xref: /linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c (revision 4ab0279857bb0b1c7a1ed61186527e33db693b6e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Allocation in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/debugfs.h>
17 #include <linux/fs.h>
18 #include <linux/fs_parser.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernfs.h>
21 #include <linux/seq_buf.h>
22 #include <linux/seq_file.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/task.h>
25 #include <linux/slab.h>
26 #include <linux/task_work.h>
27 #include <linux/user_namespace.h>
28 
29 #include <uapi/linux/magic.h>
30 
31 #include <asm/resctrl.h>
32 #include "internal.h"
33 
34 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
35 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
37 
38 /* Mutex to protect rdtgroup access. */
39 DEFINE_MUTEX(rdtgroup_mutex);
40 
41 static struct kernfs_root *rdt_root;
42 struct rdtgroup rdtgroup_default;
43 LIST_HEAD(rdt_all_groups);
44 
45 /* list of entries for the schemata file */
46 LIST_HEAD(resctrl_schema_all);
47 
48 /* The filesystem can only be mounted once. */
49 bool resctrl_mounted;
50 
51 /* Kernel fs node for "info" directory under root */
52 static struct kernfs_node *kn_info;
53 
54 /* Kernel fs node for "mon_groups" directory under root */
55 static struct kernfs_node *kn_mongrp;
56 
57 /* Kernel fs node for "mon_data" directory under root */
58 static struct kernfs_node *kn_mondata;
59 
60 static struct seq_buf last_cmd_status;
61 static char last_cmd_status_buf[512];
62 
63 static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
64 static void rdtgroup_destroy_root(void);
65 
66 struct dentry *debugfs_resctrl;
67 
68 /*
69  * Memory bandwidth monitoring event to use for the default CTRL_MON group
70  * and each new CTRL_MON group created by the user.  Only relevant when
71  * the filesystem is mounted with the "mba_MBps" option so it does not
72  * matter that it remains uninitialized on systems that do not support
73  * the "mba_MBps" option.
74  */
75 enum resctrl_event_id mba_mbps_default_event;
76 
77 static bool resctrl_debug;
78 
79 void rdt_last_cmd_clear(void)
80 {
81 	lockdep_assert_held(&rdtgroup_mutex);
82 	seq_buf_clear(&last_cmd_status);
83 }
84 
85 void rdt_last_cmd_puts(const char *s)
86 {
87 	lockdep_assert_held(&rdtgroup_mutex);
88 	seq_buf_puts(&last_cmd_status, s);
89 }
90 
91 void rdt_last_cmd_printf(const char *fmt, ...)
92 {
93 	va_list ap;
94 
95 	va_start(ap, fmt);
96 	lockdep_assert_held(&rdtgroup_mutex);
97 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
98 	va_end(ap);
99 }
100 
101 void rdt_staged_configs_clear(void)
102 {
103 	struct rdt_ctrl_domain *dom;
104 	struct rdt_resource *r;
105 
106 	lockdep_assert_held(&rdtgroup_mutex);
107 
108 	for_each_alloc_capable_rdt_resource(r) {
109 		list_for_each_entry(dom, &r->ctrl_domains, hdr.list)
110 			memset(dom->staged_config, 0, sizeof(dom->staged_config));
111 	}
112 }
113 
114 /*
115  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
116  * we can keep a bitmap of free CLOSIDs in a single integer.
117  *
118  * Using a global CLOSID across all resources has some advantages and
119  * some drawbacks:
120  * + We can simply set current's closid to assign a task to a resource
121  *   group.
122  * + Context switch code can avoid extra memory references deciding which
123  *   CLOSID to load into the PQR_ASSOC MSR
124  * - We give up some options in configuring resource groups across multi-socket
125  *   systems.
126  * - Our choices on how to configure each resource become progressively more
127  *   limited as the number of resources grows.
128  */
129 static unsigned long closid_free_map;
130 static int closid_free_map_len;
131 
132 int closids_supported(void)
133 {
134 	return closid_free_map_len;
135 }
136 
137 static void closid_init(void)
138 {
139 	struct resctrl_schema *s;
140 	u32 rdt_min_closid = 32;
141 
142 	/* Compute rdt_min_closid across all resources */
143 	list_for_each_entry(s, &resctrl_schema_all, list)
144 		rdt_min_closid = min(rdt_min_closid, s->num_closid);
145 
146 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
147 
148 	/* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
149 	__clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map);
150 	closid_free_map_len = rdt_min_closid;
151 }
152 
153 static int closid_alloc(void)
154 {
155 	int cleanest_closid;
156 	u32 closid;
157 
158 	lockdep_assert_held(&rdtgroup_mutex);
159 
160 	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
161 		cleanest_closid = resctrl_find_cleanest_closid();
162 		if (cleanest_closid < 0)
163 			return cleanest_closid;
164 		closid = cleanest_closid;
165 	} else {
166 		closid = ffs(closid_free_map);
167 		if (closid == 0)
168 			return -ENOSPC;
169 		closid--;
170 	}
171 	__clear_bit(closid, &closid_free_map);
172 
173 	return closid;
174 }
175 
176 void closid_free(int closid)
177 {
178 	lockdep_assert_held(&rdtgroup_mutex);
179 
180 	__set_bit(closid, &closid_free_map);
181 }
182 
183 /**
184  * closid_allocated - test if provided closid is in use
185  * @closid: closid to be tested
186  *
187  * Return: true if @closid is currently associated with a resource group,
188  * false if @closid is free
189  */
190 bool closid_allocated(unsigned int closid)
191 {
192 	lockdep_assert_held(&rdtgroup_mutex);
193 
194 	return !test_bit(closid, &closid_free_map);
195 }
196 
197 /**
198  * rdtgroup_mode_by_closid - Return mode of resource group with closid
199  * @closid: closid if the resource group
200  *
201  * Each resource group is associated with a @closid. Here the mode
202  * of a resource group can be queried by searching for it using its closid.
203  *
204  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
205  */
206 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
207 {
208 	struct rdtgroup *rdtgrp;
209 
210 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
211 		if (rdtgrp->closid == closid)
212 			return rdtgrp->mode;
213 	}
214 
215 	return RDT_NUM_MODES;
216 }
217 
218 static const char * const rdt_mode_str[] = {
219 	[RDT_MODE_SHAREABLE]		= "shareable",
220 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
221 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
222 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
223 };
224 
225 /**
226  * rdtgroup_mode_str - Return the string representation of mode
227  * @mode: the resource group mode as &enum rdtgroup_mode
228  *
229  * Return: string representation of valid mode, "unknown" otherwise
230  */
231 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
232 {
233 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
234 		return "unknown";
235 
236 	return rdt_mode_str[mode];
237 }
238 
239 /* set uid and gid of rdtgroup dirs and files to that of the creator */
240 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
241 {
242 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
243 				.ia_uid = current_fsuid(),
244 				.ia_gid = current_fsgid(), };
245 
246 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
247 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
248 		return 0;
249 
250 	return kernfs_setattr(kn, &iattr);
251 }
252 
253 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
254 {
255 	struct kernfs_node *kn;
256 	int ret;
257 
258 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
259 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
260 				  0, rft->kf_ops, rft, NULL, NULL);
261 	if (IS_ERR(kn))
262 		return PTR_ERR(kn);
263 
264 	ret = rdtgroup_kn_set_ugid(kn);
265 	if (ret) {
266 		kernfs_remove(kn);
267 		return ret;
268 	}
269 
270 	return 0;
271 }
272 
273 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
274 {
275 	struct kernfs_open_file *of = m->private;
276 	struct rftype *rft = of->kn->priv;
277 
278 	if (rft->seq_show)
279 		return rft->seq_show(of, m, arg);
280 	return 0;
281 }
282 
283 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
284 				   size_t nbytes, loff_t off)
285 {
286 	struct rftype *rft = of->kn->priv;
287 
288 	if (rft->write)
289 		return rft->write(of, buf, nbytes, off);
290 
291 	return -EINVAL;
292 }
293 
294 static const struct kernfs_ops rdtgroup_kf_single_ops = {
295 	.atomic_write_len	= PAGE_SIZE,
296 	.write			= rdtgroup_file_write,
297 	.seq_show		= rdtgroup_seqfile_show,
298 };
299 
300 static const struct kernfs_ops kf_mondata_ops = {
301 	.atomic_write_len	= PAGE_SIZE,
302 	.seq_show		= rdtgroup_mondata_show,
303 };
304 
305 static bool is_cpu_list(struct kernfs_open_file *of)
306 {
307 	struct rftype *rft = of->kn->priv;
308 
309 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
310 }
311 
312 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
313 			      struct seq_file *s, void *v)
314 {
315 	struct rdtgroup *rdtgrp;
316 	struct cpumask *mask;
317 	int ret = 0;
318 
319 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
320 
321 	if (rdtgrp) {
322 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
323 			if (!rdtgrp->plr->d) {
324 				rdt_last_cmd_clear();
325 				rdt_last_cmd_puts("Cache domain offline\n");
326 				ret = -ENODEV;
327 			} else {
328 				mask = &rdtgrp->plr->d->hdr.cpu_mask;
329 				seq_printf(s, is_cpu_list(of) ?
330 					   "%*pbl\n" : "%*pb\n",
331 					   cpumask_pr_args(mask));
332 			}
333 		} else {
334 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
335 				   cpumask_pr_args(&rdtgrp->cpu_mask));
336 		}
337 	} else {
338 		ret = -ENOENT;
339 	}
340 	rdtgroup_kn_unlock(of->kn);
341 
342 	return ret;
343 }
344 
345 /*
346  * This is safe against resctrl_sched_in() called from __switch_to()
347  * because __switch_to() is executed with interrupts disabled. A local call
348  * from update_closid_rmid() is protected against __switch_to() because
349  * preemption is disabled.
350  */
351 static void update_cpu_closid_rmid(void *info)
352 {
353 	struct rdtgroup *r = info;
354 
355 	if (r) {
356 		this_cpu_write(pqr_state.default_closid, r->closid);
357 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
358 	}
359 
360 	/*
361 	 * We cannot unconditionally write the MSR because the current
362 	 * executing task might have its own closid selected. Just reuse
363 	 * the context switch code.
364 	 */
365 	resctrl_sched_in(current);
366 }
367 
368 /*
369  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
370  *
371  * Per task closids/rmids must have been set up before calling this function.
372  */
373 static void
374 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
375 {
376 	on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
377 }
378 
379 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
380 			  cpumask_var_t tmpmask)
381 {
382 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
383 	struct list_head *head;
384 
385 	/* Check whether cpus belong to parent ctrl group */
386 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
387 	if (!cpumask_empty(tmpmask)) {
388 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
389 		return -EINVAL;
390 	}
391 
392 	/* Check whether cpus are dropped from this group */
393 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 	if (!cpumask_empty(tmpmask)) {
395 		/* Give any dropped cpus to parent rdtgroup */
396 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
397 		update_closid_rmid(tmpmask, prgrp);
398 	}
399 
400 	/*
401 	 * If we added cpus, remove them from previous group that owned them
402 	 * and update per-cpu rmid
403 	 */
404 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
405 	if (!cpumask_empty(tmpmask)) {
406 		head = &prgrp->mon.crdtgrp_list;
407 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
408 			if (crgrp == rdtgrp)
409 				continue;
410 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
411 				       tmpmask);
412 		}
413 		update_closid_rmid(tmpmask, rdtgrp);
414 	}
415 
416 	/* Done pushing/pulling - update this group with new mask */
417 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
418 
419 	return 0;
420 }
421 
422 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
423 {
424 	struct rdtgroup *crgrp;
425 
426 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
427 	/* update the child mon group masks as well*/
428 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
429 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
430 }
431 
432 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
433 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
434 {
435 	struct rdtgroup *r, *crgrp;
436 	struct list_head *head;
437 
438 	/* Check whether cpus are dropped from this group */
439 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
440 	if (!cpumask_empty(tmpmask)) {
441 		/* Can't drop from default group */
442 		if (rdtgrp == &rdtgroup_default) {
443 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
444 			return -EINVAL;
445 		}
446 
447 		/* Give any dropped cpus to rdtgroup_default */
448 		cpumask_or(&rdtgroup_default.cpu_mask,
449 			   &rdtgroup_default.cpu_mask, tmpmask);
450 		update_closid_rmid(tmpmask, &rdtgroup_default);
451 	}
452 
453 	/*
454 	 * If we added cpus, remove them from previous group and
455 	 * the prev group's child groups that owned them
456 	 * and update per-cpu closid/rmid.
457 	 */
458 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
459 	if (!cpumask_empty(tmpmask)) {
460 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
461 			if (r == rdtgrp)
462 				continue;
463 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
464 			if (!cpumask_empty(tmpmask1))
465 				cpumask_rdtgrp_clear(r, tmpmask1);
466 		}
467 		update_closid_rmid(tmpmask, rdtgrp);
468 	}
469 
470 	/* Done pushing/pulling - update this group with new mask */
471 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
472 
473 	/*
474 	 * Clear child mon group masks since there is a new parent mask
475 	 * now and update the rmid for the cpus the child lost.
476 	 */
477 	head = &rdtgrp->mon.crdtgrp_list;
478 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
479 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
480 		update_closid_rmid(tmpmask, rdtgrp);
481 		cpumask_clear(&crgrp->cpu_mask);
482 	}
483 
484 	return 0;
485 }
486 
487 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
488 				   char *buf, size_t nbytes, loff_t off)
489 {
490 	cpumask_var_t tmpmask, newmask, tmpmask1;
491 	struct rdtgroup *rdtgrp;
492 	int ret;
493 
494 	if (!buf)
495 		return -EINVAL;
496 
497 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
498 		return -ENOMEM;
499 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
500 		free_cpumask_var(tmpmask);
501 		return -ENOMEM;
502 	}
503 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
504 		free_cpumask_var(tmpmask);
505 		free_cpumask_var(newmask);
506 		return -ENOMEM;
507 	}
508 
509 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
510 	if (!rdtgrp) {
511 		ret = -ENOENT;
512 		goto unlock;
513 	}
514 
515 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
516 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
517 		ret = -EINVAL;
518 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
519 		goto unlock;
520 	}
521 
522 	if (is_cpu_list(of))
523 		ret = cpulist_parse(buf, newmask);
524 	else
525 		ret = cpumask_parse(buf, newmask);
526 
527 	if (ret) {
528 		rdt_last_cmd_puts("Bad CPU list/mask\n");
529 		goto unlock;
530 	}
531 
532 	/* check that user didn't specify any offline cpus */
533 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
534 	if (!cpumask_empty(tmpmask)) {
535 		ret = -EINVAL;
536 		rdt_last_cmd_puts("Can only assign online CPUs\n");
537 		goto unlock;
538 	}
539 
540 	if (rdtgrp->type == RDTCTRL_GROUP)
541 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
542 	else if (rdtgrp->type == RDTMON_GROUP)
543 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
544 	else
545 		ret = -EINVAL;
546 
547 unlock:
548 	rdtgroup_kn_unlock(of->kn);
549 	free_cpumask_var(tmpmask);
550 	free_cpumask_var(newmask);
551 	free_cpumask_var(tmpmask1);
552 
553 	return ret ?: nbytes;
554 }
555 
556 /**
557  * rdtgroup_remove - the helper to remove resource group safely
558  * @rdtgrp: resource group to remove
559  *
560  * On resource group creation via a mkdir, an extra kernfs_node reference is
561  * taken to ensure that the rdtgroup structure remains accessible for the
562  * rdtgroup_kn_unlock() calls where it is removed.
563  *
564  * Drop the extra reference here, then free the rdtgroup structure.
565  *
566  * Return: void
567  */
568 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
569 {
570 	kernfs_put(rdtgrp->kn);
571 	kfree(rdtgrp);
572 }
573 
574 static void _update_task_closid_rmid(void *task)
575 {
576 	/*
577 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
578 	 * Otherwise, the MSR is updated when the task is scheduled in.
