->waitcount) != 0) 2439 sentry->flags = RDT_DELETED; 2440 else 2441 rdtgroup_remove(sentry); 2442 } 2443 } 2444 2445 /* 2446 * Forcibly remove all of subdirectories under root. 2447 */ 2448 static void rmdir_all_sub(void) 2449 { 2450 struct rdtgroup *rdtgrp, *tmp; 2451 2452 /* Move all tasks to the default resource group */ 2453 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2454 2455 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2456 /* Free any child rmids */ 2457 free_all_child_rdtgrp(rdtgrp); 2458 2459 /* Remove each rdtgroup other than root */ 2460 if (rdtgrp == &rdtgroup_default) 2461 continue; 2462 2463 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2464 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2465 rdtgroup_pseudo_lock_remove(rdtgrp); 2466 2467 /* 2468 * Give any CPUs back to the default group. We cannot copy 2469 * cpu_online_mask because a CPU might have executed the 2470 * offline callback already, but is still marked online. 2471 */ 2472 cpumask_or(&rdtgroup_default.cpu_mask, 2473 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2474 2475 free_rmid(rdtgrp->mon.rmid); 2476 2477 kernfs_remove(rdtgrp->kn); 2478 list_del(&rdtgrp->rdtgroup_list); 2479 2480 if (atomic_read(&rdtgrp->waitcount) != 0) 2481 rdtgrp->flags = RDT_DELETED; 2482 else 2483 rdtgroup_remove(rdtgrp); 2484 } 2485 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2486 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2487 2488 kernfs_remove(kn_info); 2489 kernfs_remove(kn_mongrp); 2490 kernfs_remove(kn_mondata); 2491 } 2492 2493 static void rdt_kill_sb(struct super_block *sb) 2494 { 2495 struct rdt_resource *r; 2496 2497 cpus_read_lock(); 2498 mutex_lock(&rdtgroup_mutex); 2499 2500 set_mba_sc(false); 2501 2502 /*Put everything back to default values. */ 2503 for_each_alloc_capable_rdt_resource(r) 2504 reset_all_ctrls(r); 2505 cdp_disable_all(); 2506 rmdir_all_sub(); 2507 rdt_pseudo_lock_release(); 2508 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2509 schemata_list_destroy(); 2510 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2511 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2512 static_branch_disable_cpuslocked(&rdt_enable_key); 2513 kernfs_kill_sb(sb); 2514 mutex_unlock(&rdtgroup_mutex); 2515 cpus_read_unlock(); 2516 } 2517 2518 static struct file_system_type rdt_fs_type = { 2519 .name = "resctrl", 2520 .init_fs_context = rdt_init_fs_context, 2521 .parameters = rdt_fs_parameters, 2522 .kill_sb = rdt_kill_sb, 2523 }; 2524 2525 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2526 void *priv) 2527 { 2528 struct kernfs_node *kn; 2529 int ret = 0; 2530 2531 kn = __kernfs_create_file(parent_kn, name, 0444, 2532 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2533 &kf_mondata_ops, priv, NULL, NULL); 2534 if (IS_ERR(kn)) 2535 return PTR_ERR(kn); 2536 2537 ret = rdtgroup_kn_set_ugid(kn); 2538 if (ret) { 2539 kernfs_remove(kn); 2540 return ret; 2541 } 2542 2543 return ret; 2544 } 2545 2546 /* 2547 * Remove all subdirectories of mon_data of ctrl_mon groups 2548 * and monitor groups with given domain id. 2549 */ 2550 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2551 unsigned int dom_id) 2552 { 2553 struct rdtgroup *prgrp, *crgrp; 2554 char name[32]; 2555 2556 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2557 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2558 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2559 2560 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2561 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2562 } 2563 } 2564 2565 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2566 struct rdt_domain *d, 2567 struct rdt_resource *r, struct rdtgroup *prgrp) 2568 { 2569 union mon_data_bits priv; 2570 struct kernfs_node *kn; 2571 struct mon_evt *mevt; 2572 struct rmid_read rr; 2573 char name[32]; 2574 int ret; 2575 2576 sprintf(name, "mon_%s_%02d", r->name, d->id); 2577 /* create the directory */ 2578 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2579 if (IS_ERR(kn)) 2580 return PTR_ERR(kn); 2581 2582 ret = rdtgroup_kn_set_ugid(kn); 2583 if (ret) 2584 goto out_destroy; 2585 