1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Alloction in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* Kernel fs node for "info" directory under root */ 43 static struct kernfs_node *kn_info; 44 45 /* Kernel fs node for "mon_groups" directory under root */ 46 static struct kernfs_node *kn_mongrp; 47 48 /* Kernel fs node for "mon_data" directory under root */ 49 static struct kernfs_node *kn_mondata; 50 51 static struct seq_buf last_cmd_status; 52 static char last_cmd_status_buf[512]; 53 54 struct dentry *debugfs_resctrl; 55 56 void rdt_last_cmd_clear(void) 57 { 58 lockdep_assert_held(&rdtgroup_mutex); 59 seq_buf_clear(&last_cmd_status); 60 } 61 62 void rdt_last_cmd_puts(const char *s) 63 { 64 lockdep_assert_held(&rdtgroup_mutex); 65 seq_buf_puts(&last_cmd_status, s); 66 } 67 68 void rdt_last_cmd_printf(const char *fmt, ...) 69 { 70 va_list ap; 71 72 va_start(ap, fmt); 73 lockdep_assert_held(&rdtgroup_mutex); 74 seq_buf_vprintf(&last_cmd_status, fmt, ap); 75 va_end(ap); 76 } 77 78 /* 79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 80 * we can keep a bitmap of free CLOSIDs in a single integer. 81 * 82 * Using a global CLOSID across all resources has some advantages and 83 * some drawbacks: 84 * + We can simply set "current->closid" to assign a task to a resource 85 * group. 86 * + Context switch code can avoid extra memory references deciding which 87 * CLOSID to load into the PQR_ASSOC MSR 88 * - We give up some options in configuring resource groups across multi-socket 89 * systems. 90 * - Our choices on how to configure each resource become progressively more 91 * limited as the number of resources grows. 92 */ 93 static int closid_free_map; 94 static int closid_free_map_len; 95 96 int closids_supported(void) 97 { 98 return closid_free_map_len; 99 } 100 101 static void closid_init(void) 102 { 103 struct rdt_resource *r; 104 int rdt_min_closid = 32; 105 106 /* Compute rdt_min_closid across all resources */ 107 for_each_alloc_enabled_rdt_resource(r) 108 rdt_min_closid = min(rdt_min_closid, r->num_closid); 109 110 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 111 112 /* CLOSID 0 is always reserved for the default group */ 113 closid_free_map &= ~1; 114 closid_free_map_len = rdt_min_closid; 115 } 116 117 static int closid_alloc(void) 118 { 119 u32 closid = ffs(closid_free_map); 120 121 if (closid == 0) 122 return -ENOSPC; 123 closid--; 124 closid_free_map &= ~(1 << closid); 125 126 return closid; 127 } 128 129 void closid_free(int closid) 130 { 131 closid_free_map |= 1 << closid; 132 } 133 134 /** 135 * closid_allocated - test if provided closid is in use 136 * @closid: closid to be tested 137 * 138 * Return: true if @closid is currently associated with a resource group, 139 * false if @closid is free 140 */ 141 static bool closid_allocated(unsigned int closid) 142 { 143 return (closid_free_map & (1 << closid)) == 0; 144 } 145 146 /** 147 * rdtgroup_mode_by_closid - Return mode of resource group with closid 148 * @closid: closid if the resource group 149 * 150 * Each resource group is associated with a @closid. Here the mode 151 * of a resource group can be queried by searching for it using its closid. 152 * 153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 154 */ 155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 156 { 157 struct rdtgroup *rdtgrp; 158 159 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 160 if (rdtgrp->closid == closid) 161 return rdtgrp->mode; 162 } 163 164 return RDT_NUM_MODES; 165 } 166 167 static const char * const rdt_mode_str[] = { 168 [RDT_MODE_SHAREABLE] = "shareable", 169 [RDT_MODE_EXCLUSIVE] = "exclusive", 170 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 171 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 172 }; 173 174 /** 175 * rdtgroup_mode_str - Return the string representation of mode 176 * @mode: the resource group mode as &enum rdtgroup_mode 177 * 178 * Return: string representation of valid mode, "unknown" otherwise 179 */ 180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 181 { 182 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 183 return "unknown"; 184 185 return rdt_mode_str[mode]; 186 } 187 188 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 190 { 191 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 192 .ia_uid = current_fsuid(), 193 .ia_gid = current_fsgid(), }; 194 195 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 196 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 197 return 0; 198 199 return kernfs_setattr(kn, &iattr); 200 } 201 202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 203 { 204 struct kernfs_node *kn; 205 int ret; 206 207 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 208 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 209 0, rft->kf_ops, rft, NULL, NULL); 210 if (IS_ERR(kn)) 211 return PTR_ERR(kn); 212 213 ret = rdtgroup_kn_set_ugid(kn); 214 if (ret) { 215 kernfs_remove(kn); 216 return ret; 217 } 218 219 return 0; 220 } 221 222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 223 { 224 struct kernfs_open_file *of = m->private; 225 struct rftype *rft = of->kn->priv; 226 227 if (rft->seq_show) 228 return rft->seq_show(of, m, arg); 229 return 0; 230 } 231 232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 233 size_t nbytes, loff_t off) 234 { 235 struct rftype *rft = of->kn->priv; 236 237 if (rft->write) 238 return rft->write(of, buf, nbytes, off); 239 240 return -EINVAL; 241 } 242 243 static const struct kernfs_ops rdtgroup_kf_single_ops = { 244 .atomic_write_len = PAGE_SIZE, 245 .write = rdtgroup_file_write, 246 .seq_show = rdtgroup_seqfile_show, 247 }; 248 249 static const struct kernfs_ops kf_mondata_ops = { 250 .atomic_write_len = PAGE_SIZE, 251 .seq_show = rdtgroup_mondata_show, 252 }; 253 254 static bool is_cpu_list(struct kernfs_open_file *of) 255 { 256 struct rftype *rft = of->kn->priv; 257 258 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 259 } 260 261 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 262 struct seq_file *s, void *v) 263 { 264 struct rdtgroup *rdtgrp; 265 struct cpumask *mask; 266 int ret = 0; 267 268 rdtgrp = rdtgroup_kn_lock_live(of->kn); 269 270 if (rdtgrp) { 271 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 272 if (!rdtgrp->plr->d) { 273 rdt_last_cmd_clear(); 274 rdt_last_cmd_puts("Cache domain offline\n"); 275 ret = -ENODEV; 276 } else { 277 mask = &rdtgrp->plr->d->cpu_mask; 278 seq_printf(s, is_cpu_list(of) ? 