579 	 */
580 	if (task == current)
581 		resctrl_sched_in(task);
582 }
583 
584 static void update_task_closid_rmid(struct task_struct *t)
585 {
586 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
587 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
588 	else
589 		_update_task_closid_rmid(t);
590 }
591 
592 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp)
593 {
594 	u32 closid, rmid = rdtgrp->mon.rmid;
595 
596 	if (rdtgrp->type == RDTCTRL_GROUP)
597 		closid = rdtgrp->closid;
598 	else if (rdtgrp->type == RDTMON_GROUP)
599 		closid = rdtgrp->mon.parent->closid;
600 	else
601 		return false;
602 
603 	return resctrl_arch_match_closid(tsk, closid) &&
604 	       resctrl_arch_match_rmid(tsk, closid, rmid);
605 }
606 
607 static int __rdtgroup_move_task(struct task_struct *tsk,
608 				struct rdtgroup *rdtgrp)
609 {
610 	/* If the task is already in rdtgrp, no need to move the task. */
611 	if (task_in_rdtgroup(tsk, rdtgrp))
612 		return 0;
613 
614 	/*
615 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
616 	 * updated by them.
617 	 *
618 	 * For ctrl_mon groups, move both closid and rmid.
619 	 * For monitor groups, can move the tasks only from
620 	 * their parent CTRL group.
621 	 */
622 	if (rdtgrp->type == RDTMON_GROUP &&
623 	    !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) {
624 		rdt_last_cmd_puts("Can't move task to different control group\n");
625 		return -EINVAL;
626 	}
627 
628 	if (rdtgrp->type == RDTMON_GROUP)
629 		resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid,
630 					     rdtgrp->mon.rmid);
631 	else
632 		resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid,
633 					     rdtgrp->mon.rmid);
634 
635 	/*
636 	 * Ensure the task's closid and rmid are written before determining if
637 	 * the task is current that will decide if it will be interrupted.
638 	 * This pairs with the full barrier between the rq->curr update and
639 	 * resctrl_sched_in() during context switch.
640 	 */
641 	smp_mb();
642 
643 	/*
644 	 * By now, the task's closid and rmid are set. If the task is current
645 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
646 	 * group go into effect. If the task is not current, the MSR will be
647 	 * updated when the task is scheduled in.
648 	 */
649 	update_task_closid_rmid(tsk);
650 
651 	return 0;
652 }
653 
654 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
655 {
656 	return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) &&
657 		resctrl_arch_match_closid(t, r->closid));
658 }
659 
660 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
661 {
662 	return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) &&
663 		resctrl_arch_match_rmid(t, r->mon.parent->closid,
664 					r->mon.rmid));
665 }
666 
667 /**
668  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
669  * @r: Resource group
670  *
671  * Return: 1 if tasks have been assigned to @r, 0 otherwise
672  */
673 int rdtgroup_tasks_assigned(struct rdtgroup *r)
674 {
675 	struct task_struct *p, *t;
676 	int ret = 0;
677 
678 	lockdep_assert_held(&rdtgroup_mutex);
679 
680 	rcu_read_lock();
681 	for_each_process_thread(p, t) {
682 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
683 			ret = 1;
684 			break;
685 		}
686 	}
687 	rcu_read_unlock();
688 
689 	return ret;
690 }
691 
692 static int rdtgroup_task_write_permission(struct task_struct *task,
693 					  struct kernfs_open_file *of)
694 {
695 	const struct cred *tcred = get_task_cred(task);
696 	const struct cred *cred = current_cred();
697 	int ret = 0;
698 
699 	/*
700 	 * Even if we're attaching all tasks in the thread group, we only
701 	 * need to check permissions on one of them.
702 	 */
703 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
704 	    !uid_eq(cred->euid, tcred->uid) &&
705 	    !uid_eq(cred->euid, tcred->suid)) {
706 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
707 		ret = -EPERM;
708 	}
709 
710 	put_cred(tcred);
711 	return ret;
712 }
713 
714 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
715 			      struct kernfs_open_file *of)
716 {
717 	struct task_struct *tsk;
718 	int ret;
719 
720 	rcu_read_lock();
721 	if (pid) {
722 		tsk = find_task_by_vpid(pid);
723 		if (!tsk) {
724 			rcu_read_unlock();
725 			rdt_last_cmd_printf("No task %d\n", pid);
726 			return -ESRCH;
727 		}
728 	} else {
729 		tsk = current;
730 	}
731 
732 	get_task_struct(tsk);
733 	rcu_read_unlock();
734 
735 	ret = rdtgroup_task_write_permission(tsk, of);
736 	if (!ret)
737 		ret = __rdtgroup_move_task(tsk, rdtgrp);
738 
739 	put_task_struct(tsk);
740 	return ret;
741 }
742 
743 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
744 				    char *buf, size_t nbytes, loff_t off)
745 {
746 	struct rdtgroup *rdtgrp;
747 	char *pid_str;
748 	int ret = 0;
749 	pid_t pid;
750 
751 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
752 	if (!rdtgrp) {
753 		rdtgroup_kn_unlock(of->kn);
754 		return -ENOENT;
755 	}
756 	rdt_last_cmd_clear();
757 
758 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
759 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
760 		ret = -EINVAL;
761 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
762 		goto unlock;
763 	}
764 
765 	while (buf && buf[0] != '\0' && buf[0] != '\n') {
766 		pid_str = strim(strsep(&buf, ","));
767 
768 		if (kstrtoint(pid_str, 0, &pid)) {
769 			rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
770 			ret = -EINVAL;
771 			break;
772 		}
773 
774 		if (pid < 0) {
775 			rdt_last_cmd_printf("Invalid pid %d\n", pid);
776 			ret = -EINVAL;
777 			break;
778 		}
779 
780 		ret = rdtgroup_move_task(pid, rdtgrp, of);
781 		if (ret) {
782 			rdt_last_cmd_printf("Error while processing task %d\n", pid);
783 			break;
784 		}
785 	}
786 
787 unlock:
788 	rdtgroup_kn_unlock(of->kn);
789 
790 	return ret ?: nbytes;
791 }
792 
793 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
794 {
795 	struct task_struct *p, *t;
796 	pid_t pid;
797 
798 	rcu_read_lock();
799 	for_each_process_thread(p, t) {
800 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
801 			pid = task_pid_vnr(t);
802 			if (pid)
803 				seq_printf(s, "%d\n", pid);
804 		}
805 	}
806 	rcu_read_unlock();
807 }
808 
809 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
810 			       struct seq_file *s, void *v)
811 {
812 	struct rdtgroup *rdtgrp;
813 	int ret = 0;
814 
815 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
816 	if (rdtgrp)
817 		show_rdt_tasks(rdtgrp, s);
818 	else
819 		ret = -ENOENT;
820 	rdtgroup_kn_unlock(of->kn);
821 
822 	return ret;
823 }
824 
825 static int rdtgroup_closid_show(struct kernfs_open_file *of,
826 				struct seq_file *s, void *v)
827 {
828 	struct rdtgroup *rdtgrp;
829 	int ret = 0;
830 
831 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
832 	if (rdtgrp)
833 		seq_printf(s, "%u\n", rdtgrp->closid);
834 	else
835 		ret = -ENOENT;
836 	rdtgroup_kn_unlock(of->kn);
837 
838 	return ret;
839 }
840 
841 static int rdtgroup_rmid_show(struct kernfs_open_file *of,
842 			      struct seq_file *s, void *v)
843 {
844 	struct rdtgroup *rdtgrp;
845 	int ret = 0;
846 
847 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
848 	if (rdtgrp)
849 		seq_printf(s, "%u\n", rdtgrp->mon.rmid);
850 	else
851 		ret = -ENOENT;
852 	rdtgroup_kn_unlock(of->kn);
853 
854 	return ret;
855 }
856 
857 #ifdef CONFIG_PROC_CPU_RESCTRL
858 
859 /*
860  * A task can only be part of one resctrl control group and of one monitor
861  * group which is associated to that control group.
862  *
863  * 1)   res:
864  *      mon:
865  *
866  *    resctrl is not available.
867  *
868  * 2)   res:/
869  *      mon:
870  *
871  *    Task is part of the root resctrl control group, and it is not associated
872  *    to any monitor group.
873  *
874  * 3)  res:/
875  *     mon:mon0
876  *
877  *    Task is part of the root resctrl control group and monitor group mon0.
878  *
879  * 4)  res:group0
880  *     mon:
881  *
882  *    Task is part of resctrl control group group0, and it is not associated
883  *    to any monitor group.
884  *
885  * 5) res:group0
886  *    mon:mon1
887  *
888  *    Task is part of resctrl control group group0 and monitor group mon1.
889  */
890 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
891 		      struct pid *pid, struct task_struct *tsk)
892 {
893 	struct rdtgroup *rdtg;
894 	int ret = 0;
895 
896 	mutex_lock(&rdtgroup_mutex);
897 
898 	/* Return empty if resctrl has not been mounted. */
899 	if (!resctrl_mounted) {
900 		seq_puts(s, "res:\nmon:\n");
901 		goto unlock;
902 	}
903 
904 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
905 		struct rdtgroup *crg;
906 
907 		/*
908 		 * Task information is only relevant for shareable
909 		 * and exclusive groups.
910 		 */
911 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
912 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
913 			continue;
914 
915 		if (!resctrl_arch_match_closid(tsk, rdtg->closid))
916 			continue;
917 
918 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
919 			   rdt_kn_name(rdtg->kn));
920 		seq_puts(s, "mon:");
921 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
922 				    mon.crdtgrp_list) {
923 			if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid,
924 						     crg->mon.rmid))
925 				continue;
926 			seq_printf(s, "%s", rdt_kn_name(crg->kn));
927 			break;
928 		}
929 		seq_putc(s, '\n');
930 		goto unlock;
931 	}
932 	/*
933 	 * The above search should succeed. Otherwise return
934 	 * with an error.
935 	 */
936 	ret = -ENOENT;
937 unlock:
938 	mutex_unlock(&rdtgroup_mutex);
939 
940 	return ret;
941 }
942 #endif
943 
944 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
945 				    struct seq_file *seq, void *v)
946 {
947 	int len;
948 
949 	mutex_lock(&rdtgroup_mutex);
950 	len = seq_buf_used(&last_cmd_status);
951 	if (len)
952 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
953 	else
954 		seq_puts(seq, "ok\n");
955 	mutex_unlock(&rdtgroup_mutex);
956 	return 0;
957 }
958 
959 static void *rdt_kn_parent_priv(struct kernfs_node *kn)
960 {
961 	/*
962 	 * The parent pointer is only valid within RCU section since it can be
963 	 * replaced.
964 	 */
965 	guard(rcu)();
966 	return rcu_dereference(kn->__parent)->priv;
967 }
968 
969 static int rdt_num_closids_show(struct kernfs_open_file *of,
970 				struct seq_file *seq, void *v)
971 {
972 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
973 
974 	seq_printf(seq, "%u\n", s->num_closid);
975 	return 0;
976 }
977 
978 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
979 			     struct seq_file *seq, void *v)
980 {
981 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
982 	struct rdt_resource *r = s->res;
983 
984 	seq_printf(seq, "%x\n", r->default_ctrl);
985 	return 0;
986 }
987 
988 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
989 			     struct seq_file *seq, void *v)
990 {
991 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
992 	struct rdt_resource *r = s->res;
993 
994 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
995 	return 0;
996 }
997 
998 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
999 				   struct seq_file *seq, void *v)
1000 {
1001 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1002 	struct rdt_resource *r = s->res;
1003 
1004 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
1005 	return 0;
1006 }
1007 
1008 /*
1009  * rdt_bit_usage_show - Display current usage of resources
1010  *
1011  * A domain is a shared resource that can now be allocated differently. Here
1012  * we display the current regions of the domain as an annotated bitmask.
1013  * For each domain of this resource its allocation bitmask
1014  * is annotated as below to indicate the current usage of the corresponding bit:
1015  *   0 - currently unused
1016  *   X - currently available for sharing and used by software and hardware
1017  *   H - currently used by hardware only but available for software use
1018  *   S - currently used and shareable by software only
1019  *   E - currently used exclusively by one resource group
1020  *   P - currently pseudo-locked by one resource group
1021  */
1022 static int rdt_bit_usage_show(struct kernfs_open_file *of,
1023 			      struct seq_file *seq, void *v)
1024 {
1025 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1026 	/*
1027 	 * Use unsigned long even though only 32 bits are used to ensure
1028 	 * test_bit() is used safely.
1029 	 */
1030 	unsigned long sw_shareable = 0, hw_shareable = 0;
1031 	unsigned long exclusive = 0, pseudo_locked = 0;
1032 	struct rdt_resource *r = s->res;
1033 	struct rdt_ctrl_domain *dom;
1034 	int i, hwb, swb, excl, psl;
1035 	enum rdtgrp_mode mode;
1036 	bool sep = false;
1037 	u32 ctrl_val;
1038 
1039 	cpus_read_lock();
1040 	mutex_lock(&rdtgroup_mutex);
1041 	hw_shareable = r->cache.shareable_bits;
1042 	list_for_each_entry(dom, &r->ctrl_domains, hdr.list) {
1043 		if (sep)
1044 			seq_putc(seq, ';');
1045 		sw_shareable = 0;
1046 		exclusive = 0;
1047 		seq_printf(seq, "%d=", dom->hdr.id);
1048 		for (i = 0; i < closids_supported(); i++) {
1049 			if (!closid_allocated(i))
1050 				continue;
1051 			ctrl_val = resctrl_arch_get_config(r, dom, i,
1052 							   s->conf_type);
1053 			mode = rdtgroup_mode_by_closid(i);
1054 			switch (mode) {
1055 			case RDT_MODE_SHAREABLE:
1056 				sw_shareable |= ctrl_val;
1057 				break;
1058 			case RDT_MODE_EXCLUSIVE:
1059 				exclusive |= ctrl_val;
1060 				break;
1061 			case RDT_MODE_PSEUDO_LOCKSETUP:
1062 			/*
1063 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1064 			 * here but not included since the CBM
1065 			 * associated with this CLOSID in this mode
1066 			 * is not initialized and no task or cpu can be
1067 			 * assigned this CLOSID.