2586 if (WARN_ON(list_empty(&r->evt_list))) { 2587 ret = -EPERM; 2588 goto out_destroy; 2589 } 2590 2591 priv.u.rid = r->rid; 2592 priv.u.domid = d->id; 2593 list_for_each_entry(mevt, &r->evt_list, list) { 2594 priv.u.evtid = mevt->evtid; 2595 ret = mon_addfile(kn, mevt->name, priv.priv); 2596 if (ret) 2597 goto out_destroy; 2598 2599 if (is_mbm_event(mevt->evtid)) 2600 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true); 2601 } 2602 kernfs_activate(kn); 2603 return 0; 2604 2605 out_destroy: 2606 kernfs_remove(kn); 2607 return ret; 2608 } 2609 2610 /* 2611 * Add all subdirectories of mon_data for "ctrl_mon" groups 2612 * and "monitor" groups with given domain id. 2613 */ 2614 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2615 struct rdt_domain *d) 2616 { 2617 struct kernfs_node *parent_kn; 2618 struct rdtgroup *prgrp, *crgrp; 2619 struct list_head *head; 2620 2621 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2622 parent_kn = prgrp->mon.mon_data_kn; 2623 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2624 2625 head = &prgrp->mon.crdtgrp_list; 2626 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2627 parent_kn = crgrp->mon.mon_data_kn; 2628 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2629 } 2630 } 2631 } 2632 2633 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2634 struct rdt_resource *r, 2635 struct rdtgroup *prgrp) 2636 { 2637 struct rdt_domain *dom; 2638 int ret; 2639 2640 list_for_each_entry(dom, &r->domains, list) { 2641 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2642 if (ret) 2643 return ret; 2644 } 2645 2646 return 0; 2647 } 2648 2649 /* 2650 * This creates a directory mon_data which contains the monitored data. 2651 * 2652 * mon_data has one directory for each domain which are named 2653 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2654 * with L3 domain looks as below: 2655 * ./mon_data: 2656 * mon_L3_00 2657 * mon_L3_01 2658 * mon_L3_02 2659 * ... 2660 * 2661 * Each domain directory has one file per event: 2662 * ./mon_L3_00/: 2663 * llc_occupancy 2664 * 2665 */ 2666 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2667 struct rdtgroup *prgrp, 2668 struct kernfs_node **dest_kn) 2669 { 2670 struct rdt_resource *r; 2671 struct kernfs_node *kn; 2672 int ret; 2673 2674 /* 2675 * Create the mon_data directory first. 2676 */ 2677 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 2678 if (ret) 2679 return ret; 2680 2681 if (dest_kn) 2682 *dest_kn = kn; 2683 2684 /* 2685 * Create the subdirectories for each domain. Note that all events 2686 * in a domain like L3 are grouped into a resource whose domain is L3 2687 */ 2688 for_each_mon_capable_rdt_resource(r) { 2689 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2690 if (ret) 2691 goto out_destroy; 2692 } 2693 2694 return 0; 2695 2696 out_destroy: 2697 kernfs_remove(kn); 2698 return ret; 2699 } 2700 2701 /** 2702 * cbm_ensure_valid - Enforce validity on provided CBM 2703 * @_val: Candidate CBM 2704 * @r: RDT resource to which the CBM belongs 2705 * 2706 * The provided CBM represents all cache portions available for use. This 2707 * may be represented by a bitmap that does not consist of contiguous ones 2708 * and thus be an invalid CBM. 2709 * Here the provided CBM is forced to be a valid CBM by only considering 2710 * the first set of contiguous bits as valid and clearing all bits. 2711 * The intention here is to provide a valid default CBM with which a new 2712 * resource group is initialized. The user can follow this with a 2713 * modification to the CBM if the default does not satisfy the 2714 * requirements. 2715 */ 2716 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 2717 { 2718 unsigned int cbm_len = r->cache.cbm_len; 2719 unsigned long first_bit, zero_bit; 2720 unsigned long val = _val; 2721 2722 if (!val) 2723 return 0; 2724 2725 first_bit = find_first_bit(&val, cbm_len); 2726 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 2727 2728 /* Clear any remaining bits to ensure contiguous region */ 2729 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 2730 return (u32)val; 2731 } 2732 2733 /* 2734 * Initialize cache resources per RDT domain 2735 * 2736 * Set the RDT domain up to start off with all usable allocations. That is, 2737 * all shareable and unused bits. All-zero CBM is invalid. 