279 "%*pbl\n" : "%*pb\n", 280 cpumask_pr_args(mask)); 281 } 282 } else { 283 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 284 cpumask_pr_args(&rdtgrp->cpu_mask)); 285 } 286 } else { 287 ret = -ENOENT; 288 } 289 rdtgroup_kn_unlock(of->kn); 290 291 return ret; 292 } 293 294 /* 295 * This is safe against resctrl_sched_in() called from __switch_to() 296 * because __switch_to() is executed with interrupts disabled. A local call 297 * from update_closid_rmid() is proteced against __switch_to() because 298 * preemption is disabled. 299 */ 300 static void update_cpu_closid_rmid(void *info) 301 { 302 struct rdtgroup *r = info; 303 304 if (r) { 305 this_cpu_write(pqr_state.default_closid, r->closid); 306 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 307 } 308 309 /* 310 * We cannot unconditionally write the MSR because the current 311 * executing task might have its own closid selected. Just reuse 312 * the context switch code. 313 */ 314 resctrl_sched_in(); 315 } 316 317 /* 318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 319 * 320 * Per task closids/rmids must have been set up before calling this function. 321 */ 322 static void 323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 324 { 325 int cpu = get_cpu(); 326 327 if (cpumask_test_cpu(cpu, cpu_mask)) 328 update_cpu_closid_rmid(r); 329 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1); 330 put_cpu(); 331 } 332 333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 334 cpumask_var_t tmpmask) 335 { 336 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 337 struct list_head *head; 338 339 /* Check whether cpus belong to parent ctrl group */ 340 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 341 if (cpumask_weight(tmpmask)) { 342 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 343 return -EINVAL; 344 } 345 346 /* Check whether cpus are dropped from this group */ 347 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 348 if (cpumask_weight(tmpmask)) { 349 /* Give any dropped cpus to parent rdtgroup */ 350 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 351 update_closid_rmid(tmpmask, prgrp); 352 } 353 354 /* 355 * If we added cpus, remove them from previous group that owned them 356 * and update per-cpu rmid 357 */ 358 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 359 if (cpumask_weight(tmpmask)) { 360 head = &prgrp->mon.crdtgrp_list; 361 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 362 if (crgrp == rdtgrp) 363 continue; 364 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 365 tmpmask); 366 } 367 update_closid_rmid(tmpmask, rdtgrp); 368 } 369 370 /* Done pushing/pulling - update this group with new mask */ 371 cpumask_copy(&rdtgrp->cpu_mask, newmask); 372 373 return 0; 374 } 375 376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 377 { 378 struct rdtgroup *crgrp; 379 380 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 381 /* update the child mon group masks as well*/ 382 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 383 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 384 } 385 386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 387 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 388 { 389 struct rdtgroup *r, *crgrp; 390 struct list_head *head; 391 392 /* Check whether cpus are dropped from this group */ 393 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 394 if (cpumask_weight(tmpmask)) { 395 /* Can't drop from default group */ 396 if (rdtgrp == &rdtgroup_default) { 397 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 398 return -EINVAL; 399 } 400 401 /* Give any dropped cpus to rdtgroup_default */ 402 cpumask_or(&rdtgroup_default.cpu_mask, 403 &rdtgroup_default.cpu_mask, tmpmask); 404 update_closid_rmid(tmpmask, &rdtgroup_default); 405 } 406 407 /* 408 * If we added cpus, remove them from previous group and 409 * the prev group's child groups that owned them 410 * and update per-cpu closid/rmid. 411 */ 412 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 413 if (cpumask_weight(tmpmask)) { 414 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 415 if (r == rdtgrp) 416 continue; 417 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 418 if (cpumask_weight(tmpmask1)) 419 cpumask_rdtgrp_clear(r, tmpmask1); 420 } 421 update_closid_rmid(tmpmask, rdtgrp); 422 } 423 424 /* Done pushing/pulling - update this group with new mask */ 425 cpumask_copy(&rdtgrp->cpu_mask, newmask); 426 427 /* 428 * Clear child mon group masks since there is a new parent mask 429 * now and update the rmid for the cpus the child lost. 430 */ 431 head = &rdtgrp->mon.crdtgrp_list; 432 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 433 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 434 update_closid_rmid(tmpmask, rdtgrp); 435 cpumask_clear(&crgrp->cpu_mask); 436 } 437 438 return 0; 439 } 440 441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 442 char *buf, size_t nbytes, loff_t off) 443 { 444 cpumask_var_t tmpmask, newmask, tmpmask1; 445 struct rdtgroup *rdtgrp; 446 int ret; 447 448 if (!buf) 449 return -EINVAL; 450 451 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 452 return -ENOMEM; 453 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 454 free_cpumask_var(tmpmask); 455 return -ENOMEM; 456 } 457 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 458 free_cpumask_var(tmpmask); 459 free_cpumask_var(newmask); 460 return -ENOMEM; 461 } 462 463 rdtgrp = rdtgroup_kn_lock_live(of->kn); 464 if (!rdtgrp) { 465 ret = -ENOENT; 466 goto unlock; 467 } 468 469 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 470 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 471 ret = -EINVAL; 472 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 473 goto unlock; 474 } 475 476 if (is_cpu_list(of)) 477 ret = cpulist_parse(buf, newmask); 478 else 479 ret = cpumask_parse(buf, newmask); 480 481 if (ret) { 482 rdt_last_cmd_puts("Bad CPU list/mask\n"); 483 goto unlock; 484 } 485 486 /* check that user didn't specify any offline cpus */ 487 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 488 if (cpumask_weight(tmpmask)) { 489 ret = -EINVAL; 490 rdt_last_cmd_puts("Can only assign online CPUs\n"); 491 goto unlock; 492 } 493 494 if (rdtgrp->type == RDTCTRL_GROUP) 495 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 496 else if (rdtgrp->type == RDTMON_GROUP) 497 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 498 else 499 ret = -EINVAL; 500 501 unlock: 502 rdtgroup_kn_unlock(of->kn); 503 free_cpumask_var(tmpmask); 504 free_cpumask_var(newmask); 505 free_cpumask_var(tmpmask1); 506 507 return ret ?: nbytes; 508 } 509 510 /** 511 * rdtgroup_remove - the helper to remove resource group safely 512 * @rdtgrp: resource group to remove 513 * 514 * On resource group creation via a mkdir, an extra kernfs_node reference is 515 * taken to ensure that the rdtgroup structure remains accessible for the 516 * rdtgroup_kn_unlock() calls where it is removed. 