1068 			 */
1069 				break;
1070 			case RDT_MODE_PSEUDO_LOCKED:
1071 			case RDT_NUM_MODES:
1072 				WARN(1,
1073 				     "invalid mode for closid %d\n", i);
1074 				break;
1075 			}
1076 		}
1077 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1078 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1079 			hwb = test_bit(i, &hw_shareable);
1080 			swb = test_bit(i, &sw_shareable);
1081 			excl = test_bit(i, &exclusive);
1082 			psl = test_bit(i, &pseudo_locked);
1083 			if (hwb && swb)
1084 				seq_putc(seq, 'X');
1085 			else if (hwb && !swb)
1086 				seq_putc(seq, 'H');
1087 			else if (!hwb && swb)
1088 				seq_putc(seq, 'S');
1089 			else if (excl)
1090 				seq_putc(seq, 'E');
1091 			else if (psl)
1092 				seq_putc(seq, 'P');
1093 			else /* Unused bits remain */
1094 				seq_putc(seq, '0');
1095 		}
1096 		sep = true;
1097 	}
1098 	seq_putc(seq, '\n');
1099 	mutex_unlock(&rdtgroup_mutex);
1100 	cpus_read_unlock();
1101 	return 0;
1102 }
1103 
1104 static int rdt_min_bw_show(struct kernfs_open_file *of,
1105 			     struct seq_file *seq, void *v)
1106 {
1107 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1108 	struct rdt_resource *r = s->res;
1109 
1110 	seq_printf(seq, "%u\n", r->membw.min_bw);
1111 	return 0;
1112 }
1113 
1114 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1115 			      struct seq_file *seq, void *v)
1116 {
1117 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1118 
1119 	seq_printf(seq, "%d\n", r->num_rmid);
1120 
1121 	return 0;
1122 }
1123 
1124 static int rdt_mon_features_show(struct kernfs_open_file *of,
1125 				 struct seq_file *seq, void *v)
1126 {
1127 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1128 	struct mon_evt *mevt;
1129 
1130 	list_for_each_entry(mevt, &r->evt_list, list) {
1131 		seq_printf(seq, "%s\n", mevt->name);
1132 		if (mevt->configurable)
1133 			seq_printf(seq, "%s_config\n", mevt->name);
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1140 			     struct seq_file *seq, void *v)
1141 {
1142 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1143 	struct rdt_resource *r = s->res;
1144 
1145 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1146 	return 0;
1147 }
1148 
1149 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1150 			     struct seq_file *seq, void *v)
1151 {
1152 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1153 	struct rdt_resource *r = s->res;
1154 
1155 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1156 	return 0;
1157 }
1158 
1159 static int max_threshold_occ_show(struct kernfs_open_file *of,
1160 				  struct seq_file *seq, void *v)
1161 {
1162 	seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1163 
1164 	return 0;
1165 }
1166 
1167 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1168 					 struct seq_file *seq, void *v)
1169 {
1170 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1171 	struct rdt_resource *r = s->res;
1172 
1173 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1174 		seq_puts(seq, "per-thread\n");
1175 	else
1176 		seq_puts(seq, "max\n");
1177 
1178 	return 0;
1179 }
1180 
1181 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1182 				       char *buf, size_t nbytes, loff_t off)
1183 {
1184 	unsigned int bytes;
1185 	int ret;
1186 
1187 	ret = kstrtouint(buf, 0, &bytes);
1188 	if (ret)
1189 		return ret;
1190 
1191 	if (bytes > resctrl_rmid_realloc_limit)
1192 		return -EINVAL;
1193 
1194 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1195 
1196 	return nbytes;
1197 }
1198 
1199 /*
1200  * rdtgroup_mode_show - Display mode of this resource group
1201  */
1202 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1203 			      struct seq_file *s, void *v)
1204 {
1205 	struct rdtgroup *rdtgrp;
1206 
1207 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1208 	if (!rdtgrp) {
1209 		rdtgroup_kn_unlock(of->kn);
1210 		return -ENOENT;
1211 	}
1212 
1213 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1214 
1215 	rdtgroup_kn_unlock(of->kn);
1216 	return 0;
1217 }
1218 
1219 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1220 {
1221 	switch (my_type) {
1222 	case CDP_CODE:
1223 		return CDP_DATA;
1224 	case CDP_DATA:
1225 		return CDP_CODE;
1226 	default:
1227 	case CDP_NONE:
1228 		return CDP_NONE;
1229 	}
1230 }
1231 
1232 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1233 					struct seq_file *seq, void *v)
1234 {
1235 	struct resctrl_schema *s = rdt_kn_parent_priv(of->kn);
1236 	struct rdt_resource *r = s->res;
1237 
1238 	seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1239 
1240 	return 0;
1241 }
1242 
1243 /**
1244  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1245  * @r: Resource to which domain instance @d belongs.
1246  * @d: The domain instance for which @closid is being tested.
1247  * @cbm: Capacity bitmask being tested.
1248  * @closid: Intended closid for @cbm.
1249  * @type: CDP type of @r.
1250  * @exclusive: Only check if overlaps with exclusive resource groups
1251  *
1252  * Checks if provided @cbm intended to be used for @closid on domain
1253  * @d overlaps with any other closids or other hardware usage associated
1254  * with this domain. If @exclusive is true then only overlaps with
1255  * resource groups in exclusive mode will be considered. If @exclusive
1256  * is false then overlaps with any resource group or hardware entities
1257  * will be considered.
1258  *
1259  * @cbm is unsigned long, even if only 32 bits are used, to make the
1260  * bitmap functions work correctly.
1261  *
1262  * Return: false if CBM does not overlap, true if it does.
1263  */
1264 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d,
1265 				    unsigned long cbm, int closid,
1266 				    enum resctrl_conf_type type, bool exclusive)
1267 {
1268 	enum rdtgrp_mode mode;
1269 	unsigned long ctrl_b;
1270 	int i;
1271 
1272 	/* Check for any overlap with regions used by hardware directly */
1273 	if (!exclusive) {
1274 		ctrl_b = r->cache.shareable_bits;
1275 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1276 			return true;
1277 	}
1278 
1279 	/* Check for overlap with other resource groups */
1280 	for (i = 0; i < closids_supported(); i++) {
1281 		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1282 		mode = rdtgroup_mode_by_closid(i);
1283 		if (closid_allocated(i) && i != closid &&
1284 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1285 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1286 				if (exclusive) {
1287 					if (mode == RDT_MODE_EXCLUSIVE)
1288 						return true;
1289 					continue;
1290 				}
1291 				return true;
1292 			}
1293 		}
1294 	}
1295 
1296 	return false;
1297 }
1298 
1299 /**
1300  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1301  * @s: Schema for the resource to which domain instance @d belongs.
1302  * @d: The domain instance for which @closid is being tested.
1303  * @cbm: Capacity bitmask being tested.
1304  * @closid: Intended closid for @cbm.
1305  * @exclusive: Only check if overlaps with exclusive resource groups
1306  *
1307  * Resources that can be allocated using a CBM can use the CBM to control
1308  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1309  * for overlap. Overlap test is not limited to the specific resource for
1310  * which the CBM is intended though - when dealing with CDP resources that
1311  * share the underlying hardware the overlap check should be performed on
1312  * the CDP resource sharing the hardware also.
1313  *
1314  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1315  * overlap test.
1316  *
1317  * Return: true if CBM overlap detected, false if there is no overlap
1318  */
1319 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d,
1320 			   unsigned long cbm, int closid, bool exclusive)
1321 {
1322 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1323 	struct rdt_resource *r = s->res;
1324 
1325 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1326 				    exclusive))
1327 		return true;
1328 
1329 	if (!resctrl_arch_get_cdp_enabled(r->rid))
1330 		return false;
1331 	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1332 }
1333 
1334 /**
1335  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1336  * @rdtgrp: Resource group identified through its closid.
1337  *
1338  * An exclusive resource group implies that there should be no sharing of
1339  * its allocated resources. At the time this group is considered to be
1340  * exclusive this test can determine if its current schemata supports this
1341  * setting by testing for overlap with all other resource groups.
1342  *
1343  * Return: true if resource group can be exclusive, false if there is overlap
1344  * with allocations of other resource groups and thus this resource group
1345  * cannot be exclusive.
1346  */
1347 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1348 {
1349 	int closid = rdtgrp->closid;
1350 	struct rdt_ctrl_domain *d;
1351 	struct resctrl_schema *s;
1352 	struct rdt_resource *r;
1353 	bool has_cache = false;
1354 	u32 ctrl;
1355 
1356 	/* Walking r->domains, ensure it can't race with cpuhp */
1357 	lockdep_assert_cpus_held();
1358 
1359 	list_for_each_entry(s, &resctrl_schema_all, list) {
1360 		r = s->res;
1361 		if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1362 			continue;
1363 		has_cache = true;
1364 		list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1365 			ctrl = resctrl_arch_get_config(r, d, closid,
1366 						       s->conf_type);
1367 			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1368 				rdt_last_cmd_puts("Schemata overlaps\n");
1369 				return false;
1370 			}
1371 		}
1372 	}
1373 
1374 	if (!has_cache) {
1375 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1376 		return false;
1377 	}
1378 
1379 	return true;
1380 }
1381 
1382 /*
1383  * rdtgroup_mode_write - Modify the resource group's mode
1384  */
1385 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1386 				   char *buf, size_t nbytes, loff_t off)
1387 {
1388 	struct rdtgroup *rdtgrp;
1389 	enum rdtgrp_mode mode;
1390 	int ret = 0;
1391 
1392 	/* Valid input requires a trailing newline */
1393 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1394 		return -EINVAL;
1395 	buf[nbytes - 1] = '\0';
1396 
1397 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1398 	if (!rdtgrp) {
1399 		rdtgroup_kn_unlock(of->kn);
1400 		return -ENOENT;
1401 	}
1402 
1403 	rdt_last_cmd_clear();
1404 
1405 	mode = rdtgrp->mode;
1406 
1407 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1408 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1409 	    (!strcmp(buf, "pseudo-locksetup") &&
1410 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1411 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1412 		goto out;
1413 
1414 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1415 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1416 		ret = -EINVAL;
1417 		goto out;
1418 	}
1419 
1420 	if (!strcmp(buf, "shareable")) {
1421 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1422 			ret = rdtgroup_locksetup_exit(rdtgrp);
1423 			if (ret)
1424 				goto out;
1425 		}
1426 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1427 	} else if (!strcmp(buf, "exclusive")) {
1428 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1429 			ret = -EINVAL;
1430 			goto out;
1431 		}
1432 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1433 			ret = rdtgroup_locksetup_exit(rdtgrp);
1434 			if (ret)
1435 				goto out;
1436 		}
1437 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1438 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1439 		ret = rdtgroup_locksetup_enter(rdtgrp);
1440 		if (ret)
1441 			goto out;
1442 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1443 	} else {
1444 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1445 		ret = -EINVAL;
1446 	}
1447 
1448 out:
1449 	rdtgroup_kn_unlock(of->kn);
1450 	return ret ?: nbytes;
1451 }
1452 
1453 /**
1454  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1455  * @r: RDT resource to which @d belongs.
1456  * @d: RDT domain instance.
1457  * @cbm: bitmask for which the size should be computed.
1458  *
1459  * The bitmask provided associated with the RDT domain instance @d will be
1460  * translated into how many bytes it represents. The size in bytes is
1461  * computed by first dividing the total cache size by the CBM length to
1462  * determine how many bytes each bit in the bitmask represents. The result
1463  * is multiplied with the number of bits set in the bitmask.
1464  *
1465  * @cbm is unsigned long, even if only 32 bits are used to make the
1466  * bitmap functions work correctly.
1467  */
1468 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1469 				  struct rdt_ctrl_domain *d, unsigned long cbm)
1470 {
1471 	unsigned int size = 0;
1472 	struct cacheinfo *ci;
1473 	int num_b;
1474 
1475 	if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE))
1476 		return size;
1477 
1478 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1479 	ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope);
1480 	if (ci)
1481 		size = ci->size / r->cache.cbm_len * num_b;
1482 
1483 	return size;
1484 }
1485 
1486 /*
1487  * rdtgroup_size_show - Display size in bytes of allocated regions
1488  *
1489  * The "size" file mirrors the layout of the "schemata" file, printing the
1490  * size in bytes of each region instead of the capacity bitmask.
1491  */
1492 static int rdtgroup_size_show(struct kernfs_open_file *of,
1493 			      struct seq_file *s, void *v)
1494 {
1495 	struct resctrl_schema *schema;
1496 	enum resctrl_conf_type type;
1497 	struct rdt_ctrl_domain *d;
1498 	struct rdtgroup *rdtgrp;
1499 	struct rdt_resource *r;
1500 	unsigned int size;
1501 	int ret = 0;
1502 	u32 closid;
1503 	bool sep;
1504 	u32 ctrl;
1505 
1506 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1507 	if (!rdtgrp) {
1508 		rdtgroup_kn_unlock(of->kn);
1509 		return -ENOENT;
1510 	}
1511 
1512 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1513 		if (!rdtgrp->plr->d) {
1514 			rdt_last_cmd_clear();
1515 			rdt_last_cmd_puts("Cache domain offline\n");
1516 			ret = -ENODEV;
1517 		} else {
1518 			seq_printf(s, "%*s:", max_name_width,
1519 				   rdtgrp->plr->s->name);
1520 			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1521 						    rdtgrp->plr->d,
1522 						    rdtgrp->plr->cbm);
1523 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size);
1524 		}
1525 		goto out;
1526 	}
1527 
1528 	closid = rdtgrp->closid;
1529 
1530 	list_for_each_entry(schema, &resctrl_schema_all, list) {
1531 		r = schema->res;
1532 		type = schema->conf_type;
1533 		sep = false;
1534 		seq_printf(s, "%*s:", max_name_width, schema->name);
1535 		list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1536 			if (sep)
1537 				seq_putc(s, ';');
1538 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1539 				size = 0;
1540 			} else {
1541 				if (is_mba_sc(r))
1542 					ctrl = d->mbps_val[closid];
1543 				else
1544 					ctrl = resctrl_arch_get_config(r, d,
1545 								       closid,
1546 								       type);
1547 				if (r->rid == RDT_RESOURCE_MBA ||
1548 				    r->rid == RDT_RESOURCE_SMBA)
1549 					size = ctrl;
1550 				else
1551 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1552 			}
1553 			seq_printf(s, "%d=%u", d->hdr.id, size);
1554 			sep = true;
1555 		}
1556 		seq_putc(s, '\n');
1557 	}
1558 
1559 out:
1560 	rdtgroup_kn_unlock(of->kn);
1561 
1562 	return ret;
1563 }
1564 
1565 struct mon_config_info {
1566 	u32 evtid;
1567 	u32 mon_config;
1568 };
1569 
1570 #define INVALID_CONFIG_INDEX   UINT_MAX
1571 
1572 /**
1573  * mon_event_config_index_get - get the hardware index for the
1574  *                              configurable event
1575  * @evtid: event id.
1576  *
1577  * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1578  *         1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1579  *         INVALID_CONFIG_INDEX for invalid evtid
1580  */
1581 static inline unsigned int mon_event_config_index_get(u32 evtid)
1582 {
1583 	switch (evtid) {
1584 	case QOS_L3_MBM_TOTAL_EVENT_ID:
1585 		return 0;
1586 	case QOS_L3_MBM_LOCAL_EVENT_ID:
1587 		return 1;
1588 	default:
1589 		/* Should never reach here */
1590 		return INVALID_CONFIG_INDEX;
1591 	}
1592 }
1593 
1594 static void mon_event_config_read(void *info)
1595 {
1596 	struct mon_config_info *mon_info = info;
1597 	unsigned int index;
1598 	u64 msrval;
1599 
1600 	index = mon_event_config_index_get(mon_info->evtid);
1601 	if (index == INVALID_CONFIG_INDEX) {
1602 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1603 		return;
1604 	}
1605 	rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1606 
1607 	/* Report only the valid event configuration bits */
1608 	mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1609 }
1610 
1611 static void mondata_config_read(struct rdt_mon_domain *d, struct mon_config_info *mon_info)
1612 {
1613 	smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_read, mon_info, 1);
1614 }
1615 
1616 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1617 {
1618 	struct mon_config_info mon_info;
1619 	struct rdt_mon_domain *dom;
1620 	bool sep = false;
1621 
1622 	cpus_read_lock();
1623 	mutex_lock(&rdtgroup_mutex);
1624 
1625 	list_for_each_entry(dom, &r->mon_domains, hdr.list) {
1626 		if (sep)
1627 			seq_puts(s, ";");
1628 
1629 		memset(&mon_info, 0, sizeof(struct mon_config_info));
1630 		mon_info.evtid = evtid;
1631 		mondata_config_read(dom, &mon_info);
1632 
1633 		seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config);
1634 		sep = true;
1635 	}
1636 	seq_puts(s, "\n");
1637 
1638 	mutex_unlock(&rdtgroup_mutex);
1639 	cpus_read_unlock();
1640 
1641 	return 0;
1642 }
1643 
1644 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1645 				       struct seq_file *seq, void *v)
1646 {
1647 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1648 
1649 	mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1650 
1651 	return 0;
1652 }
1653 
1654 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1655 				       struct seq_file *seq, void *v)
1656 {
1657 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1658 
1659 	mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1660 
1661 	return 0;
1662 }
1663 
1664 static void mon_event_config_write(void *info)
1665 {
1666 	struct mon_config_info *mon_info = info;
1667 	unsigned int index;
1668 
1669 	index = mon_event_config_index_get(mon_info->evtid);
1670 	if (index == INVALID_CONFIG_INDEX) {
1671 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1672 		return;
1673 	}
1674 	wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1675 }
1676 
1677 static void mbm_config_write_domain(struct rdt_resource *r,
1678 				    struct rdt_mon_domain *d, u32 evtid, u32 val)
1679 {
1680 	struct mon_config_info mon_info = {0};
1681 
1682 	/*
1683 	 * Read the current config value first. If both are the same then
1684 	 * no need to write it again.
1685 	 */
1686 	mon_info.evtid = evtid;
1687 	mondata_config_read(d, &mon_info);
1688 	if (mon_info.mon_config == val)
1689 		return;
1690 
1691 	mon_info.mon_config = val;
1692 
1693 	/*
1694 	 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1695 	 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1696 	 * are scoped at the domain level. Writing any of these MSRs
1697 	 * on one CPU is observed by all the CPUs in the domain.