2738 */ 2739 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s, 2740 u32 closid) 2741 { 2742 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 2743 enum resctrl_conf_type t = s->conf_type; 2744 struct resctrl_staged_config *cfg; 2745 struct rdt_resource *r = s->res; 2746 u32 used_b = 0, unused_b = 0; 2747 unsigned long tmp_cbm; 2748 enum rdtgrp_mode mode; 2749 u32 peer_ctl, ctrl_val; 2750 int i; 2751 2752 cfg = &d->staged_config[t]; 2753 cfg->have_new_ctrl = false; 2754 cfg->new_ctrl = r->cache.shareable_bits; 2755 used_b = r->cache.shareable_bits; 2756 for (i = 0; i < closids_supported(); i++) { 2757 if (closid_allocated(i) && i != closid) { 2758 mode = rdtgroup_mode_by_closid(i); 2759 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 2760 /* 2761 * ctrl values for locksetup aren't relevant 2762 * until the schemata is written, and the mode 2763 * becomes RDT_MODE_PSEUDO_LOCKED. 2764 */ 2765 continue; 2766 /* 2767 * If CDP is active include peer domain's 2768 * usage to ensure there is no overlap 2769 * with an exclusive group. 2770 */ 2771 if (resctrl_arch_get_cdp_enabled(r->rid)) 2772 peer_ctl = resctrl_arch_get_config(r, d, i, 2773 peer_type); 2774 else 2775 peer_ctl = 0; 2776 ctrl_val = resctrl_arch_get_config(r, d, i, 2777 s->conf_type); 2778 used_b |= ctrl_val | peer_ctl; 2779 if (mode == RDT_MODE_SHAREABLE) 2780 cfg->new_ctrl |= ctrl_val | peer_ctl; 2781 } 2782 } 2783 if (d->plr && d->plr->cbm > 0) 2784 used_b |= d->plr->cbm; 2785 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 2786 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 2787 cfg->new_ctrl |= unused_b; 2788 /* 2789 * Force the initial CBM to be valid, user can 2790 * modify the CBM based on system availability. 2791 */ 2792 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r); 2793 /* 2794 * Assign the u32 CBM to an unsigned long to ensure that 2795 * bitmap_weight() does not access out-of-bound memory. 2796 */ 2797 tmp_cbm = cfg->new_ctrl; 2798 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 2799 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id); 2800 return -ENOSPC; 2801 } 2802 cfg->have_new_ctrl = true; 2803 2804 return 0; 2805 } 2806 2807 /* 2808 * Initialize cache resources with default values. 2809 * 2810 * A new RDT group is being created on an allocation capable (CAT) 2811 * supporting system. Set this group up to start off with all usable 2812 * allocations. 2813 * 2814 * If there are no more shareable bits available on any domain then 2815 * the entire allocation will fail. 2816 */ 2817 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid) 2818 { 2819 struct rdt_domain *d; 2820 int ret; 2821 2822 list_for_each_entry(d, &s->res->domains, list) { 2823 ret = __init_one_rdt_domain(d, s, closid); 2824 if (ret < 0) 2825 return ret; 2826 } 2827 2828 return 0; 2829 } 2830 2831 /* Initialize MBA resource with default values. */ 2832 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid) 2833 { 2834 struct resctrl_staged_config *cfg; 2835 struct rdt_domain *d; 2836 2837 list_for_each_entry(d, &r->domains, list) { 2838 if (is_mba_sc(r)) { 2839 d->mbps_val[closid] = MBA_MAX_MBPS; 2840 continue; 2841 } 2842 2843 cfg = &d->staged_config[CDP_NONE]; 2844 cfg->new_ctrl = r->default_ctrl; 2845 cfg->have_new_ctrl = true; 2846 } 2847 } 2848 2849 /* Initialize the RDT group's allocations. */ 2850 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 2851 { 2852 struct resctrl_schema *s; 2853 struct rdt_resource *r; 2854 int ret; 2855 2856 list_for_each_entry(s, &resctrl_schema_all, list) { 2857 r = s->res; 2858 if (r->rid == RDT_RESOURCE_MBA) { 2859 rdtgroup_init_mba(r, rdtgrp->closid); 2860 if (is_mba_sc(r)) 2861 continue; 2862 } else { 2863 ret = rdtgroup_init_cat(s, rdtgrp->closid); 2864 if (ret < 0) 2865 return ret; 2866 } 2867 2868 ret = resctrl_arch_update_domains(r, rdtgrp->closid); 2869 if (ret < 0) { 2870 rdt_last_cmd_puts("Failed to initialize allocations\n"); 2871 return ret; 2872 } 2873 2874 } 2875 2876 rdtgrp->mode = RDT_MODE_SHAREABLE; 2877 2878 return 0; 2879 } 2880 2881 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 2882 const char *name, umode_t mode, 2883 enum rdt_group_type rtype, struct rdtgroup **r) 2884 { 2885 struct rdtgroup *prdtgrp, *rdtgrp; 2886 struct kernfs_node *kn; 2887 uint files = 0; 2888 int ret; 2889 2890 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 2891 if (!prdtgrp) { 2892 ret = -ENODEV; 2893 goto out_unlock; 2894 } 2895 2896 if (rtype == RDTMON_GROUP && 2897 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2898 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 2899 ret = -EINVAL; 2900 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 2901 goto out_unlock; 2902 } 2903 2904 /* allocate the rdtgroup. */ 2905 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 2906 if (!rdtgrp) { 2907 ret = -ENOSPC; 2908 rdt_last_cmd_puts("Kernel out of memory\n"); 2909 goto out_unlock; 2910 } 2911 *r = rdtgrp; 2912 rdtgrp->mon.parent = prdtgrp; 2913 rdtgrp->type = rtype; 2914 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 2915 2916 /* kernfs creates the directory for rdtgrp */ 2917 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 2918 if (IS_ERR(kn)) { 2919 ret = PTR_ERR(kn); 2920 rdt_last_cmd_puts("kernfs create error\n"); 2921 goto out_free_rgrp; 2922 } 2923 rdtgrp->kn = kn; 2924 2925 /* 2926 * kernfs_remove() will drop the reference count on "kn" which 2927 * will free it. But we still need it to stick around for the 2928 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 2929 * which will be dropped by kernfs_put() in rdtgroup_remove(). 2930 */ 2931 kernfs_get(kn); 2932 2933 ret = rdtgroup_kn_set_ugid(kn); 2934 if (ret) { 2935 rdt_last_cmd_puts("kernfs perm error\n"); 2936 goto out_destroy; 2937 } 2938 2939 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 2940 ret = rdtgroup_add_files(kn, files); 2941 if (ret) { 2942 rdt_last_cmd_puts("kernfs fill error\n"); 2943 goto out_destroy; 2944 } 2945 2946 if (rdt_mon_capable) { 2947 ret = alloc_rmid(); 2948 if (ret < 0) { 2949 rdt_last_cmd_puts("Out of RMIDs\n"); 2950 goto out_destroy; 2951 } 2952 rdtgrp->mon.rmid = ret; 2953 2954 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 2955 if (ret) { 2956 rdt_last_cmd_puts("kernfs subdir error\n"); 2957 goto out_idfree; 2958 } 2959 } 2960 kernfs_activate(kn); 2961 2962 /* 2963 * The caller unlocks the parent_kn upon success. 2964 */ 2965 return 0; 2966 2967 out_idfree: 2968 free_rmid(rdtgrp->mon.rmid); 2969 out_destroy: 2970 kernfs_put(rdtgrp->kn); 2971 kernfs_remove(rdtgrp->kn); 2972 out_free_rgrp: 2973 kfree(rdtgrp); 2974 out_unlock: 2975 rdtgroup_kn_unlock(parent_kn); 2976 return ret; 2977 } 2978 2979 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 2980 { 2981 kernfs_remove(rgrp->kn); 2982 free_rmid(rgrp->mon.rmid); 2983 rdtgroup_remove(rgrp); 2984 } 2985 2986 /* 2987 * Create a monitor group under "mon_groups" directory of a control 2988 * and monitor group(ctrl_mon). This is a resource group 2989 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 2990 */ 2991 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 2992 const char *name, umode_t mode) 2993 { 2994 struct rdtgroup *rdtgrp, *prgrp; 2995 int ret; 2996 2997 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 2998 if (ret) 2999 return ret; 3000 3001 prgrp = rdtgrp->mon.parent; 3002 rdtgrp->closid = prgrp->closid; 3003 3004 /* 3005 * Add the rdtgrp to the list of rdtgrps the parent 3006 * ctrl_mon group has to track. 3007 */ 3008 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 3009 3010 rdtgroup_kn_unlock(parent_kn); 3011 return ret; 3012 } 3013 3014 /* 3015 * These are rdtgroups created under the root directory. Can be used 3016 * to allocate and monitor resources. 