517 * 518 * Drop the extra reference here, then free the rdtgroup structure. 519 * 520 * Return: void 521 */ 522 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 523 { 524 kernfs_put(rdtgrp->kn); 525 kfree(rdtgrp); 526 } 527 528 static void _update_task_closid_rmid(void *task) 529 { 530 /* 531 * If the task is still current on this CPU, update PQR_ASSOC MSR. 532 * Otherwise, the MSR is updated when the task is scheduled in. 533 */ 534 if (task == current) 535 resctrl_sched_in(); 536 } 537 538 static void update_task_closid_rmid(struct task_struct *t) 539 { 540 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 541 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 542 else 543 _update_task_closid_rmid(t); 544 } 545 546 static int __rdtgroup_move_task(struct task_struct *tsk, 547 struct rdtgroup *rdtgrp) 548 { 549 /* If the task is already in rdtgrp, no need to move the task. */ 550 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid && 551 tsk->rmid == rdtgrp->mon.rmid) || 552 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid && 553 tsk->closid == rdtgrp->mon.parent->closid)) 554 return 0; 555 556 /* 557 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 558 * updated by them. 559 * 560 * For ctrl_mon groups, move both closid and rmid. 561 * For monitor groups, can move the tasks only from 562 * their parent CTRL group. 563 */ 564 565 if (rdtgrp->type == RDTCTRL_GROUP) { 566 tsk->closid = rdtgrp->closid; 567 tsk->rmid = rdtgrp->mon.rmid; 568 } else if (rdtgrp->type == RDTMON_GROUP) { 569 if (rdtgrp->mon.parent->closid == tsk->closid) { 570 tsk->rmid = rdtgrp->mon.rmid; 571 } else { 572 rdt_last_cmd_puts("Can't move task to different control group\n"); 573 return -EINVAL; 574 } 575 } 576 577 /* 578 * Ensure the task's closid and rmid are written before determining if 579 * the task is current that will decide if it will be interrupted. 580 */ 581 barrier(); 582 583 /* 584 * By now, the task's closid and rmid are set. If the task is current 585 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 586 * group go into effect. If the task is not current, the MSR will be 587 * updated when the task is scheduled in. 588 */ 589 update_task_closid_rmid(tsk); 590 591 return 0; 592 } 593 594 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 595 { 596 return (rdt_alloc_capable && 597 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 598 } 599 600 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 601 { 602 return (rdt_mon_capable && 603 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 604 } 605 606 /** 607 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 608 * @r: Resource group 609 * 610 * Return: 1 if tasks have been assigned to @r, 0 otherwise 611 */ 612 int rdtgroup_tasks_assigned(struct rdtgroup *r) 613 { 614 struct task_struct *p, *t; 615 int ret = 0; 616 617 lockdep_assert_held(&rdtgroup_mutex); 618 619 rcu_read_lock(); 620 for_each_process_thread(p, t) { 621 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 622 ret = 1; 623 break; 624 } 625 } 626 rcu_read_unlock(); 627 628 return ret; 629 } 630 631 static int rdtgroup_task_write_permission(struct task_struct *task, 632 struct kernfs_open_file *of) 633 { 634 const struct cred *tcred = get_task_cred(task); 635 const struct cred *cred = current_cred(); 636 int ret = 0; 637 638 /* 639 * Even if we're attaching all tasks in the thread group, we only 640 * need to check permissions on one of them. 641 */ 642 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 643 !uid_eq(cred->euid, tcred->uid) && 644 !uid_eq(cred->euid, tcred->suid)) { 645 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 646 ret = -EPERM; 647 } 648 649 put_cred(tcred); 650 return ret; 651 } 652 653 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 654 struct kernfs_open_file *of) 655 { 656 struct task_struct *tsk; 657 int ret; 658 659 rcu_read_lock(); 660 if (pid) { 661 tsk = find_task_by_vpid(pid); 662 if (!tsk) { 663 rcu_read_unlock(); 664 rdt_last_cmd_printf("No task %d\n", pid); 665 return -ESRCH; 666 } 667 } else { 668 tsk = current; 669 } 670 671 get_task_struct(tsk); 672 rcu_read_unlock(); 673 674 ret = rdtgroup_task_write_permission(tsk, of); 675 if (!ret) 676 ret = __rdtgroup_move_task(tsk, rdtgrp); 677 678 put_task_struct(tsk); 679 return ret; 680 } 681 682 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 683 char *buf, size_t nbytes, loff_t off) 684 { 685 struct rdtgroup *rdtgrp; 686 int ret = 0; 687 pid_t pid; 688 689 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 690 return -EINVAL; 691 rdtgrp = rdtgroup_kn_lock_live(of->kn); 692 if (!rdtgrp) { 693 rdtgroup_kn_unlock(of->kn); 694 return -ENOENT; 695 } 696 rdt_last_cmd_clear(); 697 698 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 699 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 700 ret = -EINVAL; 701 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 702 goto unlock; 703 } 704 705 ret = rdtgroup_move_task(pid, rdtgrp, of); 706 707 unlock: 708 rdtgroup_kn_unlock(of->kn); 709 710 return ret ?: nbytes; 711 } 712 713 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 714 { 715 struct task_struct *p, *t; 716 717 rcu_read_lock(); 718 for_each_process_thread(p, t) { 719 if (is_closid_match(t, r) || is_rmid_match(t, r)) 720 seq_printf(s, "%d\n", t->pid); 721 } 722 rcu_read_unlock(); 723 } 724 725 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 726 struct seq_file *s, void *v) 727 { 728 struct rdtgroup *rdtgrp; 729 int ret = 0; 730 731 rdtgrp = rdtgroup_kn_lock_live(of->kn); 732 if (rdtgrp) 733 show_rdt_tasks(rdtgrp, s); 734 else 735 ret = -ENOENT; 736 rdtgroup_kn_unlock(of->kn); 737 738 return ret; 739 } 740 741 #ifdef CONFIG_PROC_CPU_RESCTRL 742 743 /* 744 * A task can only be part of one resctrl control group and of one monitor 745 * group which is associated to that control group. 746 * 747 * 1) res: 748 * mon: 749 * 750 * resctrl is not available. 751 * 752 * 2) res:/ 753 * mon: 754 * 755 * Task is part of the root resctrl control group, and it is not associated 756 * to any monitor group. 757 * 758 * 3) res:/ 759 * mon:mon0 760 * 761 * Task is part of the root resctrl control group and monitor group mon0. 762 * 763 * 4) res:group0 764 * mon: 765 * 766 * Task is part of resctrl control group group0, and it is not associated 767 * to any monitor group. 768 * 769 * 5) res:group0 770 * mon:mon1 771 * 772 * Task is part of resctrl control group group0 and monitor group mon1. 773 */ 774 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 775 struct pid *pid, struct task_struct *tsk) 776 { 777 struct rdtgroup *rdtg; 778 int ret = 0; 779 780 mutex_lock(&rdtgroup_mutex); 781 782 /* Return empty if resctrl has not been mounted. */ 783 if (!static_branch_unlikely(&rdt_enable_key)) { 784 seq_puts(s, "res:\nmon:\n"); 785 goto unlock; 786 } 787 788 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 789 struct rdtgroup *crg; 790 791 /* 792 * Task information is only relevant for shareable 793 * and exclusive groups. 