1698 	 */
1699 	smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_write,
1700 			      &mon_info, 1);
1701 
1702 	/*
1703 	 * When an Event Configuration is changed, the bandwidth counters
1704 	 * for all RMIDs and Events will be cleared by the hardware. The
1705 	 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1706 	 * every RMID on the next read to any event for every RMID.
1707 	 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1708 	 * cleared while it is tracked by the hardware. Clear the
1709 	 * mbm_local and mbm_total counts for all the RMIDs.
1710 	 */
1711 	resctrl_arch_reset_rmid_all(r, d);
1712 }
1713 
1714 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1715 {
1716 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1717 	char *dom_str = NULL, *id_str;
1718 	unsigned long dom_id, val;
1719 	struct rdt_mon_domain *d;
1720 
1721 	/* Walking r->domains, ensure it can't race with cpuhp */
1722 	lockdep_assert_cpus_held();
1723 
1724 next:
1725 	if (!tok || tok[0] == '\0')
1726 		return 0;
1727 
1728 	/* Start processing the strings for each domain */
1729 	dom_str = strim(strsep(&tok, ";"));
1730 	id_str = strsep(&dom_str, "=");
1731 
1732 	if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1733 		rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1734 		return -EINVAL;
1735 	}
1736 
1737 	if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1738 		rdt_last_cmd_puts("Non-numeric event configuration value\n");
1739 		return -EINVAL;
1740 	}
1741 
1742 	/* Value from user cannot be more than the supported set of events */
1743 	if ((val & hw_res->mbm_cfg_mask) != val) {
1744 		rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1745 				    hw_res->mbm_cfg_mask);
1746 		return -EINVAL;
1747 	}
1748 
1749 	list_for_each_entry(d, &r->mon_domains, hdr.list) {
1750 		if (d->hdr.id == dom_id) {
1751 			mbm_config_write_domain(r, d, evtid, val);
1752 			goto next;
1753 		}
1754 	}
1755 
1756 	return -EINVAL;
1757 }
1758 
1759 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1760 					    char *buf, size_t nbytes,
1761 					    loff_t off)
1762 {
1763 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1764 	int ret;
1765 
1766 	/* Valid input requires a trailing newline */
1767 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1768 		return -EINVAL;
1769 
1770 	cpus_read_lock();
1771 	mutex_lock(&rdtgroup_mutex);
1772 
1773 	rdt_last_cmd_clear();
1774 
1775 	buf[nbytes - 1] = '\0';
1776 
1777 	ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1778 
1779 	mutex_unlock(&rdtgroup_mutex);
1780 	cpus_read_unlock();
1781 
1782 	return ret ?: nbytes;
1783 }
1784 
1785 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1786 					    char *buf, size_t nbytes,
1787 					    loff_t off)
1788 {
1789 	struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
1790 	int ret;
1791 
1792 	/* Valid input requires a trailing newline */
1793 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1794 		return -EINVAL;
1795 
1796 	cpus_read_lock();
1797 	mutex_lock(&rdtgroup_mutex);
1798 
1799 	rdt_last_cmd_clear();
1800 
1801 	buf[nbytes - 1] = '\0';
1802 
1803 	ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1804 
1805 	mutex_unlock(&rdtgroup_mutex);
1806 	cpus_read_unlock();
1807 
1808 	return ret ?: nbytes;
1809 }
1810 
1811 /* rdtgroup information files for one cache resource. */
1812 static struct rftype res_common_files[] = {
1813 	{
1814 		.name		= "last_cmd_status",
1815 		.mode		= 0444,
1816 		.kf_ops		= &rdtgroup_kf_single_ops,
1817 		.seq_show	= rdt_last_cmd_status_show,
1818 		.fflags		= RFTYPE_TOP_INFO,
1819 	},
1820 	{
1821 		.name		= "num_closids",
1822 		.mode		= 0444,
1823 		.kf_ops		= &rdtgroup_kf_single_ops,
1824 		.seq_show	= rdt_num_closids_show,
1825 		.fflags		= RFTYPE_CTRL_INFO,
1826 	},
1827 	{
1828 		.name		= "mon_features",
1829 		.mode		= 0444,
1830 		.kf_ops		= &rdtgroup_kf_single_ops,
1831 		.seq_show	= rdt_mon_features_show,
1832 		.fflags		= RFTYPE_MON_INFO,
1833 	},
1834 	{
1835 		.name		= "num_rmids",
1836 		.mode		= 0444,
1837 		.kf_ops		= &rdtgroup_kf_single_ops,
1838 		.seq_show	= rdt_num_rmids_show,
1839 		.fflags		= RFTYPE_MON_INFO,
1840 	},
1841 	{
1842 		.name		= "cbm_mask",
1843 		.mode		= 0444,
1844 		.kf_ops		= &rdtgroup_kf_single_ops,
1845 		.seq_show	= rdt_default_ctrl_show,
1846 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1847 	},
1848 	{
1849 		.name		= "min_cbm_bits",
1850 		.mode		= 0444,
1851 		.kf_ops		= &rdtgroup_kf_single_ops,
1852 		.seq_show	= rdt_min_cbm_bits_show,
1853 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1854 	},
1855 	{
1856 		.name		= "shareable_bits",
1857 		.mode		= 0444,
1858 		.kf_ops		= &rdtgroup_kf_single_ops,
1859 		.seq_show	= rdt_shareable_bits_show,
1860 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1861 	},
1862 	{
1863 		.name		= "bit_usage",
1864 		.mode		= 0444,
1865 		.kf_ops		= &rdtgroup_kf_single_ops,
1866 		.seq_show	= rdt_bit_usage_show,
1867 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1868 	},
1869 	{
1870 		.name		= "min_bandwidth",
1871 		.mode		= 0444,
1872 		.kf_ops		= &rdtgroup_kf_single_ops,
1873 		.seq_show	= rdt_min_bw_show,
1874 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1875 	},
1876 	{
1877 		.name		= "bandwidth_gran",
1878 		.mode		= 0444,
1879 		.kf_ops		= &rdtgroup_kf_single_ops,
1880 		.seq_show	= rdt_bw_gran_show,
1881 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1882 	},
1883 	{
1884 		.name		= "delay_linear",
1885 		.mode		= 0444,
1886 		.kf_ops		= &rdtgroup_kf_single_ops,
1887 		.seq_show	= rdt_delay_linear_show,
1888 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1889 	},
1890 	/*
1891 	 * Platform specific which (if any) capabilities are provided by
1892 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1893 	 * discovery.
1894 	 */
1895 	{
1896 		.name		= "thread_throttle_mode",
1897 		.mode		= 0444,
1898 		.kf_ops		= &rdtgroup_kf_single_ops,
1899 		.seq_show	= rdt_thread_throttle_mode_show,
1900 	},
1901 	{
1902 		.name		= "max_threshold_occupancy",
1903 		.mode		= 0644,
1904 		.kf_ops		= &rdtgroup_kf_single_ops,
1905 		.write		= max_threshold_occ_write,
1906 		.seq_show	= max_threshold_occ_show,
1907 		.fflags		= RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1908 	},
1909 	{
1910 		.name		= "mbm_total_bytes_config",
1911 		.mode		= 0644,
1912 		.kf_ops		= &rdtgroup_kf_single_ops,
1913 		.seq_show	= mbm_total_bytes_config_show,
1914 		.write		= mbm_total_bytes_config_write,
1915 	},
1916 	{
1917 		.name		= "mbm_local_bytes_config",
1918 		.mode		= 0644,
1919 		.kf_ops		= &rdtgroup_kf_single_ops,
1920 		.seq_show	= mbm_local_bytes_config_show,
1921 		.write		= mbm_local_bytes_config_write,
1922 	},
1923 	{
1924 		.name		= "cpus",
1925 		.mode		= 0644,
1926 		.kf_ops		= &rdtgroup_kf_single_ops,
1927 		.write		= rdtgroup_cpus_write,
1928 		.seq_show	= rdtgroup_cpus_show,
1929 		.fflags		= RFTYPE_BASE,
1930 	},
1931 	{
1932 		.name		= "cpus_list",
1933 		.mode		= 0644,
1934 		.kf_ops		= &rdtgroup_kf_single_ops,
1935 		.write		= rdtgroup_cpus_write,
1936 		.seq_show	= rdtgroup_cpus_show,
1937 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1938 		.fflags		= RFTYPE_BASE,
1939 	},
1940 	{
1941 		.name		= "tasks",
1942 		.mode		= 0644,
1943 		.kf_ops		= &rdtgroup_kf_single_ops,
1944 		.write		= rdtgroup_tasks_write,
1945 		.seq_show	= rdtgroup_tasks_show,
1946 		.fflags		= RFTYPE_BASE,
1947 	},
1948 	{
1949 		.name		= "mon_hw_id",
1950 		.mode		= 0444,
1951 		.kf_ops		= &rdtgroup_kf_single_ops,
1952 		.seq_show	= rdtgroup_rmid_show,
1953 		.fflags		= RFTYPE_MON_BASE | RFTYPE_DEBUG,
1954 	},
1955 	{
1956 		.name		= "schemata",
1957 		.mode		= 0644,
1958 		.kf_ops		= &rdtgroup_kf_single_ops,
1959 		.write		= rdtgroup_schemata_write,
1960 		.seq_show	= rdtgroup_schemata_show,
1961 		.fflags		= RFTYPE_CTRL_BASE,
1962 	},
1963 	{
1964 		.name		= "mba_MBps_event",
1965 		.mode		= 0644,
1966 		.kf_ops		= &rdtgroup_kf_single_ops,
1967 		.write		= rdtgroup_mba_mbps_event_write,
1968 		.seq_show	= rdtgroup_mba_mbps_event_show,
1969 	},
1970 	{
1971 		.name		= "mode",
1972 		.mode		= 0644,
1973 		.kf_ops		= &rdtgroup_kf_single_ops,
1974 		.write		= rdtgroup_mode_write,
1975 		.seq_show	= rdtgroup_mode_show,
1976 		.fflags		= RFTYPE_CTRL_BASE,
1977 	},
1978 	{
1979 		.name		= "size",
1980 		.mode		= 0444,
1981 		.kf_ops		= &rdtgroup_kf_single_ops,
1982 		.seq_show	= rdtgroup_size_show,
1983 		.fflags		= RFTYPE_CTRL_BASE,
1984 	},
1985 	{
1986 		.name		= "sparse_masks",
1987 		.mode		= 0444,
1988 		.kf_ops		= &rdtgroup_kf_single_ops,
1989 		.seq_show	= rdt_has_sparse_bitmasks_show,
1990 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1991 	},
1992 	{
1993 		.name		= "ctrl_hw_id",
1994 		.mode		= 0444,
1995 		.kf_ops		= &rdtgroup_kf_single_ops,
1996 		.seq_show	= rdtgroup_closid_show,
1997 		.fflags		= RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
1998 	},
1999 
2000 };
2001 
2002 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
2003 {
2004 	struct rftype *rfts, *rft;
2005 	int ret, len;
2006 
2007 	rfts = res_common_files;
2008 	len = ARRAY_SIZE(res_common_files);
2009 
2010 	lockdep_assert_held(&rdtgroup_mutex);
2011 
2012 	if (resctrl_debug)
2013 		fflags |= RFTYPE_DEBUG;
2014 
2015 	for (rft = rfts; rft < rfts + len; rft++) {
2016 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
2017 			ret = rdtgroup_add_file(kn, rft);
2018 			if (ret)
2019 				goto error;
2020 		}
2021 	}
2022 
2023 	return 0;
2024 error:
2025 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
2026 	while (--rft >= rfts) {
2027 		if ((fflags & rft->fflags) == rft->fflags)
2028 			kernfs_remove_by_name(kn, rft->name);
2029 	}
2030 	return ret;
2031 }
2032 
2033 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
2034 {
2035 	struct rftype *rfts, *rft;
2036 	int len;
2037 
2038 	rfts = res_common_files;
2039 	len = ARRAY_SIZE(res_common_files);
2040 
2041 	for (rft = rfts; rft < rfts + len; rft++) {
2042 		if (!strcmp(rft->name, name))
2043 			return rft;
2044 	}
2045 
2046 	return NULL;
2047 }
2048 
2049 void resctrl_file_fflags_init(const char *config, unsigned long fflags)
2050 {
2051 	struct rftype *rft;
2052 
2053 	rft = rdtgroup_get_rftype_by_name(config);
2054 	if (rft)
2055 		rft->fflags = fflags;
2056 }
2057 
2058 /**
2059  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2060  * @r: The resource group with which the file is associated.
2061  * @name: Name of the file
2062  *
2063  * The permissions of named resctrl file, directory, or link are modified
2064  * to not allow read, write, or execute by any user.
2065  *
2066  * WARNING: This function is intended to communicate to the user that the
2067  * resctrl file has been locked down - that it is not relevant to the
2068  * particular state the system finds itself in. It should not be relied
2069  * on to protect from user access because after the file's permissions
2070  * are restricted the user can still change the permissions using chmod
2071  * from the command line.
2072  *
2073  * Return: 0 on success, <0 on failure.
2074  */
2075 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2076 {
2077 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2078 	struct kernfs_node *kn;
2079 	int ret = 0;
2080 
2081 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2082 	if (!kn)
2083 		return -ENOENT;
2084 
2085 	switch (kernfs_type(kn)) {
2086 	case KERNFS_DIR:
2087 		iattr.ia_mode = S_IFDIR;
2088 		break;
2089 	case KERNFS_FILE:
2090 		iattr.ia_mode = S_IFREG;
2091 		break;
2092 	case KERNFS_LINK:
2093 		iattr.ia_mode = S_IFLNK;
2094 		break;
2095 	}
2096 
2097 	ret = kernfs_setattr(kn, &iattr);
2098 	kernfs_put(kn);
2099 	return ret;
2100 }
2101 
2102 /**
2103  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2104  * @r: The resource group with which the file is associated.
2105  * @name: Name of the file
2106  * @mask: Mask of permissions that should be restored
2107  *
2108  * Restore the permissions of the named file. If @name is a directory the
2109  * permissions of its parent will be used.
2110  *
2111  * Return: 0 on success, <0 on failure.