3017 */ 3018 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 3019 const char *name, umode_t mode) 3020 { 3021 struct rdtgroup *rdtgrp; 3022 struct kernfs_node *kn; 3023 u32 closid; 3024 int ret; 3025 3026 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 3027 if (ret) 3028 return ret; 3029 3030 kn = rdtgrp->kn; 3031 ret = closid_alloc(); 3032 if (ret < 0) { 3033 rdt_last_cmd_puts("Out of CLOSIDs\n"); 3034 goto out_common_fail; 3035 } 3036 closid = ret; 3037 ret = 0; 3038 3039 rdtgrp->closid = closid; 3040 ret = rdtgroup_init_alloc(rdtgrp); 3041 if (ret < 0) 3042 goto out_id_free; 3043 3044 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 3045 3046 if (rdt_mon_capable) { 3047 /* 3048 * Create an empty mon_groups directory to hold the subset 3049 * of tasks and cpus to monitor. 3050 */ 3051 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 3052 if (ret) { 3053 rdt_last_cmd_puts("kernfs subdir error\n"); 3054 goto out_del_list; 3055 } 3056 } 3057 3058 goto out_unlock; 3059 3060 out_del_list: 3061 list_del(&rdtgrp->rdtgroup_list); 3062 out_id_free: 3063 closid_free(closid); 3064 out_common_fail: 3065 mkdir_rdt_prepare_clean(rdtgrp); 3066 out_unlock: 3067 rdtgroup_kn_unlock(parent_kn); 3068 return ret; 3069 } 3070 3071 /* 3072 * We allow creating mon groups only with in a directory called "mon_groups" 3073 * which is present in every ctrl_mon group. Check if this is a valid 3074 * "mon_groups" directory. 3075 * 3076 * 1. The directory should be named "mon_groups". 3077 * 2. The mon group itself should "not" be named "mon_groups". 3078 * This makes sure "mon_groups" directory always has a ctrl_mon group 3079 * as parent. 3080 */ 3081 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 3082 { 3083 return (!strcmp(kn->name, "mon_groups") && 3084 strcmp(name, "mon_groups")); 3085 } 3086 3087 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3088 umode_t mode) 3089 { 3090 /* Do not accept '\n' to avoid unparsable situation. */ 3091 if (strchr(name, '\n')) 3092 return -EINVAL; 3093 3094 /* 3095 * If the parent directory is the root directory and RDT 3096 * allocation is supported, add a control and monitoring 3097 * subdirectory 3098 */ 3099 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 3100 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3101 3102 /* 3103 * If RDT monitoring is supported and the parent directory is a valid 3104 * "mon_groups" directory, add a monitoring subdirectory. 3105 */ 3106 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 3107 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3108 3109 return -EPERM; 3110 } 3111 3112 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3113 { 3114 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3115 int cpu; 3116 3117 /* Give any tasks back to the parent group */ 3118 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3119 3120 /* Update per cpu rmid of the moved CPUs first */ 3121 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3122 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 3123 /* 3124 * Update the MSR on moved CPUs and CPUs which have moved 3125 * task running on them. 3126 */ 3127 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3128 update_closid_rmid(tmpmask, NULL); 3129 3130 rdtgrp->flags = RDT_DELETED; 3131 free_rmid(rdtgrp->mon.rmid); 3132 3133 /* 3134 * Remove the rdtgrp from the parent ctrl_mon group's list 3135 */ 3136 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3137 list_del(&rdtgrp->mon.crdtgrp_list); 3138 3139 kernfs_remove(rdtgrp->kn); 3140 3141 return 0; 3142 } 3143 3144 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3145 { 3146 rdtgrp->flags = RDT_DELETED; 3147 list_del(&rdtgrp->rdtgroup_list); 3148 3149 kernfs_remove(rdtgrp->kn); 3150 return 0; 3151 } 3152 3153 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3154 { 3155 int cpu; 3156 3157 /* Give any tasks back to the default group */ 3158 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3159 3160 /* Give any CPUs back to the default group */ 3161 cpumask_or(&rdtgroup_default.cpu_mask, 3162 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3163 3164 /* Update per cpu closid and rmid of the moved CPUs first */ 3165 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3166 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3167 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3168 } 3169 3170 /* 3171 * Update the MSR on moved CPUs and CPUs which have moved 3172 * task running on them. 3173 */ 3174 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3175 update_closid_rmid(tmpmask, NULL); 3176 3177 closid_free(rdtgrp->closid); 3178 free_rmid(rdtgrp->mon.rmid); 3179 3180 rdtgroup_ctrl_remove(rdtgrp); 3181 3182 /* 3183 * Free all the child monitor group rmids. 