794 */ 795 if (rdtg->mode != RDT_MODE_SHAREABLE && 796 rdtg->mode != RDT_MODE_EXCLUSIVE) 797 continue; 798 799 if (rdtg->closid != tsk->closid) 800 continue; 801 802 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 803 rdtg->kn->name); 804 seq_puts(s, "mon:"); 805 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 806 mon.crdtgrp_list) { 807 if (tsk->rmid != crg->mon.rmid) 808 continue; 809 seq_printf(s, "%s", crg->kn->name); 810 break; 811 } 812 seq_putc(s, '\n'); 813 goto unlock; 814 } 815 /* 816 * The above search should succeed. Otherwise return 817 * with an error. 818 */ 819 ret = -ENOENT; 820 unlock: 821 mutex_unlock(&rdtgroup_mutex); 822 823 return ret; 824 } 825 #endif 826 827 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 828 struct seq_file *seq, void *v) 829 { 830 int len; 831 832 mutex_lock(&rdtgroup_mutex); 833 len = seq_buf_used(&last_cmd_status); 834 if (len) 835 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 836 else 837 seq_puts(seq, "ok\n"); 838 mutex_unlock(&rdtgroup_mutex); 839 return 0; 840 } 841 842 static int rdt_num_closids_show(struct kernfs_open_file *of, 843 struct seq_file *seq, void *v) 844 { 845 struct rdt_resource *r = of->kn->parent->priv; 846 847 seq_printf(seq, "%d\n", r->num_closid); 848 return 0; 849 } 850 851 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 852 struct seq_file *seq, void *v) 853 { 854 struct rdt_resource *r = of->kn->parent->priv; 855 856 seq_printf(seq, "%x\n", r->default_ctrl); 857 return 0; 858 } 859 860 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 861 struct seq_file *seq, void *v) 862 { 863 struct rdt_resource *r = of->kn->parent->priv; 864 865 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 866 return 0; 867 } 868 869 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 870 struct seq_file *seq, void *v) 871 { 872 struct rdt_resource *r = of->kn->parent->priv; 873 874 seq_printf(seq, "%x\n", r->cache.shareable_bits); 875 return 0; 876 } 877 878 /** 879 * rdt_bit_usage_show - Display current usage of resources 880 * 881 * A domain is a shared resource that can now be allocated differently. Here 882 * we display the current regions of the domain as an annotated bitmask. 883 * For each domain of this resource its allocation bitmask 884 * is annotated as below to indicate the current usage of the corresponding bit: 885 * 0 - currently unused 886 * X - currently available for sharing and used by software and hardware 887 * H - currently used by hardware only but available for software use 888 * S - currently used and shareable by software only 889 * E - currently used exclusively by one resource group 890 * P - currently pseudo-locked by one resource group 891 */ 892 static int rdt_bit_usage_show(struct kernfs_open_file *of, 893 struct seq_file *seq, void *v) 894 { 895 struct rdt_resource *r = of->kn->parent->priv; 896 /* 897 * Use unsigned long even though only 32 bits are used to ensure 898 * test_bit() is used safely. 899 */ 900 unsigned long sw_shareable = 0, hw_shareable = 0; 901 unsigned long exclusive = 0, pseudo_locked = 0; 902 struct rdt_domain *dom; 903 int i, hwb, swb, excl, psl; 904 enum rdtgrp_mode mode; 905 bool sep = false; 906 u32 *ctrl; 907 908 mutex_lock(&rdtgroup_mutex); 909 hw_shareable = r->cache.shareable_bits; 910 list_for_each_entry(dom, &r->domains, list) { 911 if (sep) 912 seq_putc(seq, ';'); 913 ctrl = dom->ctrl_val; 914 sw_shareable = 0; 915 exclusive = 0; 916 seq_printf(seq, "%d=", dom->id); 917 for (i = 0; i < closids_supported(); i++, ctrl++) { 918 if (!closid_allocated(i)) 919 continue; 920 mode = rdtgroup_mode_by_closid(i); 921 switch (mode) { 922 case RDT_MODE_SHAREABLE: 923 sw_shareable |= *ctrl; 924 break; 925 case RDT_MODE_EXCLUSIVE: 926 exclusive |= *ctrl; 927 break; 928 case RDT_MODE_PSEUDO_LOCKSETUP: 929 /* 930 * RDT_MODE_PSEUDO_LOCKSETUP is possible 931 * here but not included since the CBM 932 * associated with this CLOSID in this mode 933 * is not initialized and no task or cpu can be 934 * assigned this CLOSID. 935 */ 936 break; 937 case RDT_MODE_PSEUDO_LOCKED: 938 case RDT_NUM_MODES: 939 WARN(1, 940 "invalid mode for closid %d\n", i); 941 break; 942 } 943 } 944 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 945 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 946 hwb = test_bit(i, &hw_shareable); 947 swb = test_bit(i, &sw_shareable); 948 excl = test_bit(i, &exclusive); 949 psl = test_bit(i, &pseudo_locked); 950 if (hwb && swb) 951 seq_putc(seq, 'X'); 952 else if (hwb && !swb) 953 seq_putc(seq, 'H'); 954 else if (!hwb && swb) 955 seq_putc(seq, 'S'); 956 else if (excl) 957 seq_putc(seq, 'E'); 958 else if (psl) 959 seq_putc(seq, 'P'); 960 else /* Unused bits remain */ 961 seq_putc(seq, '0'); 962 } 963 sep = true; 964 } 965 seq_putc(seq, '\n'); 966 mutex_unlock(&rdtgroup_mutex); 967 return 0; 968 } 969 970 static int rdt_min_bw_show(struct kernfs_open_file *of, 971 struct seq_file *seq, void *v) 972 { 973 struct rdt_resource *r = of->kn->parent->priv; 974 975 seq_printf(seq, "%u\n", r->membw.min_bw); 976 return 0; 977 } 978 979 static int rdt_num_rmids_show(struct kernfs_open_file *of, 980 struct seq_file *seq, void *v) 981 { 982 struct rdt_resource *r = of->kn->parent->priv; 983 984 seq_printf(seq, "%d\n", r->num_rmid); 985 986 return 0; 987 } 988 989 static int rdt_mon_features_show(struct kernfs_open_file *of, 990 struct seq_file *seq, void *v) 991 { 992 struct rdt_resource *r = of->kn->parent->priv; 993 struct mon_evt *mevt; 994 995 list_for_each_entry(mevt, &r->evt_list, list) 996 seq_printf(seq, "%s\n", mevt->name); 997 998 return 0; 999 } 1000 1001 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1002 struct seq_file *seq, void *v) 1003 { 1004 struct rdt_resource *r = of->kn->parent->priv; 1005 1006 seq_printf(seq, "%u\n", r->membw.bw_gran); 1007 return 0; 1008 } 1009 1010 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1011 struct seq_file *seq, void *v) 1012 { 1013 struct rdt_resource *r = of->kn->parent->priv; 1014 1015 seq_printf(seq, "%u\n", r->membw.delay_linear); 1016 return 0; 1017 } 1018 1019 static int max_threshold_occ_show(struct kernfs_open_file *of, 1020 struct seq_file *seq, void *v) 1021 { 1022 struct rdt_resource *r = of->kn->parent->priv; 1023 1024 seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale); 1025 1026 return 0; 1027 } 1028 1029 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1030 struct seq_file *seq, void *v) 1031 { 1032 struct rdt_resource *r = of->kn->parent->priv; 1033 1034 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD) 1035 seq_puts(seq, "per-thread\n"); 1036 else 1037 seq_puts(seq, "max\n"); 1038 1039 return 0; 1040 } 1041 1042 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1043 char *buf, size_t nbytes, loff_t off) 1044 { 1045 struct rdt_resource *r = of->kn->parent->priv; 1046 unsigned int bytes; 1047 int ret; 1048 1049 ret = kstrtouint(buf, 0, &bytes); 1050 if (ret) 1051 return ret; 1052 1053 if (bytes > (boot_cpu_data.x86_cache_size * 1024)) 1054 return -EINVAL; 1055 1056 resctrl_cqm_threshold = bytes / r->mon_scale; 1057 1058 return nbytes; 1059 } 1060 1061 /* 1062 * rdtgroup_mode_show - Display mode of this resource group 1063 */ 1064 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1065 struct seq_file *s, void *v) 1066 { 1067 struct rdtgroup *rdtgrp; 1068 1069 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1070 if (!rdtgrp) { 1071 rdtgroup_kn_unlock(of->kn); 1072 return -ENOENT; 1073 } 1074 1075 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1076 1077 rdtgroup_kn_unlock(of->kn); 1078 return 0; 1079 } 1080 1081 /** 1082 * rdt_cdp_peer_get - Retrieve CDP peer if it exists 1083 * @r: RDT resource to which RDT domain @d belongs 1084 * @d: Cache instance for which a CDP peer is requested 1085 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer) 1086 * Used to return the result. 1087 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer) 1088 * Used to return the result. 1089 * 1090 * RDT resources are managed independently and by extension the RDT domains 1091 * (RDT resource instances) are managed independently also. The Code and 1092 * Data Prioritization (CDP) RDT resources, while managed independently, 1093 * could refer to the same underlying hardware. For example, 1094 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache. 1095 * 1096 * When provided with an RDT resource @r and an instance of that RDT 1097 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT 1098 * resource and the exact instance that shares the same hardware. 1099 * 1100 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists. 1101 * If a CDP peer was found, @r_cdp will point to the peer RDT resource 1102 * and @d_cdp will point to the peer RDT domain. 1103 */ 1104 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d, 1105 struct rdt_resource **r_cdp, 1106 struct rdt_domain **d_cdp) 1107 { 1108 struct rdt_resource *_r_cdp = NULL; 1109 struct rdt_domain *_d_cdp = NULL; 1110 int ret = 0; 1111 1112 switch (r->rid) { 1113 case RDT_RESOURCE_L3DATA: 1114 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE]; 1115 break; 1116 case RDT_RESOURCE_L3CODE: 1117 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA]; 1118 break; 1119 case RDT_RESOURCE_L2DATA: 1120 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE]; 1121 break; 1122 case RDT_RESOURCE_L2CODE: 1123 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA]; 1124 break; 1125 default: 1126 ret = -ENOENT; 1127 goto out; 1128 } 1129 1130 /* 1131 * When a new CPU comes online and CDP is enabled then the new 1132 * RDT domains (if any) associated with both CDP RDT resources 1133 * are added in the same CPU online routine while the 1134 * rdtgroup_mutex is held. It should thus not happen for one 1135 * RDT domain to exist and be associated with its RDT CDP 1136 * resource but there is no RDT domain associated with the 1137 * peer RDT CDP resource. Hence the WARN. 1138 */ 1139 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL); 1140 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) { 1141 _r_cdp = NULL; 1142 _d_cdp = NULL; 1143 ret = -EINVAL; 1144 } 1145 1146 out: 1147 *r_cdp = _r_cdp; 1148 *d_cdp = _d_cdp; 1149 1150 return ret; 1151 } 1152 1153 /** 1154 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1155 * @r: Resource to which domain instance @d belongs. 1156 * @d: The domain instance for which @closid is being tested. 1157 * @cbm: Capacity bitmask being tested. 1158 * @closid: Intended closid for @cbm. 1159 * @exclusive: Only check if overlaps with exclusive resource groups 1160 * 1161 * Checks if provided @cbm intended to be used for @closid on domain 1162 * @d overlaps with any other closids or other hardware usage associated 1163 * with this domain. If @exclusive is true then only overlaps with 1164 * resource groups in exclusive mode will be considered. If @exclusive 1165 * is false then overlaps with any resource group or hardware entities 1166 * will be considered. 1167 * 1168 * @cbm is unsigned long, even if only 32 bits are used, to make the 1169 * bitmap functions work correctly. 1170 * 1171 * Return: false if CBM does not overlap, true if it does. 1172 */ 1173 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1174 unsigned long cbm, int closid, bool exclusive) 1175 { 1176 enum rdtgrp_mode mode; 1177 unsigned long ctrl_b; 1178 u32 *ctrl; 1179 int i; 1180 1181 /* Check for any overlap with regions used by hardware directly */ 1182 if (!exclusive) { 1183 ctrl_b = r->cache.shareable_bits; 1184 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1185 return true; 1186 } 1187 1188 /* Check for overlap with other resource groups */ 1189 ctrl = d->ctrl_val; 1190 for (i = 0; i < closids_supported(); i++, ctrl++) { 1191 ctrl_b = *ctrl; 1192 mode = rdtgroup_mode_by_closid(i); 1193 if (closid_allocated(i) && i != closid && 1194 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1195 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1196 if (exclusive) { 1197 if (mode == RDT_MODE_EXCLUSIVE) 1198 return true; 1199 continue; 1200 } 1201 return true; 1202 } 1203 } 1204 } 1205 1206 return false; 1207 } 1208 1209 /** 1210 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1211 * @r: Resource to which domain instance @d belongs. 1212 * @d: The domain instance for which @closid is being tested. 1213 * @cbm: Capacity bitmask being tested. 1214 * @closid: Intended closid for @cbm. 1215 * @exclusive: Only check if overlaps with exclusive resource groups 1216 * 1217 * Resources that can be allocated using a CBM can use the CBM to control 1218 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1219 * for overlap. Overlap test is not limited to the specific resource for 1220 * which the CBM is intended though - when dealing with CDP resources that 1221 * share the underlying hardware the overlap check should be performed on 1222 * the CDP resource sharing the hardware also. 1223 * 1224 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1225 * overlap test. 1226 * 1227 * Return: true if CBM overlap detected, false if there is no overlap 1228 */ 1229 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1230 unsigned long cbm, int closid, bool exclusive) 1231 { 1232 struct rdt_resource *r_cdp; 1233 struct rdt_domain *d_cdp; 1234 1235 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive)) 1236 return true; 1237 1238 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0) 1239 return false; 1240 1241 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive); 1242 } 1243 1244 /** 1245 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1246 * 1247 * An exclusive resource group implies that there should be no sharing of 1248 * its allocated resources. At the time this group is considered to be 1249 * exclusive this test can determine if its current schemata supports this 1250 * setting by testing for overlap with all other resource groups. 