2112  */
2113 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2114 			     umode_t mask)
2115 {
2116 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2117 	struct kernfs_node *kn, *parent;
2118 	struct rftype *rfts, *rft;
2119 	int ret, len;
2120 
2121 	rfts = res_common_files;
2122 	len = ARRAY_SIZE(res_common_files);
2123 
2124 	for (rft = rfts; rft < rfts + len; rft++) {
2125 		if (!strcmp(rft->name, name))
2126 			iattr.ia_mode = rft->mode & mask;
2127 	}
2128 
2129 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2130 	if (!kn)
2131 		return -ENOENT;
2132 
2133 	switch (kernfs_type(kn)) {
2134 	case KERNFS_DIR:
2135 		parent = kernfs_get_parent(kn);
2136 		if (parent) {
2137 			iattr.ia_mode |= parent->mode;
2138 			kernfs_put(parent);
2139 		}
2140 		iattr.ia_mode |= S_IFDIR;
2141 		break;
2142 	case KERNFS_FILE:
2143 		iattr.ia_mode |= S_IFREG;
2144 		break;
2145 	case KERNFS_LINK:
2146 		iattr.ia_mode |= S_IFLNK;
2147 		break;
2148 	}
2149 
2150 	ret = kernfs_setattr(kn, &iattr);
2151 	kernfs_put(kn);
2152 	return ret;
2153 }
2154 
2155 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2156 				      unsigned long fflags)
2157 {
2158 	struct kernfs_node *kn_subdir;
2159 	int ret;
2160 
2161 	kn_subdir = kernfs_create_dir(kn_info, name,
2162 				      kn_info->mode, priv);
2163 	if (IS_ERR(kn_subdir))
2164 		return PTR_ERR(kn_subdir);
2165 
2166 	ret = rdtgroup_kn_set_ugid(kn_subdir);
2167 	if (ret)
2168 		return ret;
2169 
2170 	ret = rdtgroup_add_files(kn_subdir, fflags);
2171 	if (!ret)
2172 		kernfs_activate(kn_subdir);
2173 
2174 	return ret;
2175 }
2176 
2177 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2178 {
2179 	struct resctrl_schema *s;
2180 	struct rdt_resource *r;
2181 	unsigned long fflags;
2182 	char name[32];
2183 	int ret;
2184 
2185 	/* create the directory */
2186 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2187 	if (IS_ERR(kn_info))
2188 		return PTR_ERR(kn_info);
2189 
2190 	ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2191 	if (ret)
2192 		goto out_destroy;
2193 
2194 	/* loop over enabled controls, these are all alloc_capable */
2195 	list_for_each_entry(s, &resctrl_schema_all, list) {
2196 		r = s->res;
2197 		fflags = r->fflags | RFTYPE_CTRL_INFO;
2198 		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2199 		if (ret)
2200 			goto out_destroy;
2201 	}
2202 
2203 	for_each_mon_capable_rdt_resource(r) {
2204 		fflags = r->fflags | RFTYPE_MON_INFO;
2205 		sprintf(name, "%s_MON", r->name);
2206 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2207 		if (ret)
2208 			goto out_destroy;
2209 	}
2210 
2211 	ret = rdtgroup_kn_set_ugid(kn_info);
2212 	if (ret)
2213 		goto out_destroy;
2214 
2215 	kernfs_activate(kn_info);
2216 
2217 	return 0;
2218 
2219 out_destroy:
2220 	kernfs_remove(kn_info);
2221 	return ret;
2222 }
2223 
2224 static int
2225 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2226 		    char *name, struct kernfs_node **dest_kn)
2227 {
2228 	struct kernfs_node *kn;
2229 	int ret;
2230 
2231 	/* create the directory */
2232 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2233 	if (IS_ERR(kn))
2234 		return PTR_ERR(kn);
2235 
2236 	if (dest_kn)
2237 		*dest_kn = kn;
2238 
2239 	ret = rdtgroup_kn_set_ugid(kn);
2240 	if (ret)
2241 		goto out_destroy;
2242 
2243 	kernfs_activate(kn);
2244 
2245 	return 0;
2246 
2247 out_destroy:
2248 	kernfs_remove(kn);
2249 	return ret;
2250 }
2251 
2252 static void l3_qos_cfg_update(void *arg)
2253 {
2254 	bool *enable = arg;
2255 
2256 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2257 }
2258 
2259 static void l2_qos_cfg_update(void *arg)
2260 {
2261 	bool *enable = arg;
2262 
2263 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2264 }
2265 
2266 static inline bool is_mba_linear(void)
2267 {
2268 	return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2269 }
2270 
2271 static int set_cache_qos_cfg(int level, bool enable)
2272 {
2273 	void (*update)(void *arg);
2274 	struct rdt_ctrl_domain *d;
2275 	struct rdt_resource *r_l;
2276 	cpumask_var_t cpu_mask;
2277 	int cpu;
2278 
2279 	/* Walking r->domains, ensure it can't race with cpuhp */
2280 	lockdep_assert_cpus_held();
2281 
2282 	if (level == RDT_RESOURCE_L3)
2283 		update = l3_qos_cfg_update;
2284 	else if (level == RDT_RESOURCE_L2)
2285 		update = l2_qos_cfg_update;
2286 	else
2287 		return -EINVAL;
2288 
2289 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2290 		return -ENOMEM;
2291 
2292 	r_l = &rdt_resources_all[level].r_resctrl;
2293 	list_for_each_entry(d, &r_l->ctrl_domains, hdr.list) {
2294 		if (r_l->cache.arch_has_per_cpu_cfg)
2295 			/* Pick all the CPUs in the domain instance */
2296 			for_each_cpu(cpu, &d->hdr.cpu_mask)
2297 				cpumask_set_cpu(cpu, cpu_mask);
2298 		else
2299 			/* Pick one CPU from each domain instance to update MSR */
2300 			cpumask_set_cpu(cpumask_any(&d->hdr.cpu_mask), cpu_mask);
2301 	}
2302 
2303 	/* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2304 	on_each_cpu_mask(cpu_mask, update, &enable, 1);
2305 
2306 	free_cpumask_var(cpu_mask);
2307 
2308 	return 0;
2309 }
2310 
2311 /* Restore the qos cfg state when a domain comes online */
2312 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2313 {
2314 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2315 
2316 	if (!r->cdp_capable)
2317 		return;
2318 
2319 	if (r->rid == RDT_RESOURCE_L2)
2320 		l2_qos_cfg_update(&hw_res->cdp_enabled);
2321 
2322 	if (r->rid == RDT_RESOURCE_L3)
2323 		l3_qos_cfg_update(&hw_res->cdp_enabled);
2324 }
2325 
2326 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d)
2327 {
2328 	u32 num_closid = resctrl_arch_get_num_closid(r);
2329 	int cpu = cpumask_any(&d->hdr.cpu_mask);
2330 	int i;
2331 
2332 	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2333 				   GFP_KERNEL, cpu_to_node(cpu));
2334 	if (!d->mbps_val)
2335 		return -ENOMEM;
2336 
2337 	for (i = 0; i < num_closid; i++)
2338 		d->mbps_val[i] = MBA_MAX_MBPS;
2339 
2340 	return 0;
2341 }
2342 
2343 static void mba_sc_domain_destroy(struct rdt_resource *r,
2344 				  struct rdt_ctrl_domain *d)
2345 {
2346 	kfree(d->mbps_val);
2347 	d->mbps_val = NULL;
2348 }
2349 
2350 /*
2351  * MBA software controller is supported only if
2352  * MBM is supported and MBA is in linear scale,
2353  * and the MBM monitor scope is the same as MBA
2354  * control scope.
2355  */
2356 static bool supports_mba_mbps(void)
2357 {
2358 	struct rdt_resource *rmbm = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2359 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2360 
2361 	return (is_mbm_enabled() &&
2362 		r->alloc_capable && is_mba_linear() &&
2363 		r->ctrl_scope == rmbm->mon_scope);
2364 }
2365 
2366 /*
2367  * Enable or disable the MBA software controller
2368  * which helps user specify bandwidth in MBps.
2369  */
2370 static int set_mba_sc(bool mba_sc)
2371 {
2372 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2373 	u32 num_closid = resctrl_arch_get_num_closid(r);
2374 	struct rdt_ctrl_domain *d;
2375 	unsigned long fflags;
2376 	int i;
2377 
2378 	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2379 		return -EINVAL;
2380 
2381 	r->membw.mba_sc = mba_sc;
2382 
2383 	rdtgroup_default.mba_mbps_event = mba_mbps_default_event;
2384 
2385 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2386 		for (i = 0; i < num_closid; i++)
2387 			d->mbps_val[i] = MBA_MAX_MBPS;
2388 	}
2389 
2390 	fflags = mba_sc ? RFTYPE_CTRL_BASE | RFTYPE_MON_BASE : 0;
2391 	resctrl_file_fflags_init("mba_MBps_event", fflags);
2392 
2393 	return 0;
2394 }
2395 
2396 static int cdp_enable(int level)
2397 {
2398 	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2399 	int ret;
2400 
2401 	if (!r_l->alloc_capable)
2402 		return -EINVAL;
2403 
2404 	ret = set_cache_qos_cfg(level, true);
2405 	if (!ret)
2406 		rdt_resources_all[level].cdp_enabled = true;
2407 
2408 	return ret;
2409 }
2410 
2411 static void cdp_disable(int level)
2412 {
2413 	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2414 
2415 	if (r_hw->cdp_enabled) {
2416 		set_cache_qos_cfg(level, false);
2417 		r_hw->cdp_enabled = false;
2418 	}
2419 }
2420 
2421 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2422 {
2423 	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2424 
2425 	if (!hw_res->r_resctrl.cdp_capable)
2426 		return -EINVAL;
2427 
2428 	if (enable)
2429 		return cdp_enable(l);
2430 
2431 	cdp_disable(l);
2432 
2433 	return 0;
2434 }
2435 
2436 /*
2437  * We don't allow rdtgroup directories to be created anywhere
2438  * except the root directory. Thus when looking for the rdtgroup
2439  * structure for a kernfs node we are either looking at a directory,
2440  * in which case the rdtgroup structure is pointed at by the "priv"
2441  * field, otherwise we have a file, and need only look to the parent
2442  * to find the rdtgroup.
2443  */
2444 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2445 {
2446 	if (kernfs_type(kn) == KERNFS_DIR) {
2447 		/*
2448 		 * All the resource directories use "kn->priv"
2449 		 * to point to the "struct rdtgroup" for the
2450 		 * resource. "info" and its subdirectories don't
2451 		 * have rdtgroup structures, so return NULL here.
2452 		 */
2453 		if (kn == kn_info ||
2454 		    rcu_access_pointer(kn->__parent) == kn_info)
2455 			return NULL;
2456 		else
2457 			return kn->priv;
2458 	} else {
2459 		return rdt_kn_parent_priv(kn);
2460 	}
2461 }
2462 
2463 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2464 {
2465 	atomic_inc(&rdtgrp->waitcount);
2466 	kernfs_break_active_protection(kn);
2467 }
2468 
2469 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2470 {
2471 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2472 	    (rdtgrp->flags & RDT_DELETED)) {
2473 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2474 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2475 			rdtgroup_pseudo_lock_remove(rdtgrp);
2476 		kernfs_unbreak_active_protection(kn);
2477 		rdtgroup_remove(rdtgrp);
2478 	} else {
2479 		kernfs_unbreak_active_protection(kn);
2480 	}
2481 }
2482 
2483 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2484 {
2485 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2486 
2487 	if (!rdtgrp)
2488 		return NULL;
2489 
2490 	rdtgroup_kn_get(rdtgrp, kn);
2491 
2492 	cpus_read_lock();
2493 	mutex_lock(&rdtgroup_mutex);
2494 
2495 	/* Was this group deleted while we waited? */
2496 	if (rdtgrp->flags & RDT_DELETED)
2497 		return NULL;
2498 
2499 	return rdtgrp;
2500 }
2501 
2502 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2503 {
2504 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2505 
2506 	if (!rdtgrp)
2507 		return;
2508 
2509 	mutex_unlock(&rdtgroup_mutex);
2510 	cpus_read_unlock();
2511 
2512 	rdtgroup_kn_put(rdtgrp, kn);
2513 }
2514 
2515 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2516 			     struct rdtgroup *prgrp,
2517 			     struct kernfs_node **mon_data_kn);
2518 
2519 static void rdt_disable_ctx(void)
2520 {
2521 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2522 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2523 	set_mba_sc(false);
2524 
2525 	resctrl_debug = false;
2526 }
2527 
2528 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2529 {
2530 	int ret = 0;
2531 
2532 	if (ctx->enable_cdpl2) {
2533 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2534 		if (ret)
2535 			goto out_done;
2536 	}
2537 
2538 	if (ctx->enable_cdpl3) {
2539 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2540 		if (ret)
2541 			goto out_cdpl2;
2542 	}
2543 
2544 	if (ctx->enable_mba_mbps) {
2545 		ret = set_mba_sc(true);
2546 		if (ret)
2547 			goto out_cdpl3;
2548 	}
2549 
2550 	if (ctx->enable_debug)
2551 		resctrl_debug = true;
2552 
2553 	return 0;
2554 
2555 out_cdpl3:
2556 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2557 out_cdpl2:
2558 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2559 out_done:
2560 	return ret;
2561 }
2562 
2563 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2564 {
2565 	struct resctrl_schema *s;
2566 	const char *suffix = "";
2567 	int ret, cl;
2568 
2569 	s = kzalloc(sizeof(*s), GFP_KERNEL);
2570 	if (!s)
2571 		return -ENOMEM;
2572 
2573 	s->res = r;
2574 	s->num_closid = resctrl_arch_get_num_closid(r);
2575 	if (resctrl_arch_get_cdp_enabled(r->rid))
2576 		s->num_closid /= 2;
2577 
2578 	s->conf_type = type;
2579 	switch (type) {
2580 	case CDP_CODE:
2581 		suffix = "CODE";
2582 		break;
2583 	case CDP_DATA:
2584 		suffix = "DATA";
2585 		break;
2586 	case CDP_NONE:
2587 		suffix = "";
2588 		break;
2589 	}
2590 
2591 	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2592 	if (ret >= sizeof(s->name)) {
2593 		kfree(s);
2594 		return -EINVAL;
2595 	}
2596 
2597 	cl = strlen(s->name);
2598 
2599 	/*
2600 	 * If CDP is supported by this resource, but not enabled,
2601 	 * include the suffix. This ensures the tabular format of the
2602 	 * schemata file does not change between mounts of the filesystem.
2603 	 */
2604 	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2605 		cl += 4;
2606 
2607 	if (cl > max_name_width)
2608 		max_name_width = cl;
2609 
2610 	INIT_LIST_HEAD(&s->list);
2611 	list_add(&s->list, &resctrl_schema_all);
2612 
2613 	return 0;
2614 }
2615 
2616 static int schemata_list_create(void)
2617 {
2618 	struct rdt_resource *r;
2619 	int ret = 0;
2620 
2621 	for_each_alloc_capable_rdt_resource(r) {
2622 		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2623 			ret = schemata_list_add(r, CDP_CODE);
2624 			if (ret)
2625 				break;
2626 
2627 			ret = schemata_list_add(r, CDP_DATA);
2628 		} else {
2629 			ret = schemata_list_add(r, CDP_NONE);
2630 		}
2631 
2632 		if (ret)
2633 			break;
2634 	}
2635 
2636 	return ret;
2637 }
2638 
2639 static void schemata_list_destroy(void)
2640 {
2641 	struct resctrl_schema *s, *tmp;
2642 
2643 	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2644 		list_del(&s->list);
2645 		kfree(s);
2646 	}
2647 }
2648 
2649 static int rdt_get_tree(struct fs_context *fc)
2650 {
2651 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2652 	unsigned long flags = RFTYPE_CTRL_BASE;
2653 	struct rdt_mon_domain *dom;
2654 	struct rdt_resource *r;
2655 	int ret;
2656 
2657 	cpus_read_lock();
2658 	mutex_lock(&rdtgroup_mutex);
2659 	/*
2660 	 * resctrl file system can only be mounted once.