3184 */ 3185 free_all_child_rdtgrp(rdtgrp); 3186 3187 return 0; 3188 } 3189 3190 static int rdtgroup_rmdir(struct kernfs_node *kn) 3191 { 3192 struct kernfs_node *parent_kn = kn->parent; 3193 struct rdtgroup *rdtgrp; 3194 cpumask_var_t tmpmask; 3195 int ret = 0; 3196 3197 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3198 return -ENOMEM; 3199 3200 rdtgrp = rdtgroup_kn_lock_live(kn); 3201 if (!rdtgrp) { 3202 ret = -EPERM; 3203 goto out; 3204 } 3205 3206 /* 3207 * If the rdtgroup is a ctrl_mon group and parent directory 3208 * is the root directory, remove the ctrl_mon group. 3209 * 3210 * If the rdtgroup is a mon group and parent directory 3211 * is a valid "mon_groups" directory, remove the mon group. 3212 */ 3213 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3214 rdtgrp != &rdtgroup_default) { 3215 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3216 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3217 ret = rdtgroup_ctrl_remove(rdtgrp); 3218 } else { 3219 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 3220 } 3221 } else if (rdtgrp->type == RDTMON_GROUP && 3222 is_mon_groups(parent_kn, kn->name)) { 3223 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 3224 } else { 3225 ret = -EPERM; 3226 } 3227 3228 out: 3229 rdtgroup_kn_unlock(kn); 3230 free_cpumask_var(tmpmask); 3231 return ret; 3232 } 3233 3234 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3235 { 3236 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 3237 seq_puts(seq, ",cdp"); 3238 3239 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 3240 seq_puts(seq, ",cdpl2"); 3241 3242 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl)) 3243 seq_puts(seq, ",mba_MBps"); 3244 3245 return 0; 3246 } 3247 3248 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3249 .mkdir = rdtgroup_mkdir, 3250 .rmdir = rdtgroup_rmdir, 3251 .show_options = rdtgroup_show_options, 3252 }; 3253 3254 static int __init rdtgroup_setup_root(void) 3255 { 3256 int ret; 3257 3258 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3259 KERNFS_ROOT_CREATE_DEACTIVATED | 3260 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3261 &rdtgroup_default); 3262 if (IS_ERR(rdt_root)) 3263 return PTR_ERR(rdt_root); 3264 3265 mutex_lock(&rdtgroup_mutex); 3266 3267 rdtgroup_default.closid = 0; 3268 rdtgroup_default.mon.rmid = 0; 3269 rdtgroup_default.type = RDTCTRL_GROUP; 3270 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3271 3272 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3273 3274 ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE); 3275 if (ret) { 3276 kernfs_destroy_root(rdt_root); 3277 goto out; 3278 } 3279 3280 rdtgroup_default.kn = kernfs_root_to_node(rdt_root); 3281 kernfs_activate(rdtgroup_default.kn); 3282 3283 out: 3284 mutex_unlock(&rdtgroup_mutex); 3285 3286 return ret; 3287 } 3288 3289 static void domain_destroy_mon_state(struct rdt_domain *d) 3290 { 3291 bitmap_free(d->rmid_busy_llc); 3292 kfree(d->mbm_total); 3293 kfree(d->mbm_local); 3294 } 3295 3296 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d) 3297 { 3298 lockdep_assert_held(&rdtgroup_mutex); 3299 3300 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 3301 mba_sc_domain_destroy(r, d); 3302 3303 if (!r->mon_capable) 3304 return; 3305 3306 /* 3307 * If resctrl is mounted, remove all the 3308 * per domain monitor data directories. 