1251 * 1252 * Return: true if resource group can be exclusive, false if there is overlap 1253 * with allocations of other resource groups and thus this resource group 1254 * cannot be exclusive. 1255 */ 1256 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1257 { 1258 int closid = rdtgrp->closid; 1259 struct rdt_resource *r; 1260 bool has_cache = false; 1261 struct rdt_domain *d; 1262 1263 for_each_alloc_enabled_rdt_resource(r) { 1264 if (r->rid == RDT_RESOURCE_MBA) 1265 continue; 1266 has_cache = true; 1267 list_for_each_entry(d, &r->domains, list) { 1268 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid], 1269 rdtgrp->closid, false)) { 1270 rdt_last_cmd_puts("Schemata overlaps\n"); 1271 return false; 1272 } 1273 } 1274 } 1275 1276 if (!has_cache) { 1277 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1278 return false; 1279 } 1280 1281 return true; 1282 } 1283 1284 /** 1285 * rdtgroup_mode_write - Modify the resource group's mode 1286 * 1287 */ 1288 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1289 char *buf, size_t nbytes, loff_t off) 1290 { 1291 struct rdtgroup *rdtgrp; 1292 enum rdtgrp_mode mode; 1293 int ret = 0; 1294 1295 /* Valid input requires a trailing newline */ 1296 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1297 return -EINVAL; 1298 buf[nbytes - 1] = '\0'; 1299 1300 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1301 if (!rdtgrp) { 1302 rdtgroup_kn_unlock(of->kn); 1303 return -ENOENT; 1304 } 1305 1306 rdt_last_cmd_clear(); 1307 1308 mode = rdtgrp->mode; 1309 1310 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1311 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1312 (!strcmp(buf, "pseudo-locksetup") && 1313 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1314 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1315 goto out; 1316 1317 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1318 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1319 ret = -EINVAL; 1320 goto out; 1321 } 1322 1323 if (!strcmp(buf, "shareable")) { 1324 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1325 ret = rdtgroup_locksetup_exit(rdtgrp); 1326 if (ret) 1327 goto out; 1328 } 1329 rdtgrp->mode = RDT_MODE_SHAREABLE; 1330 } else if (!strcmp(buf, "exclusive")) { 1331 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1332 ret = -EINVAL; 1333 goto out; 1334 } 1335 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1336 ret = rdtgroup_locksetup_exit(rdtgrp); 1337 if (ret) 1338 goto out; 1339 } 1340 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1341 } else if (!strcmp(buf, "pseudo-locksetup")) { 1342 ret = rdtgroup_locksetup_enter(rdtgrp); 1343 if (ret) 1344 goto out; 1345 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1346 } else { 1347 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1348 ret = -EINVAL; 1349 } 1350 1351 out: 1352 rdtgroup_kn_unlock(of->kn); 1353 return ret ?: nbytes; 1354 } 1355 1356 /** 1357 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1358 * @r: RDT resource to which @d belongs. 1359 * @d: RDT domain instance. 1360 * @cbm: bitmask for which the size should be computed. 1361 * 1362 * The bitmask provided associated with the RDT domain instance @d will be 1363 * translated into how many bytes it represents. The size in bytes is 1364 * computed by first dividing the total cache size by the CBM length to 1365 * determine how many bytes each bit in the bitmask represents. The result 1366 * is multiplied with the number of bits set in the bitmask. 1367 * 1368 * @cbm is unsigned long, even if only 32 bits are used to make the 1369 * bitmap functions work correctly. 1370 */ 1371 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1372 struct rdt_domain *d, unsigned long cbm) 1373 { 1374 struct cpu_cacheinfo *ci; 1375 unsigned int size = 0; 1376 int num_b, i; 1377 1378 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1379 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1380 for (i = 0; i < ci->num_leaves; i++) { 1381 if (ci->info_list[i].level == r->cache_level) { 1382 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1383 break; 1384 } 1385 } 1386 1387 return size; 1388 } 1389 1390 /** 1391 * rdtgroup_size_show - Display size in bytes of allocated regions 1392 * 1393 * The "size" file mirrors the layout of the "schemata" file, printing the 1394 * size in bytes of each region instead of the capacity bitmask. 1395 * 1396 */ 1397 static int rdtgroup_size_show(struct kernfs_open_file *of, 1398 struct seq_file *s, void *v) 1399 { 1400 struct rdtgroup *rdtgrp; 1401 struct rdt_resource *r; 1402 struct rdt_domain *d; 1403 unsigned int size; 1404 int ret = 0; 1405 bool sep; 1406 u32 ctrl; 1407 1408 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1409 if (!rdtgrp) { 1410 rdtgroup_kn_unlock(of->kn); 1411 return -ENOENT; 1412 } 1413 1414 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1415 if (!rdtgrp->plr->d) { 1416 rdt_last_cmd_clear(); 1417 rdt_last_cmd_puts("Cache domain offline\n"); 1418 ret = -ENODEV; 1419 } else { 1420 seq_printf(s, "%*s:", max_name_width, 1421 rdtgrp->plr->r->name); 1422 size = rdtgroup_cbm_to_size(rdtgrp->plr->r, 1423 rdtgrp->plr->d, 1424 rdtgrp->plr->cbm); 1425 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1426 } 1427 goto out; 1428 } 1429 1430 for_each_alloc_enabled_rdt_resource(r) { 1431 sep = false; 1432 seq_printf(s, "%*s:", max_name_width, r->name); 1433 list_for_each_entry(d, &r->domains, list) { 1434 if (sep) 1435 seq_putc(s, ';'); 1436 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1437 size = 0; 1438 } else { 1439 ctrl = (!is_mba_sc(r) ? 