2661 	 */
2662 	if (resctrl_mounted) {
2663 		ret = -EBUSY;
2664 		goto out;
2665 	}
2666 
2667 	ret = rdtgroup_setup_root(ctx);
2668 	if (ret)
2669 		goto out;
2670 
2671 	ret = rdt_enable_ctx(ctx);
2672 	if (ret)
2673 		goto out_root;
2674 
2675 	ret = schemata_list_create();
2676 	if (ret) {
2677 		schemata_list_destroy();
2678 		goto out_ctx;
2679 	}
2680 
2681 	closid_init();
2682 
2683 	if (resctrl_arch_mon_capable())
2684 		flags |= RFTYPE_MON;
2685 
2686 	ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2687 	if (ret)
2688 		goto out_schemata_free;
2689 
2690 	kernfs_activate(rdtgroup_default.kn);
2691 
2692 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2693 	if (ret < 0)
2694 		goto out_schemata_free;
2695 
2696 	if (resctrl_arch_mon_capable()) {
2697 		ret = mongroup_create_dir(rdtgroup_default.kn,
2698 					  &rdtgroup_default, "mon_groups",
2699 					  &kn_mongrp);
2700 		if (ret < 0)
2701 			goto out_info;
2702 
2703 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2704 					&rdtgroup_default, &kn_mondata);
2705 		if (ret < 0)
2706 			goto out_mongrp;
2707 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2708 	}
2709 
2710 	ret = rdt_pseudo_lock_init();
2711 	if (ret)
2712 		goto out_mondata;
2713 
2714 	ret = kernfs_get_tree(fc);
2715 	if (ret < 0)
2716 		goto out_psl;
2717 
2718 	if (resctrl_arch_alloc_capable())
2719 		resctrl_arch_enable_alloc();
2720 	if (resctrl_arch_mon_capable())
2721 		resctrl_arch_enable_mon();
2722 
2723 	if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2724 		resctrl_mounted = true;
2725 
2726 	if (is_mbm_enabled()) {
2727 		r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2728 		list_for_each_entry(dom, &r->mon_domains, hdr.list)
2729 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL,
2730 						   RESCTRL_PICK_ANY_CPU);
2731 	}
2732 
2733 	goto out;
2734 
2735 out_psl:
2736 	rdt_pseudo_lock_release();
2737 out_mondata:
2738 	if (resctrl_arch_mon_capable())
2739 		kernfs_remove(kn_mondata);
2740 out_mongrp:
2741 	if (resctrl_arch_mon_capable())
2742 		kernfs_remove(kn_mongrp);
2743 out_info:
2744 	kernfs_remove(kn_info);
2745 out_schemata_free:
2746 	schemata_list_destroy();
2747 out_ctx:
2748 	rdt_disable_ctx();
2749 out_root:
2750 	rdtgroup_destroy_root();
2751 out:
2752 	rdt_last_cmd_clear();
2753 	mutex_unlock(&rdtgroup_mutex);
2754 	cpus_read_unlock();
2755 	return ret;
2756 }
2757 
2758 enum rdt_param {
2759 	Opt_cdp,
2760 	Opt_cdpl2,
2761 	Opt_mba_mbps,
2762 	Opt_debug,
2763 	nr__rdt_params
2764 };
2765 
2766 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2767 	fsparam_flag("cdp",		Opt_cdp),
2768 	fsparam_flag("cdpl2",		Opt_cdpl2),
2769 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2770 	fsparam_flag("debug",		Opt_debug),
2771 	{}
2772 };
2773 
2774 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2775 {
2776 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2777 	struct fs_parse_result result;
2778 	const char *msg;
2779 	int opt;
2780 
2781 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2782 	if (opt < 0)
2783 		return opt;
2784 
2785 	switch (opt) {
2786 	case Opt_cdp:
2787 		ctx->enable_cdpl3 = true;
2788 		return 0;
2789 	case Opt_cdpl2:
2790 		ctx->enable_cdpl2 = true;
2791 		return 0;
2792 	case Opt_mba_mbps:
2793 		msg = "mba_MBps requires MBM and linear scale MBA at L3 scope";
2794 		if (!supports_mba_mbps())
2795 			return invalfc(fc, msg);
2796 		ctx->enable_mba_mbps = true;
2797 		return 0;
2798 	case Opt_debug:
2799 		ctx->enable_debug = true;
2800 		return 0;
2801 	}
2802 
2803 	return -EINVAL;
2804 }
2805 
2806 static void rdt_fs_context_free(struct fs_context *fc)
2807 {
2808 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2809 
2810 	kernfs_free_fs_context(fc);
2811 	kfree(ctx);
2812 }
2813 
2814 static const struct fs_context_operations rdt_fs_context_ops = {
2815 	.free		= rdt_fs_context_free,
2816 	.parse_param	= rdt_parse_param,
2817 	.get_tree	= rdt_get_tree,
2818 };
2819 
2820 static int rdt_init_fs_context(struct fs_context *fc)
2821 {
2822 	struct rdt_fs_context *ctx;
2823 
2824 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2825 	if (!ctx)
2826 		return -ENOMEM;
2827 
2828 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2829 	fc->fs_private = &ctx->kfc;
2830 	fc->ops = &rdt_fs_context_ops;
2831 	put_user_ns(fc->user_ns);
2832 	fc->user_ns = get_user_ns(&init_user_ns);
2833 	fc->global = true;
2834 	return 0;
2835 }
2836 
2837 static int reset_all_ctrls(struct rdt_resource *r)
2838 {
2839 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2840 	struct rdt_hw_ctrl_domain *hw_dom;
2841 	struct msr_param msr_param;
2842 	struct rdt_ctrl_domain *d;
2843 	int i;
2844 
2845 	/* Walking r->domains, ensure it can't race with cpuhp */
2846 	lockdep_assert_cpus_held();
2847 
2848 	msr_param.res = r;
2849 	msr_param.low = 0;
2850 	msr_param.high = hw_res->num_closid;
2851 
2852 	/*
2853 	 * Disable resource control for this resource by setting all
2854 	 * CBMs in all ctrl_domains to the maximum mask value. Pick one CPU
2855 	 * from each domain to update the MSRs below.
2856 	 */
2857 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2858 		hw_dom = resctrl_to_arch_ctrl_dom(d);
2859 
2860 		for (i = 0; i < hw_res->num_closid; i++)
2861 			hw_dom->ctrl_val[i] = r->default_ctrl;
2862 		msr_param.dom = d;
2863 		smp_call_function_any(&d->hdr.cpu_mask, rdt_ctrl_update, &msr_param, 1);
2864 	}
2865 
2866 	return 0;
2867 }
2868 
2869 /*
2870  * Move tasks from one to the other group. If @from is NULL, then all tasks
2871  * in the systems are moved unconditionally (used for teardown).
2872  *
2873  * If @mask is not NULL the cpus on which moved tasks are running are set
2874  * in that mask so the update smp function call is restricted to affected
2875  * cpus.
2876  */
2877 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2878 				 struct cpumask *mask)
2879 {
2880 	struct task_struct *p, *t;
2881 
2882 	read_lock(&tasklist_lock);
2883 	for_each_process_thread(p, t) {
2884 		if (!from || is_closid_match(t, from) ||
2885 		    is_rmid_match(t, from)) {
2886 			resctrl_arch_set_closid_rmid(t, to->closid,
2887 						     to->mon.rmid);
2888 
2889 			/*
2890 			 * Order the closid/rmid stores above before the loads
2891 			 * in task_curr(). This pairs with the full barrier
2892 			 * between the rq->curr update and resctrl_sched_in()
2893 			 * during context switch.
2894 			 */
2895 			smp_mb();
2896 
2897 			/*
2898 			 * If the task is on a CPU, set the CPU in the mask.
2899 			 * The detection is inaccurate as tasks might move or
2900 			 * schedule before the smp function call takes place.
2901 			 * In such a case the function call is pointless, but
2902 			 * there is no other side effect.
2903 			 */
2904 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2905 				cpumask_set_cpu(task_cpu(t), mask);
2906 		}
2907 	}
2908 	read_unlock(&tasklist_lock);
2909 }
2910 
2911 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2912 {
2913 	struct rdtgroup *sentry, *stmp;
2914 	struct list_head *head;
2915 
2916 	head = &rdtgrp->mon.crdtgrp_list;
2917 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2918 		free_rmid(sentry->closid, sentry->mon.rmid);
2919 		list_del(&sentry->mon.crdtgrp_list);
2920 
2921 		if (atomic_read(&sentry->waitcount) != 0)
2922 			sentry->flags = RDT_DELETED;
2923 		else
2924 			rdtgroup_remove(sentry);
2925 	}
2926 }
2927 
2928 /*
2929  * Forcibly remove all of subdirectories under root.
2930  */
2931 static void rmdir_all_sub(void)
2932 {
2933 	struct rdtgroup *rdtgrp, *tmp;
2934 
2935 	/* Move all tasks to the default resource group */
2936 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2937 
2938 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2939 		/* Free any child rmids */
2940 		free_all_child_rdtgrp(rdtgrp);
2941 
2942 		/* Remove each rdtgroup other than root */
2943 		if (rdtgrp == &rdtgroup_default)
2944 			continue;
2945 
2946 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2947 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2948 			rdtgroup_pseudo_lock_remove(rdtgrp);
2949 
2950 		/*
2951 		 * Give any CPUs back to the default group. We cannot copy
2952 		 * cpu_online_mask because a CPU might have executed the
2953 		 * offline callback already, but is still marked online.
2954 		 */
2955 		cpumask_or(&rdtgroup_default.cpu_mask,
2956 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2957 
2958 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
2959 
2960 		kernfs_remove(rdtgrp->kn);
2961 		list_del(&rdtgrp->rdtgroup_list);
2962 
2963 		if (atomic_read(&rdtgrp->waitcount) != 0)
2964 			rdtgrp->flags = RDT_DELETED;
2965 		else
2966 			rdtgroup_remove(rdtgrp);
2967 	}
2968 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2969 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2970 
2971 	kernfs_remove(kn_info);
2972 	kernfs_remove(kn_mongrp);
2973 	kernfs_remove(kn_mondata);
2974 }
2975 
2976 static void rdt_kill_sb(struct super_block *sb)
2977 {
2978 	struct rdt_resource *r;
2979 
2980 	cpus_read_lock();
2981 	mutex_lock(&rdtgroup_mutex);
2982 
2983 	rdt_disable_ctx();
2984 
2985 	/*Put everything back to default values. */
2986 	for_each_alloc_capable_rdt_resource(r)
2987 		reset_all_ctrls(r);
2988 	rmdir_all_sub();
2989 	rdt_pseudo_lock_release();
2990 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2991 	schemata_list_destroy();
2992 	rdtgroup_destroy_root();
2993 	if (resctrl_arch_alloc_capable())
2994 		resctrl_arch_disable_alloc();
2995 	if (resctrl_arch_mon_capable())
2996 		resctrl_arch_disable_mon();
2997 	resctrl_mounted = false;
2998 	kernfs_kill_sb(sb);
2999 	mutex_unlock(&rdtgroup_mutex);
3000 	cpus_read_unlock();
3001 }
3002 
3003 static struct file_system_type rdt_fs_type = {
3004 	.name			= "resctrl",
3005 	.init_fs_context	= rdt_init_fs_context,
3006 	.parameters		= rdt_fs_parameters,
3007 	.kill_sb		= rdt_kill_sb,
3008 };
3009 
3010 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
3011 		       void *priv)
3012 {
3013 	struct kernfs_node *kn;
3014 	int ret = 0;
3015 
3016 	kn = __kernfs_create_file(parent_kn, name, 0444,
3017 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
3018 				  &kf_mondata_ops, priv, NULL, NULL);
3019 	if (IS_ERR(kn))
3020 		return PTR_ERR(kn);
3021 
3022 	ret = rdtgroup_kn_set_ugid(kn);
3023 	if (ret) {
3024 		kernfs_remove(kn);
3025 		return ret;
3026 	}
3027 
3028 	return ret;
3029 }
3030 
3031 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname)
3032 {
3033 	struct kernfs_node *kn;
3034 
3035 	kn = kernfs_find_and_get(pkn, name);
3036 	if (!kn)
3037 		return;
3038 	kernfs_put(kn);
3039 
3040 	if (kn->dir.subdirs <= 1)
3041 		kernfs_remove(kn);
3042 	else
3043 		kernfs_remove_by_name(kn, subname);
3044 }
3045 
3046 /*
3047  * Remove all subdirectories of mon_data of ctrl_mon groups
3048  * and monitor groups for the given domain.
3049  * Remove files and directories containing "sum" of domain data
3050  * when last domain being summed is removed.
3051  */
3052 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3053 					   struct rdt_mon_domain *d)
3054 {
3055 	struct rdtgroup *prgrp, *crgrp;
3056 	char subname[32];
3057 	bool snc_mode;
3058 	char name[32];
3059 
3060 	snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3061 	sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3062 	if (snc_mode)
3063 		sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id);
3064 
3065 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3066 		mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname);
3067 
3068 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
3069 			mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname);
3070 	}
3071 }
3072 
3073 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d,
3074 			     struct rdt_resource *r, struct rdtgroup *prgrp,
3075 			     bool do_sum)
3076 {
3077 	struct rmid_read rr = {0};
3078 	union mon_data_bits priv;
3079 	struct mon_evt *mevt;
3080 	int ret;
3081 
3082 	if (WARN_ON(list_empty(&r->evt_list)))
3083 		return -EPERM;
3084 
3085 	priv.u.rid = r->rid;
3086 	priv.u.domid = do_sum ? d->ci->id : d->hdr.id;
3087 	priv.u.sum = do_sum;
3088 	list_for_each_entry(mevt, &r->evt_list, list) {
3089 		priv.u.evtid = mevt->evtid;
3090 		ret = mon_addfile(kn, mevt->name, priv.priv);
3091 		if (ret)
3092 			return ret;
3093 
3094 		if (!do_sum && is_mbm_event(mevt->evtid))
3095 			mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true);
3096 	}
3097 
3098 	return 0;
3099 }
3100 
3101 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
3102 				struct rdt_mon_domain *d,
3103 				struct rdt_resource *r, struct rdtgroup *prgrp)
3104 {
3105 	struct kernfs_node *kn, *ckn;
3106 	char name[32];
3107 	bool snc_mode;
3108 	int ret = 0;
3109 
3110 	lockdep_assert_held(&rdtgroup_mutex);
3111 
3112 	snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3113 	sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3114 	kn = kernfs_find_and_get(parent_kn, name);
3115 	if (kn) {
3116 		/*
3117 		 * rdtgroup_mutex will prevent this directory from being
3118 		 * removed. No need to keep this hold.
3119 		 */
3120 		kernfs_put(kn);
3121 	} else {
3122 		kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
3123 		if (IS_ERR(kn))
3124 			return PTR_ERR(kn);
3125 
3126 		ret = rdtgroup_kn_set_ugid(kn);
3127 		if (ret)
3128 			goto out_destroy;
3129 		ret = mon_add_all_files(kn, d, r, prgrp, snc_mode);
3130 		if (ret)
3131 			goto out_destroy;
3132 	}
3133 
3134 	if (snc_mode) {
3135 		sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id);
3136 		ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp);
3137 		if (IS_ERR(ckn)) {
3138 			ret = -EINVAL;
3139 			goto out_destroy;
3140 		}
3141 
3142 		ret = rdtgroup_kn_set_ugid(ckn);
3143 		if (ret)
3144 			goto out_destroy;
3145 
3146 		ret = mon_add_all_files(ckn, d, r, prgrp, false);
3147 		if (ret)
3148 			goto out_destroy;
3149 	}
3150 
3151 	kernfs_activate(kn);
3152 	return 0;
3153 
3154 out_destroy:
3155 	kernfs_remove(kn);
3156 	return ret;
3157 }
3158 
3159 /*
3160  * Add all subdirectories of mon_data for "ctrl_mon" groups
3161  * and "monitor" groups with given domain id.
3162  */
3163 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3164 					   struct rdt_mon_domain *d)
3165 {
3166 	struct kernfs_node *parent_kn;
3167 	struct rdtgroup *prgrp, *crgrp;
3168 	struct list_head *head;
3169 
3170 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3171 		parent_kn = prgrp->mon.mon_data_kn;
3172 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3173 
3174 		head = &prgrp->mon.crdtgrp_list;
3175 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3176 			parent_kn = crgrp->mon.mon_data_kn;
3177 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3178 		}
3179 	}
3180 }
3181 
3182 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3183 				       struct rdt_resource *r,
3184 				       struct rdtgroup *prgrp)
3185 {
3186 	struct rdt_mon_domain *dom;
3187 	int ret;
3188 
3189 	/* Walking r->domains, ensure it can't race with cpuhp */
3190 	lockdep_assert_cpus_held();
3191 
3192 	list_for_each_entry(dom, &r->mon_domains, hdr.list) {
3193 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3194 		if (ret)
3195 			return ret;
3196 	}
3197 
3198 	return 0;
3199 }
3200 
3201 /*
3202  * This creates a directory mon_data which contains the monitored data.
3203  *
3204  * mon_data has one directory for each domain which are named
3205  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3206  * with L3 domain looks as below:
3207  * ./mon_data:
3208  * mon_L3_00
3209  * mon_L3_01
3210  * mon_L3_02
3211  * ...
3212  *
3213  * Each domain directory has one file per event:
3214  * ./mon_L3_00/:
3215  * llc_occupancy
3216  *
3217  */
3218 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3219 			     struct rdtgroup *prgrp,
3220 			     struct kernfs_node **dest_kn)
3221 {
3222 	struct rdt_resource *r;
3223 	struct kernfs_node *kn;
3224 	int ret;
3225 
3226 	/*
3227 	 * Create the mon_data directory first.