3309 */ 3310 if (static_branch_unlikely(&rdt_mon_enable_key)) 3311 rmdir_mondata_subdir_allrdtgrp(r, d->id); 3312 3313 if (is_mbm_enabled()) 3314 cancel_delayed_work(&d->mbm_over); 3315 if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) { 3316 /* 3317 * When a package is going down, forcefully 3318 * decrement rmid->ebusy. There is no way to know 3319 * that the L3 was flushed and hence may lead to 3320 * incorrect counts in rare scenarios, but leaving 3321 * the RMID as busy creates RMID leaks if the 3322 * package never comes back. 3323 */ 3324 __check_limbo(d, true); 3325 cancel_delayed_work(&d->cqm_limbo); 3326 } 3327 3328 domain_destroy_mon_state(d); 3329 } 3330 3331 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d) 3332 { 3333 size_t tsize; 3334 3335 if (is_llc_occupancy_enabled()) { 3336 d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL); 3337 if (!d->rmid_busy_llc) 3338 return -ENOMEM; 3339 } 3340 if (is_mbm_total_enabled()) { 3341 tsize = sizeof(*d->mbm_total); 3342 d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL); 3343 if (!d->mbm_total) { 3344 bitmap_free(d->rmid_busy_llc); 3345 return -ENOMEM; 3346 } 3347 } 3348 if (is_mbm_local_enabled()) { 3349 tsize = sizeof(*d->mbm_local); 3350 d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL); 3351 if (!d->mbm_local) { 3352 bitmap_free(d->rmid_busy_llc); 3353 kfree(d->mbm_total); 3354 return -ENOMEM; 3355 } 3356 } 3357 3358 return 0; 3359 } 3360 3361 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d) 3362 { 3363 int err; 3364 3365 lockdep_assert_held(&rdtgroup_mutex); 3366 3367 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 3368 /* RDT_RESOURCE_MBA is never mon_capable */ 3369 return mba_sc_domain_allocate(r, d); 3370 3371 if (!r->mon_capable) 3372 return 0; 3373 3374 err = domain_setup_mon_state(r, d); 3375 if (err) 3376 return err; 3377 3378 if (is_mbm_enabled()) { 3379 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); 3380 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL); 3381 } 3382 3383 if (is_llc_occupancy_enabled()) 3384 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); 3385 3386 /* If resctrl is mounted, add per domain monitor data directories. */ 3387 if (static_branch_unlikely(&rdt_mon_enable_key)) 3388 mkdir_mondata_subdir_allrdtgrp(r, d); 3389 3390 return 0; 3391 } 3392 3393 /* 3394 * rdtgroup_init - rdtgroup initialization 3395 * 3396 * Setup resctrl file system including set up root, create mount point, 3397 * register rdtgroup filesystem, and initialize files under root directory. 3398 * 3399 * Return: 0 on success or -errno 3400 */ 3401 int __init rdtgroup_init(void) 3402 { 3403 int ret = 0; 3404 3405 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3406 sizeof(last_cmd_status_buf)); 3407 3408 ret = rdtgroup_setup_root(); 3409 if (ret) 3410 return ret; 3411 3412 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3413 if (ret) 3414 goto cleanup_root; 3415 3416 ret = register_filesystem(&rdt_fs_type); 3417 if (ret) 3418 goto cleanup_mountpoint; 3419 3420 /* 3421 * Adding the resctrl debugfs directory here may not be ideal since 3422 * it would let the resctrl debugfs directory appear on the debugfs 3423 * filesystem before the resctrl filesystem is mounted. 3424 * It may also be ok since that would enable debugging of RDT before 3425 * resctrl is mounted. 3426 * The reason why the debugfs directory is created here and not in 3427 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 3428 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3429 * (the lockdep class of inode->i_rwsem). Other filesystem 3430 * interactions (eg. SyS_getdents) have the lock ordering: 3431 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 3432 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 3433 * is taken, thus creating dependency: 3434 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 3435 * issues considering the other two lock dependencies. 3436 * By creating the debugfs directory here we avoid a dependency 3437 * that may cause deadlock (even though file operations cannot 3438 * occur until the filesystem is mounted, but I do not know how to 3439 * tell lockdep that). 3440 */ 3441 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3442 3443 return 0; 3444 3445 cleanup_mountpoint: 3446 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3447 cleanup_root: 3448 kernfs_destroy_root(rdt_root); 3449 3450 return ret; 3451 } 3452 3453 void __exit rdtgroup_exit(void) 3454 { 3455 debugfs_remove_recursive(debugfs_resctrl); 3456 unregister_filesystem(&rdt_fs_type); 3457 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3458 kernfs_destroy_root(rdt_root); 3459 } 3460