1440 d->ctrl_val[rdtgrp->closid] : 1441 d->mbps_val[rdtgrp->closid]); 1442 if (r->rid == RDT_RESOURCE_MBA) 1443 size = ctrl; 1444 else 1445 size = rdtgroup_cbm_to_size(r, d, ctrl); 1446 } 1447 seq_printf(s, "%d=%u", d->id, size); 1448 sep = true; 1449 } 1450 seq_putc(s, '\n'); 1451 } 1452 1453 out: 1454 rdtgroup_kn_unlock(of->kn); 1455 1456 return ret; 1457 } 1458 1459 /* rdtgroup information files for one cache resource. */ 1460 static struct rftype res_common_files[] = { 1461 { 1462 .name = "last_cmd_status", 1463 .mode = 0444, 1464 .kf_ops = &rdtgroup_kf_single_ops, 1465 .seq_show = rdt_last_cmd_status_show, 1466 .fflags = RF_TOP_INFO, 1467 }, 1468 { 1469 .name = "num_closids", 1470 .mode = 0444, 1471 .kf_ops = &rdtgroup_kf_single_ops, 1472 .seq_show = rdt_num_closids_show, 1473 .fflags = RF_CTRL_INFO, 1474 }, 1475 { 1476 .name = "mon_features", 1477 .mode = 0444, 1478 .kf_ops = &rdtgroup_kf_single_ops, 1479 .seq_show = rdt_mon_features_show, 1480 .fflags = RF_MON_INFO, 1481 }, 1482 { 1483 .name = "num_rmids", 1484 .mode = 0444, 1485 .kf_ops = &rdtgroup_kf_single_ops, 1486 .seq_show = rdt_num_rmids_show, 1487 .fflags = RF_MON_INFO, 1488 }, 1489 { 1490 .name = "cbm_mask", 1491 .mode = 0444, 1492 .kf_ops = &rdtgroup_kf_single_ops, 1493 .seq_show = rdt_default_ctrl_show, 1494 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1495 }, 1496 { 1497 .name = "min_cbm_bits", 1498 .mode = 0444, 1499 .kf_ops = &rdtgroup_kf_single_ops, 1500 .seq_show = rdt_min_cbm_bits_show, 1501 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1502 }, 1503 { 1504 .name = "shareable_bits", 1505 .mode = 0444, 1506 .kf_ops = &rdtgroup_kf_single_ops, 1507 .seq_show = rdt_shareable_bits_show, 1508 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1509 }, 1510 { 1511 .name = "bit_usage", 1512 .mode = 0444, 1513 .kf_ops = &rdtgroup_kf_single_ops, 1514 .seq_show = rdt_bit_usage_show, 1515 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1516 }, 1517 { 1518 .name = "min_bandwidth", 1519 .mode = 0444, 1520 .kf_ops = &rdtgroup_kf_single_ops, 1521 .seq_show = rdt_min_bw_show, 1522 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1523 }, 1524 { 1525 .name = "bandwidth_gran", 1526 .mode = 0444, 1527 .kf_ops = &rdtgroup_kf_single_ops, 1528 .seq_show = rdt_bw_gran_show, 1529 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1530 }, 1531 { 1532 .name = "delay_linear", 1533 .mode = 0444, 1534 .kf_ops = &rdtgroup_kf_single_ops, 1535 .seq_show = rdt_delay_linear_show, 1536 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1537 }, 1538 /* 1539 * Platform specific which (if any) capabilities are provided by 1540 * thread_throttle_mode. Defer "fflags" initialization to platform 1541 * discovery. 1542 */ 1543 { 1544 .name = "thread_throttle_mode", 1545 .mode = 0444, 1546 .kf_ops = &rdtgroup_kf_single_ops, 1547 .seq_show = rdt_thread_throttle_mode_show, 1548 }, 1549 { 1550 .name = "max_threshold_occupancy", 1551 .mode = 0644, 1552 .kf_ops = &rdtgroup_kf_single_ops, 1553 .write = max_threshold_occ_write, 1554 .seq_show = max_threshold_occ_show, 1555 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1556 }, 1557 { 1558 .name = "cpus", 1559 .mode = 0644, 1560 .kf_ops = &rdtgroup_kf_single_ops, 1561 .write = rdtgroup_cpus_write, 1562 .seq_show = rdtgroup_cpus_show, 1563 .fflags = RFTYPE_BASE, 1564 }, 1565 { 1566 .name = "cpus_list", 1567 .mode = 0644, 1568 .kf_ops = &rdtgroup_kf_single_ops, 1569 .write = rdtgroup_cpus_write, 1570 .seq_show = rdtgroup_cpus_show, 1571 .flags = RFTYPE_FLAGS_CPUS_LIST, 1572 .fflags = RFTYPE_BASE, 1573 }, 1574 { 1575 .name = "tasks", 1576 .mode = 0644, 1577 .kf_ops = &rdtgroup_kf_single_ops, 1578 .write = rdtgroup_tasks_write, 1579 .seq_show = rdtgroup_tasks_show, 1580 .fflags = RFTYPE_BASE, 1581 }, 1582 { 1583 .name = "schemata", 1584 .mode = 0644, 1585 .kf_ops = &rdtgroup_kf_single_ops, 1586 .write = rdtgroup_schemata_write, 1587 .seq_show = rdtgroup_schemata_show, 1588 .fflags = RF_CTRL_BASE, 1589 }, 1590 { 1591 .name = "mode", 1592 .mode = 0644, 1593 .kf_ops = &rdtgroup_kf_single_ops, 1594 .write = rdtgroup_mode_write, 1595 .seq_show = rdtgroup_mode_show, 1596 .fflags = RF_CTRL_BASE, 1597 }, 1598 { 1599 .name = "size", 1600 .mode = 0444, 1601 .kf_ops = &rdtgroup_kf_single_ops, 1602 .seq_show = rdtgroup_size_show, 1603 .fflags = RF_CTRL_BASE, 1604 }, 1605 1606 }; 1607 1608 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1609 { 1610 struct rftype *rfts, *rft; 1611 int ret, len; 1612 1613 rfts = res_common_files; 1614 len = ARRAY_SIZE(res_common_files); 1615 1616 lockdep_assert_held(&rdtgroup_mutex); 1617 1618 for (rft = rfts; rft < rfts + len; rft++) { 1619 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 1620 ret = rdtgroup_add_file(kn, rft); 1621 if (ret) 1622 goto error; 1623 } 1624 } 1625 1626 return 0; 1627 error: 1628 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1629 while (--rft >= rfts) { 1630 if ((fflags & rft->fflags) == rft->fflags) 1631 kernfs_remove_by_name(kn, rft->name); 1632 } 1633 return ret; 1634 } 1635 1636 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 1637 { 1638 struct rftype *rfts, *rft; 1639 int len; 1640 1641 rfts = res_common_files; 1642 len = ARRAY_SIZE(res_common_files); 1643 1644 for (rft = rfts; rft < rfts + len; rft++) { 1645 if (!strcmp(rft->name, name)) 1646 return rft; 1647 } 1648 1649 return NULL; 1650 } 1651 1652 void __init thread_throttle_mode_init(void) 1653 { 1654 struct rftype *rft; 1655 1656 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode"); 1657 if (!rft) 1658 return; 1659 1660 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB; 1661 } 1662 1663 /** 1664 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1665 * @r: The resource group with which the file is associated. 1666 * @name: Name of the file 1667 * 1668 * The permissions of named resctrl file, directory, or link are modified 1669 * to not allow read, write, or execute by any user. 1670 * 1671 * WARNING: This function is intended to communicate to the user that the 1672 * resctrl file has been locked down - that it is not relevant to the 1673 * particular state the system finds itself in. It should not be relied 1674 * on to protect from user access because after the file's permissions 1675 * are restricted the user can still change the permissions using chmod 1676 * from the command line. 1677 * 1678 * Return: 0 on success, <0 on failure. 1679 */ 1680 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1681 { 1682 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1683 struct kernfs_node *kn; 1684 int ret = 0; 1685 1686 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1687 if (!kn) 1688 return -ENOENT; 1689 1690 switch (kernfs_type(kn)) { 1691 case KERNFS_DIR: 1692 iattr.ia_mode = S_IFDIR; 1693 break; 1694 case KERNFS_FILE: 1695 iattr.ia_mode = S_IFREG; 1696 break; 1697 case KERNFS_LINK: 1698 iattr.ia_mode = S_IFLNK; 1699 break; 1700 } 1701 1702 ret = kernfs_setattr(kn, &iattr); 1703 kernfs_put(kn); 1704 return ret; 1705 } 1706 1707 /** 1708 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1709 * @r: The resource group with which the file is associated. 