3228 	 */
3229 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3230 	if (ret)
3231 		return ret;
3232 
3233 	if (dest_kn)
3234 		*dest_kn = kn;
3235 
3236 	/*
3237 	 * Create the subdirectories for each domain. Note that all events
3238 	 * in a domain like L3 are grouped into a resource whose domain is L3
3239 	 */
3240 	for_each_mon_capable_rdt_resource(r) {
3241 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3242 		if (ret)
3243 			goto out_destroy;
3244 	}
3245 
3246 	return 0;
3247 
3248 out_destroy:
3249 	kernfs_remove(kn);
3250 	return ret;
3251 }
3252 
3253 /**
3254  * cbm_ensure_valid - Enforce validity on provided CBM
3255  * @_val:	Candidate CBM
3256  * @r:		RDT resource to which the CBM belongs
3257  *
3258  * The provided CBM represents all cache portions available for use. This
3259  * may be represented by a bitmap that does not consist of contiguous ones
3260  * and thus be an invalid CBM.
3261  * Here the provided CBM is forced to be a valid CBM by only considering
3262  * the first set of contiguous bits as valid and clearing all bits.
3263  * The intention here is to provide a valid default CBM with which a new
3264  * resource group is initialized. The user can follow this with a
3265  * modification to the CBM if the default does not satisfy the
3266  * requirements.
3267  */
3268 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3269 {
3270 	unsigned int cbm_len = r->cache.cbm_len;
3271 	unsigned long first_bit, zero_bit;
3272 	unsigned long val = _val;
3273 
3274 	if (!val)
3275 		return 0;
3276 
3277 	first_bit = find_first_bit(&val, cbm_len);
3278 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3279 
3280 	/* Clear any remaining bits to ensure contiguous region */
3281 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3282 	return (u32)val;
3283 }
3284 
3285 /*
3286  * Initialize cache resources per RDT domain
3287  *
3288  * Set the RDT domain up to start off with all usable allocations. That is,
3289  * all shareable and unused bits. All-zero CBM is invalid.
3290  */
3291 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s,
3292 				 u32 closid)
3293 {
3294 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3295 	enum resctrl_conf_type t = s->conf_type;
3296 	struct resctrl_staged_config *cfg;
3297 	struct rdt_resource *r = s->res;
3298 	u32 used_b = 0, unused_b = 0;
3299 	unsigned long tmp_cbm;
3300 	enum rdtgrp_mode mode;
3301 	u32 peer_ctl, ctrl_val;
3302 	int i;
3303 
3304 	cfg = &d->staged_config[t];
3305 	cfg->have_new_ctrl = false;
3306 	cfg->new_ctrl = r->cache.shareable_bits;
3307 	used_b = r->cache.shareable_bits;
3308 	for (i = 0; i < closids_supported(); i++) {
3309 		if (closid_allocated(i) && i != closid) {
3310 			mode = rdtgroup_mode_by_closid(i);
3311 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3312 				/*
3313 				 * ctrl values for locksetup aren't relevant
3314 				 * until the schemata is written, and the mode
3315 				 * becomes RDT_MODE_PSEUDO_LOCKED.
3316 				 */
3317 				continue;
3318 			/*
3319 			 * If CDP is active include peer domain's
3320 			 * usage to ensure there is no overlap
3321 			 * with an exclusive group.
3322 			 */
3323 			if (resctrl_arch_get_cdp_enabled(r->rid))
3324 				peer_ctl = resctrl_arch_get_config(r, d, i,
3325 								   peer_type);
3326 			else
3327 				peer_ctl = 0;
3328 			ctrl_val = resctrl_arch_get_config(r, d, i,
3329 							   s->conf_type);
3330 			used_b |= ctrl_val | peer_ctl;
3331 			if (mode == RDT_MODE_SHAREABLE)
3332 				cfg->new_ctrl |= ctrl_val | peer_ctl;
3333 		}
3334 	}
3335 	if (d->plr && d->plr->cbm > 0)
3336 		used_b |= d->plr->cbm;
3337 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3338 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3339 	cfg->new_ctrl |= unused_b;
3340 	/*
3341 	 * Force the initial CBM to be valid, user can
3342 	 * modify the CBM based on system availability.
3343 	 */
3344 	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3345 	/*
3346 	 * Assign the u32 CBM to an unsigned long to ensure that
3347 	 * bitmap_weight() does not access out-of-bound memory.
3348 	 */
3349 	tmp_cbm = cfg->new_ctrl;
3350 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3351 		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id);
3352 		return -ENOSPC;
3353 	}
3354 	cfg->have_new_ctrl = true;
3355 
3356 	return 0;
3357 }
3358 
3359 /*
3360  * Initialize cache resources with default values.
3361  *
3362  * A new RDT group is being created on an allocation capable (CAT)
3363  * supporting system. Set this group up to start off with all usable
3364  * allocations.
3365  *
3366  * If there are no more shareable bits available on any domain then
3367  * the entire allocation will fail.
3368  */
3369 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3370 {
3371 	struct rdt_ctrl_domain *d;
3372 	int ret;
3373 
3374 	list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) {
3375 		ret = __init_one_rdt_domain(d, s, closid);
3376 		if (ret < 0)
3377 			return ret;
3378 	}
3379 
3380 	return 0;
3381 }
3382 
3383 /* Initialize MBA resource with default values. */
3384 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3385 {
3386 	struct resctrl_staged_config *cfg;
3387 	struct rdt_ctrl_domain *d;
3388 
3389 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
3390 		if (is_mba_sc(r)) {
3391 			d->mbps_val[closid] = MBA_MAX_MBPS;
3392 			continue;
3393 		}
3394 
3395 		cfg = &d->staged_config[CDP_NONE];
3396 		cfg->new_ctrl = r->default_ctrl;
3397 		cfg->have_new_ctrl = true;
3398 	}
3399 }
3400 
3401 /* Initialize the RDT group's allocations. */
3402 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3403 {
3404 	struct resctrl_schema *s;
3405 	struct rdt_resource *r;
3406 	int ret = 0;
3407 
3408 	rdt_staged_configs_clear();
3409 
3410 	list_for_each_entry(s, &resctrl_schema_all, list) {
3411 		r = s->res;
3412 		if (r->rid == RDT_RESOURCE_MBA ||
3413 		    r->rid == RDT_RESOURCE_SMBA) {
3414 			rdtgroup_init_mba(r, rdtgrp->closid);
3415 			if (is_mba_sc(r))
3416 				continue;
3417 		} else {
3418 			ret = rdtgroup_init_cat(s, rdtgrp->closid);
3419 			if (ret < 0)
3420 				goto out;
3421 		}
3422 
3423 		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3424 		if (ret < 0) {
3425 			rdt_last_cmd_puts("Failed to initialize allocations\n");
3426 			goto out;
3427 		}
3428 
3429 	}
3430 
3431 	rdtgrp->mode = RDT_MODE_SHAREABLE;
3432 
3433 out:
3434 	rdt_staged_configs_clear();
3435 	return ret;
3436 }
3437 
3438 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp)
3439 {
3440 	int ret;
3441 
3442 	if (!resctrl_arch_mon_capable())
3443 		return 0;
3444 
3445 	ret = alloc_rmid(rdtgrp->closid);
3446 	if (ret < 0) {
3447 		rdt_last_cmd_puts("Out of RMIDs\n");
3448 		return ret;
3449 	}
3450 	rdtgrp->mon.rmid = ret;
3451 
3452 	ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3453 	if (ret) {
3454 		rdt_last_cmd_puts("kernfs subdir error\n");
3455 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3456 		return ret;
3457 	}
3458 
3459 	return 0;
3460 }
3461 
3462 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp)
3463 {
3464 	if (resctrl_arch_mon_capable())
3465 		free_rmid(rgrp->closid, rgrp->mon.rmid);
3466 }
3467 
3468 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3469 			     const char *name, umode_t mode,
3470 			     enum rdt_group_type rtype, struct rdtgroup **r)
3471 {
3472 	struct rdtgroup *prdtgrp, *rdtgrp;
3473 	unsigned long files = 0;
3474 	struct kernfs_node *kn;
3475 	int ret;
3476 
3477 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3478 	if (!prdtgrp) {
3479 		ret = -ENODEV;
3480 		goto out_unlock;
3481 	}
3482 
3483 	if (rtype == RDTMON_GROUP &&
3484 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3485 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3486 		ret = -EINVAL;
3487 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
3488 		goto out_unlock;
3489 	}
3490 
3491 	/* allocate the rdtgroup. */
3492 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3493 	if (!rdtgrp) {
3494 		ret = -ENOSPC;
3495 		rdt_last_cmd_puts("Kernel out of memory\n");
3496 		goto out_unlock;
3497 	}
3498 	*r = rdtgrp;
3499 	rdtgrp->mon.parent = prdtgrp;
3500 	rdtgrp->type = rtype;
3501 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3502 
3503 	/* kernfs creates the directory for rdtgrp */
3504 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3505 	if (IS_ERR(kn)) {
3506 		ret = PTR_ERR(kn);
3507 		rdt_last_cmd_puts("kernfs create error\n");
3508 		goto out_free_rgrp;
3509 	}
3510 	rdtgrp->kn = kn;
3511 
3512 	/*
3513 	 * kernfs_remove() will drop the reference count on "kn" which
3514 	 * will free it. But we still need it to stick around for the
3515 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3516 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
3517 	 */
3518 	kernfs_get(kn);
3519 
3520 	ret = rdtgroup_kn_set_ugid(kn);
3521 	if (ret) {
3522 		rdt_last_cmd_puts("kernfs perm error\n");
3523 		goto out_destroy;
3524 	}
3525 
3526 	if (rtype == RDTCTRL_GROUP) {
3527 		files = RFTYPE_BASE | RFTYPE_CTRL;
3528 		if (resctrl_arch_mon_capable())
3529 			files |= RFTYPE_MON;
3530 	} else {
3531 		files = RFTYPE_BASE | RFTYPE_MON;
3532 	}
3533 
3534 	ret = rdtgroup_add_files(kn, files);
3535 	if (ret) {
3536 		rdt_last_cmd_puts("kernfs fill error\n");
3537 		goto out_destroy;
3538 	}
3539 
3540 	/*
3541 	 * The caller unlocks the parent_kn upon success.
3542 	 */
3543 	return 0;
3544 
3545 out_destroy:
3546 	kernfs_put(rdtgrp->kn);
3547 	kernfs_remove(rdtgrp->kn);
3548 out_free_rgrp:
3549 	kfree(rdtgrp);
3550 out_unlock:
3551 	rdtgroup_kn_unlock(parent_kn);
3552 	return ret;
3553 }
3554 
3555 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3556 {
3557 	kernfs_remove(rgrp->kn);
3558 	rdtgroup_remove(rgrp);
3559 }
3560 
3561 /*
3562  * Create a monitor group under "mon_groups" directory of a control
3563  * and monitor group(ctrl_mon). This is a resource group
3564  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3565  */
3566 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3567 			      const char *name, umode_t mode)
3568 {
3569 	struct rdtgroup *rdtgrp, *prgrp;
3570 	int ret;
3571 
3572 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3573 	if (ret)
3574 		return ret;
3575 
3576 	prgrp = rdtgrp->mon.parent;
3577 	rdtgrp->closid = prgrp->closid;
3578 
3579 	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3580 	if (ret) {
3581 		mkdir_rdt_prepare_clean(rdtgrp);
3582 		goto out_unlock;
3583 	}
3584 
3585 	kernfs_activate(rdtgrp->kn);
3586 
3587 	/*
3588 	 * Add the rdtgrp to the list of rdtgrps the parent
3589 	 * ctrl_mon group has to track.
3590 	 */
3591 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3592 
3593 out_unlock:
3594 	rdtgroup_kn_unlock(parent_kn);
3595 	return ret;
3596 }
3597 
3598 /*
3599  * These are rdtgroups created under the root directory. Can be used
3600  * to allocate and monitor resources.
3601  */
3602 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3603 				   const char *name, umode_t mode)
3604 {
3605 	struct rdtgroup *rdtgrp;
3606 	struct kernfs_node *kn;
3607 	u32 closid;
3608 	int ret;
3609 
3610 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3611 	if (ret)
3612 		return ret;
3613 
3614 	kn = rdtgrp->kn;
3615 	ret = closid_alloc();
3616 	if (ret < 0) {
3617 		rdt_last_cmd_puts("Out of CLOSIDs\n");
3618 		goto out_common_fail;
3619 	}
3620 	closid = ret;
3621 	ret = 0;
3622 
3623 	rdtgrp->closid = closid;
3624 
3625 	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3626 	if (ret)
3627 		goto out_closid_free;
3628 
3629 	kernfs_activate(rdtgrp->kn);
3630 
3631 	ret = rdtgroup_init_alloc(rdtgrp);
3632 	if (ret < 0)
3633 		goto out_rmid_free;
3634 
3635 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3636 
3637 	if (resctrl_arch_mon_capable()) {
3638 		/*
3639 		 * Create an empty mon_groups directory to hold the subset
3640 		 * of tasks and cpus to monitor.
3641 		 */
3642 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3643 		if (ret) {
3644 			rdt_last_cmd_puts("kernfs subdir error\n");
3645 			goto out_del_list;
3646 		}
3647 		if (is_mba_sc(NULL))
3648 			rdtgrp->mba_mbps_event = mba_mbps_default_event;
3649 	}
3650 
3651 	goto out_unlock;
3652 
3653 out_del_list:
3654 	list_del(&rdtgrp->rdtgroup_list);
3655 out_rmid_free:
3656 	mkdir_rdt_prepare_rmid_free(rdtgrp);
3657 out_closid_free:
3658 	closid_free(closid);
3659 out_common_fail:
3660 	mkdir_rdt_prepare_clean(rdtgrp);
3661 out_unlock:
3662 	rdtgroup_kn_unlock(parent_kn);
3663 	return ret;
3664 }
3665 
3666 /*
3667  * We allow creating mon groups only with in a directory called "mon_groups"
3668  * which is present in every ctrl_mon group. Check if this is a valid
3669  * "mon_groups" directory.
3670  *
3671  * 1. The directory should be named "mon_groups".
3672  * 2. The mon group itself should "not" be named "mon_groups".
3673  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3674  *   as parent.
3675  */
3676 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3677 {
3678 	return (!strcmp(rdt_kn_name(kn), "mon_groups") &&
3679 		strcmp(name, "mon_groups"));
3680 }
3681 
3682 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3683 			  umode_t mode)
3684 {
3685 	/* Do not accept '\n' to avoid unparsable situation. */
3686 	if (strchr(name, '\n'))
3687 		return -EINVAL;
3688 
3689 	/*
3690 	 * If the parent directory is the root directory and RDT
3691 	 * allocation is supported, add a control and monitoring
3692 	 * subdirectory
3693 	 */
3694 	if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn)
3695 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3696 
3697 	/*
3698 	 * If RDT monitoring is supported and the parent directory is a valid
3699 	 * "mon_groups" directory, add a monitoring subdirectory.
3700 	 */
3701 	if (resctrl_arch_mon_capable() && is_mon_groups(parent_kn, name))
3702 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3703 
3704 	return -EPERM;
3705 }
3706 
3707 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3708 {
3709 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3710 	int cpu;
3711 
3712 	/* Give any tasks back to the parent group */
3713 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3714 
3715 	/* Update per cpu rmid of the moved CPUs first */
3716 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3717 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3718 	/*
3719 	 * Update the MSR on moved CPUs and CPUs which have moved
3720 	 * task running on them.
3721 	 */
3722 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3723 	update_closid_rmid(tmpmask, NULL);
3724 
3725 	rdtgrp->flags = RDT_DELETED;
3726 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3727 
3728 	/*
3729 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3730 	 */
3731 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3732 	list_del(&rdtgrp->mon.crdtgrp_list);
3733 
3734 	kernfs_remove(rdtgrp->kn);
3735 
3736 	return 0;
3737 }
3738 
3739 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3740 {
3741 	rdtgrp->flags = RDT_DELETED;
3742 	list_del(&rdtgrp->rdtgroup_list);
3743 
3744 	kernfs_remove(rdtgrp->kn);
3745 	return 0;
3746 }
3747 
3748 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3749 {
3750 	int cpu;
3751 
3752 	/* Give any tasks back to the default group */
3753 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3754 
3755 	/* Give any CPUs back to the default group */
3756 	cpumask_or(&rdtgroup_default.cpu_mask,
3757 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3758 
3759 	/* Update per cpu closid and rmid of the moved CPUs first */
3760 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3761 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3762 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3763 	}
3764 
3765 	/*
3766 	 * Update the MSR on moved CPUs and CPUs which have moved
3767 	 * task running on them.
3768 	 */
3769 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3770 	update_closid_rmid(tmpmask, NULL);
3771 
3772 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3773 	closid_free(rdtgrp->closid);
3774 
3775 	rdtgroup_ctrl_remove(rdtgrp);
3776 
3777 	/*
3778 	 * Free all the child monitor group rmids.
3779 	 */
3780 	free_all_child_rdtgrp(rdtgrp);
3781 
3782 	return 0;
3783 }
3784 
3785 static struct kernfs_node *rdt_kn_parent(struct kernfs_node *kn)
3786 {
3787 	/*
3788 	 * Valid within the RCU section it was obtained or while rdtgroup_mutex
3789 	 * is held.
3790 	 */
3791 	return rcu_dereference_check(kn->__parent, lockdep_is_held(&rdtgroup_mutex));
3792 }
3793 
3794 static int rdtgroup_rmdir(struct kernfs_node *kn)
3795 {
3796 	struct kernfs_node *parent_kn;
3797 	struct rdtgroup *rdtgrp;
3798 	cpumask_var_t tmpmask;
3799 	int ret = 0;
3800 
3801 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3802 		return -ENOMEM;
3803 
3804 	rdtgrp = rdtgroup_kn_lock_live(kn);
3805 	if (!rdtgrp) {
3806 		ret = -EPERM;
3807 		goto out;
3808 	}
3809 	parent_kn = rdt_kn_parent(kn);
3810 
3811 	/*
3812 	 * If the rdtgroup is a ctrl_mon group and parent directory
3813 	 * is the root directory, remove the ctrl_mon group.
3814 	 *
3815 	 * If the rdtgroup is a mon group and parent directory
3816 	 * is a valid "mon_groups" directory, remove the mon group.
3817 	 */
3818 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3819 	    rdtgrp != &rdtgroup_default) {
3820 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3821 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3822 			ret = rdtgroup_ctrl_remove(rdtgrp);
3823 		} else {
3824 			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3825 		}
3826 	} else if (rdtgrp->type == RDTMON_GROUP &&
3827 		 is_mon_groups(parent_kn, rdt_kn_name(kn))) {
3828 		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3829 	} else {
3830 		ret = -EPERM;
3831 	}
3832 
3833 out:
3834 	rdtgroup_kn_unlock(kn);
3835 	free_cpumask_var(tmpmask);
3836 	return ret;
3837 }
3838 
3839 /**
3840  * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3841  * @rdtgrp:		the MON group whose parent should be replaced
3842  * @new_prdtgrp:	replacement parent CTRL_MON group for @rdtgrp
3843  * @cpus:		cpumask provided by the caller for use during this call
3844  *
3845  * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3846  * tasks' CLOSID immediately changing to that of the new parent group.
3847  * Monitoring data for the group is unaffected by this operation.
3848  */
3849 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3850 			    struct rdtgroup *new_prdtgrp,
3851 			    cpumask_var_t cpus)
3852 {
3853 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3854 
3855 	WARN_ON(rdtgrp->type != RDTMON_GROUP);
3856 	WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3857 
3858 	/* Nothing to do when simply renaming a MON group. */
3859 	if (prdtgrp == new_prdtgrp)
3860 		return;
3861 
3862 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3863 	list_move_tail(&rdtgrp->mon.crdtgrp_list,
3864 		       &new_prdtgrp->mon.crdtgrp_list);
3865 
3866 	rdtgrp->mon.parent = new_prdtgrp;
3867 	rdtgrp->closid = new_prdtgrp->closid;
3868 
3869 	/* Propagate updated closid to all tasks in this group. */
3870 	rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3871 
3872 	update_closid_rmid(cpus, NULL);
3873 }
3874 
3875 static int rdtgroup_rename(struct kernfs_node *kn,
3876 			   struct kernfs_node *new_parent, const char *new_name)
3877 {
3878 	struct kernfs_node *kn_parent;
3879 	struct rdtgroup *new_prdtgrp;
3880 	struct rdtgroup *rdtgrp;
3881 	cpumask_var_t tmpmask;
3882 	int ret;
3883 
3884 	rdtgrp = kernfs_to_rdtgroup(kn);
3885 	new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3886 	if (!rdtgrp || !new_prdtgrp)
3887 		return -ENOENT;
3888 
3889 	/* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3890 	rdtgroup_kn_get(rdtgrp, kn);
3891 	rdtgroup_kn_get(new_prdtgrp, new_parent);
3892 
3893 	mutex_lock(&rdtgroup_mutex);
3894 
3895 	rdt_last_cmd_clear();
3896 
3897 	/*
3898 	 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3899 	 * either kernfs_node is a file.
3900 	 */
3901 	if (kernfs_type(kn) != KERNFS_DIR ||
3902 	    kernfs_type(new_parent) != KERNFS_DIR) {
3903 		rdt_last_cmd_puts("Source and destination must be directories");
3904 		ret = -EPERM;
3905 		goto out;
3906 	}
3907 
3908 	if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3909 		ret = -ENOENT;
3910 		goto out;
3911 	}
3912 
3913 	kn_parent = rdt_kn_parent(kn);
3914 	if (rdtgrp->type != RDTMON_GROUP || !kn_parent ||
3915 	    !is_mon_groups(kn_parent, rdt_kn_name(kn))) {
3916 		rdt_last_cmd_puts("Source must be a MON group\n");
3917 		ret = -EPERM;
3918 		goto out;
3919 	}
3920 
3921 	if (!is_mon_groups(new_parent, new_name)) {
3922 		rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3923 		ret = -EPERM;
3924 		goto out;
3925 	}
3926 
3927 	/*
3928 	 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3929 	 * current parent CTRL_MON group and therefore cannot be assigned to
3930 	 * the new parent, making the move illegal.
3931 	 */
3932 	if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3933 	    rdtgrp->mon.parent != new_prdtgrp) {
3934 		rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3935 		ret = -EPERM;
3936 		goto out;
3937 	}
3938 
3939 	/*
3940 	 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3941 	 * possibility of failing to allocate it after kernfs_rename() has
3942 	 * succeeded.
3943 	 */
3944 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3945 		ret = -ENOMEM;
3946 		goto out;
3947 	}
3948 
3949 	/*
3950 	 * Perform all input validation and allocations needed to ensure
3951 	 * mongrp_reparent() will succeed before calling kernfs_rename(),
3952 	 * otherwise it would be necessary to revert this call if
3953 	 * mongrp_reparent() failed.
3954 	 */
3955 	ret = kernfs_rename(kn, new_parent, new_name);
3956 	if (!ret)
3957 		mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3958 
3959 	free_cpumask_var(tmpmask);
3960 
3961 out:
3962 	mutex_unlock(&rdtgroup_mutex);
3963 	rdtgroup_kn_put(rdtgrp, kn);
3964 	rdtgroup_kn_put(new_prdtgrp, new_parent);
3965 	return ret;
3966 }
3967 
3968 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3969 {
3970 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3971 		seq_puts(seq, ",cdp");
3972 
3973 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3974 		seq_puts(seq, ",cdpl2");
3975 
3976 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3977 		seq_puts(seq, ",mba_MBps");
3978 
3979 	if (resctrl_debug)
3980 		seq_puts(seq, ",debug");
3981 
3982 	return 0;
3983 }
3984 
3985 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3986 	.mkdir		= rdtgroup_mkdir,
3987 	.rmdir		= rdtgroup_rmdir,
3988 	.rename		= rdtgroup_rename,
3989 	.show_options	= rdtgroup_show_options,
3990 };
3991 
3992 static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
3993 {
3994 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3995 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3996 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3997 				      &rdtgroup_default);
3998 	if (IS_ERR(rdt_root))
3999 		return PTR_ERR(rdt_root);
4000 
4001 	ctx->kfc.root = rdt_root;
4002 	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
4003 
4004 	return 0;
4005 }
4006 
4007 static void rdtgroup_destroy_root(void)
4008 {
4009 	kernfs_destroy_root(rdt_root);
4010 	rdtgroup_default.kn = NULL;
4011 }
4012 
4013 static void __init rdtgroup_setup_default(void)
4014 {
4015 	mutex_lock(&rdtgroup_mutex);
4016 
4017 	rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID;
4018 	rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID;
4019 	rdtgroup_default.type = RDTCTRL_GROUP;
4020 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
4021 
4022 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
4023 
4024 	mutex_unlock(&rdtgroup_mutex);
4025 }
4026 
4027 static void domain_destroy_mon_state(struct rdt_mon_domain *d)
4028 {
4029 	bitmap_free(d->rmid_busy_llc);
4030 	kfree(d->mbm_total);
4031 	kfree(d->mbm_local);
4032 }
4033 
4034 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4035 {
4036 	mutex_lock(&rdtgroup_mutex);
4037 
4038 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
4039 		mba_sc_domain_destroy(r, d);
4040 
4041 	mutex_unlock(&rdtgroup_mutex);
4042 }
4043 
4044 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4045 {
4046 	mutex_lock(&rdtgroup_mutex);
4047 
4048 	/*
4049 	 * If resctrl is mounted, remove all the
4050 	 * per domain monitor data directories.
4051 	 */
4052 	if (resctrl_mounted && resctrl_arch_mon_capable())
4053 		rmdir_mondata_subdir_allrdtgrp(r, d);
4054 
4055 	if (is_mbm_enabled())
4056 		cancel_delayed_work(&d->mbm_over);
4057 	if (is_llc_occupancy_enabled() && has_busy_rmid(d)) {
4058 		/*
4059 		 * When a package is going down, forcefully
4060 		 * decrement rmid->ebusy. There is no way to know
4061 		 * that the L3 was flushed and hence may lead to
4062 		 * incorrect counts in rare scenarios, but leaving
4063 		 * the RMID as busy creates RMID leaks if the
4064 		 * package never comes back.
4065 		 */
4066 		__check_limbo(d, true);
4067 		cancel_delayed_work(&d->cqm_limbo);
4068 	}
4069 
4070 	domain_destroy_mon_state(d);
4071 
4072 	mutex_unlock(&rdtgroup_mutex);
4073 }
4074 
4075 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d)
4076 {
4077 	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
4078 	size_t tsize;
4079 
4080 	if (is_llc_occupancy_enabled()) {
4081 		d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL);
4082 		if (!d->rmid_busy_llc)
4083 			return -ENOMEM;
4084 	}
4085 	if (is_mbm_total_enabled()) {
4086 		tsize = sizeof(*d->mbm_total);
4087 		d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL);
4088 		if (!d->mbm_total) {
4089 			bitmap_free(d->rmid_busy_llc);
4090 			return -ENOMEM;
4091 		}
4092 	}
4093 	if (is_mbm_local_enabled()) {
4094 		tsize = sizeof(*d->mbm_local);
4095 		d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL);
4096 		if (!d->mbm_local) {
4097 			bitmap_free(d->rmid_busy_llc);
4098 			kfree(d->mbm_total);
4099 			return -ENOMEM;
4100 		}
4101 	}
4102 
4103 	return 0;
4104 }
4105 
4106 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4107 {
4108 	int err = 0;
4109 
4110 	mutex_lock(&rdtgroup_mutex);
4111 
4112 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) {
4113 		/* RDT_RESOURCE_MBA is never mon_capable */
4114 		err = mba_sc_domain_allocate(r, d);
4115 	}
4116 
4117 	mutex_unlock(&rdtgroup_mutex);
4118 
4119 	return err;
4120 }
4121 
4122 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4123 {
4124 	int err;
4125 
4126 	mutex_lock(&rdtgroup_mutex);
4127 
4128 	err = domain_setup_mon_state(r, d);
4129 	if (err)
4130 		goto out_unlock;
4131 
4132 	if (is_mbm_enabled()) {
4133 		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
4134 		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL,
4135 					   RESCTRL_PICK_ANY_CPU);
4136 	}
4137 
4138 	if (is_llc_occupancy_enabled())
4139 		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
4140 
4141 	/*
4142 	 * If the filesystem is not mounted then only the default resource group
4143 	 * exists. Creation of its directories is deferred until mount time
4144 	 * by rdt_get_tree() calling mkdir_mondata_all().
4145 	 * If resctrl is mounted, add per domain monitor data directories.
4146 	 */
4147 	if (resctrl_mounted && resctrl_arch_mon_capable())
4148 		mkdir_mondata_subdir_allrdtgrp(r, d);
4149 
4150 out_unlock:
4151 	mutex_unlock(&rdtgroup_mutex);
4152 
4153 	return err;
4154 }
4155 
4156 void resctrl_online_cpu(unsigned int cpu)
4157 {
4158 	mutex_lock(&rdtgroup_mutex);
4159 	/* The CPU is set in default rdtgroup after online. */
4160 	cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
4161 	mutex_unlock(&rdtgroup_mutex);
4162 }
4163 
4164 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
4165 {
4166 	struct rdtgroup *cr;
4167 
4168 	list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
4169 		if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask))
4170 			break;
4171 	}
4172 }
4173 
4174 void resctrl_offline_cpu(unsigned int cpu)
4175 {
4176 	struct rdt_resource *l3 = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
4177 	struct rdt_mon_domain *d;
4178 	struct rdtgroup *rdtgrp;
4179 
4180 	mutex_lock(&rdtgroup_mutex);
4181 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
4182 		if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
4183 			clear_childcpus(rdtgrp, cpu);
4184 			break;
4185 		}
4186 	}
4187 
4188 	if (!l3->mon_capable)
4189 		goto out_unlock;
4190 
4191 	d = get_mon_domain_from_cpu(cpu, l3);
4192 	if (d) {
4193 		if (is_mbm_enabled() && cpu == d->mbm_work_cpu) {
4194 			cancel_delayed_work(&d->mbm_over);
4195 			mbm_setup_overflow_handler(d, 0, cpu);
4196 		}
4197 		if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu &&
4198 		    has_busy_rmid(d)) {
4199 			cancel_delayed_work(&d->cqm_limbo);
4200 			cqm_setup_limbo_handler(d, 0, cpu);
4201 		}
4202 	}
4203 
4204 out_unlock:
4205 	mutex_unlock(&rdtgroup_mutex);
4206 }
4207 
4208 /*
4209  * rdtgroup_init - rdtgroup initialization
4210  *
4211  * Setup resctrl file system including set up root, create mount point,
4212  * register rdtgroup filesystem, and initialize files under root directory.
4213  *
4214  * Return: 0 on success or -errno
4215  */
4216 int __init rdtgroup_init(void)
4217 {
4218 	int ret = 0;
4219 
4220 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
4221 		     sizeof(last_cmd_status_buf));
4222 
4223 	rdtgroup_setup_default();
4224 
4225 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
4226 	if (ret)
4227 		return ret;
4228 
4229 	ret = register_filesystem(&rdt_fs_type);
4230 	if (ret)
4231 		goto cleanup_mountpoint;
4232 
4233 	/*
4234 	 * Adding the resctrl debugfs directory here may not be ideal since
4235 	 * it would let the resctrl debugfs directory appear on the debugfs
4236 	 * filesystem before the resctrl filesystem is mounted.
4237 	 * It may also be ok since that would enable debugging of RDT before
4238 	 * resctrl is mounted.
4239 	 * The reason why the debugfs directory is created here and not in
4240 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4241 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
4242 	 * (the lockdep class of inode->i_rwsem). Other filesystem
4243 	 * interactions (eg. SyS_getdents) have the lock ordering:
4244 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4245 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4246 	 * is taken, thus creating dependency:
4247 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4248 	 * issues considering the other two lock dependencies.
4249 	 * By creating the debugfs directory here we avoid a dependency
4250 	 * that may cause deadlock (even though file operations cannot
4251 	 * occur until the filesystem is mounted, but I do not know how to
4252 	 * tell lockdep that).
4253 	 */
4254 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
4255 
4256 	return 0;
4257 
4258 cleanup_mountpoint:
4259 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4260 
4261 	return ret;
4262 }
4263 
4264 void __exit rdtgroup_exit(void)
4265 {
4266 	debugfs_remove_recursive(debugfs_resctrl);
4267 	unregister_filesystem(&rdt_fs_type);
4268 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4269 }
4270