1710 * @name: Name of the file 1711 * @mask: Mask of permissions that should be restored 1712 * 1713 * Restore the permissions of the named file. If @name is a directory the 1714 * permissions of its parent will be used. 1715 * 1716 * Return: 0 on success, <0 on failure. 1717 */ 1718 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1719 umode_t mask) 1720 { 1721 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1722 struct kernfs_node *kn, *parent; 1723 struct rftype *rfts, *rft; 1724 int ret, len; 1725 1726 rfts = res_common_files; 1727 len = ARRAY_SIZE(res_common_files); 1728 1729 for (rft = rfts; rft < rfts + len; rft++) { 1730 if (!strcmp(rft->name, name)) 1731 iattr.ia_mode = rft->mode & mask; 1732 } 1733 1734 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1735 if (!kn) 1736 return -ENOENT; 1737 1738 switch (kernfs_type(kn)) { 1739 case KERNFS_DIR: 1740 parent = kernfs_get_parent(kn); 1741 if (parent) { 1742 iattr.ia_mode |= parent->mode; 1743 kernfs_put(parent); 1744 } 1745 iattr.ia_mode |= S_IFDIR; 1746 break; 1747 case KERNFS_FILE: 1748 iattr.ia_mode |= S_IFREG; 1749 break; 1750 case KERNFS_LINK: 1751 iattr.ia_mode |= S_IFLNK; 1752 break; 1753 } 1754 1755 ret = kernfs_setattr(kn, &iattr); 1756 kernfs_put(kn); 1757 return ret; 1758 } 1759 1760 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name, 1761 unsigned long fflags) 1762 { 1763 struct kernfs_node *kn_subdir; 1764 int ret; 1765 1766 kn_subdir = kernfs_create_dir(kn_info, name, 1767 kn_info->mode, r); 1768 if (IS_ERR(kn_subdir)) 1769 return PTR_ERR(kn_subdir); 1770 1771 ret = rdtgroup_kn_set_ugid(kn_subdir); 1772 if (ret) 1773 return ret; 1774 1775 ret = rdtgroup_add_files(kn_subdir, fflags); 1776 if (!ret) 1777 kernfs_activate(kn_subdir); 1778 1779 return ret; 1780 } 1781 1782 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 1783 { 1784 struct rdt_resource *r; 1785 unsigned long fflags; 1786 char name[32]; 1787 int ret; 1788 1789 /* create the directory */ 1790 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 1791 if (IS_ERR(kn_info)) 1792 return PTR_ERR(kn_info); 1793 1794 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 1795 if (ret) 1796 goto out_destroy; 1797 1798 for_each_alloc_enabled_rdt_resource(r) { 1799 fflags = r->fflags | RF_CTRL_INFO; 1800 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags); 1801 if (ret) 1802 goto out_destroy; 1803 } 1804 1805 for_each_mon_enabled_rdt_resource(r) { 1806 fflags = r->fflags | RF_MON_INFO; 1807 sprintf(name, "%s_MON", r->name); 1808 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 1809 if (ret) 1810 goto out_destroy; 1811 } 1812 1813 ret = rdtgroup_kn_set_ugid(kn_info); 1814 if (ret) 1815 goto out_destroy; 1816 1817 kernfs_activate(kn_info); 1818 1819 return 0; 1820 1821 out_destroy: 1822 kernfs_remove(kn_info); 1823 return ret; 1824 } 1825 1826 static int 1827 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 1828 char *name, struct kernfs_node **dest_kn) 1829 { 1830 struct kernfs_node *kn; 1831 int ret; 1832 1833 /* create the directory */ 1834 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 1835 if (IS_ERR(kn)) 1836 return PTR_ERR(kn); 1837 1838 if (dest_kn) 1839 *dest_kn = kn; 1840 1841 ret = rdtgroup_kn_set_ugid(kn); 1842 if (ret) 1843 goto out_destroy; 1844 1845 kernfs_activate(kn); 1846 1847 return 0; 1848 1849 out_destroy: 1850 kernfs_remove(kn); 1851 return ret; 1852 } 1853 1854 static void l3_qos_cfg_update(void *arg) 1855 { 1856 bool *enable = arg; 1857 1858 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 1859 } 1860 1861 static void l2_qos_cfg_update(void *arg) 1862 { 1863 bool *enable = arg; 1864 1865 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 1866 } 1867 1868 static inline bool is_mba_linear(void) 1869 { 1870 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear; 1871 } 1872 1873 static int set_cache_qos_cfg(int level, bool enable) 1874 { 1875 void (*update)(void *arg); 1876 struct rdt_resource *r_l; 1877 cpumask_var_t cpu_mask; 1878 struct rdt_domain *d; 1879 int cpu; 1880 1881 if (level == RDT_RESOURCE_L3) 1882 update = l3_qos_cfg_update; 1883 else if (level == RDT_RESOURCE_L2) 1884 update = l2_qos_cfg_update; 1885 else 1886 return -EINVAL; 1887 1888 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 1889 return -ENOMEM; 1890 1891 r_l = &rdt_resources_all[level]; 1892 list_for_each_entry(d, &r_l->domains, list) { 1893 if (r_l->cache.arch_has_per_cpu_cfg) 1894 /* Pick all the CPUs in the domain instance */ 1895 for_each_cpu(cpu, &d->cpu_mask) 1896 cpumask_set_cpu(cpu, cpu_mask); 1897 else 1898 /* Pick one CPU from each domain instance to update MSR */ 1899 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 1900 } 1901 cpu = get_cpu(); 1902 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */ 1903 if (cpumask_test_cpu(cpu, cpu_mask)) 1904 update(&enable); 1905 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */ 1906 smp_call_function_many(cpu_mask, update, &enable, 1); 1907 put_cpu(); 1908 1909 free_cpumask_var(cpu_mask); 1910 1911 return 0; 1912 } 1913 1914 /* Restore the qos cfg state when a domain comes online */ 1915 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 1916 { 1917 if (!r->alloc_capable) 1918 return; 1919 1920 if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA]) 1921 l2_qos_cfg_update(&r->alloc_enabled); 1922 1923 if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA]) 1924 l3_qos_cfg_update(&r->alloc_enabled); 1925 } 1926 1927 /* 1928 * Enable or disable the MBA software controller 1929 * which helps user specify bandwidth in MBps. 1930 * MBA software controller is supported only if 1931 * MBM is supported and MBA is in linear scale. 1932 */ 1933 static int set_mba_sc(bool mba_sc) 1934 { 1935 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA]; 1936 struct rdt_domain *d; 1937 1938 if (!is_mbm_enabled() || !is_mba_linear() || 1939 mba_sc == is_mba_sc(r)) 1940 return -EINVAL; 1941 1942 r->membw.mba_sc = mba_sc; 1943 list_for_each_entry(d, &r->domains, list) 1944 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val); 1945 1946 return 0; 1947 } 1948 1949 static int cdp_enable(int level, int data_type, int code_type) 1950 { 1951 struct rdt_resource *r_ldata = &rdt_resources_all[data_type]; 1952 struct rdt_resource *r_lcode = &rdt_resources_all[code_type]; 1953 struct rdt_resource *r_l = &rdt_resources_all[level]; 1954 int ret; 1955 1956 if (!r_l->alloc_capable || !r_ldata->alloc_capable || 1957 !r_lcode->alloc_capable) 1958 return -EINVAL; 1959 1960 ret = set_cache_qos_cfg(level, true); 1961 if (!ret) { 1962 r_l->alloc_enabled = false; 1963 r_ldata->alloc_enabled = true; 1964 r_lcode->alloc_enabled = true; 1965 } 1966 return ret; 1967 } 1968 1969 static int cdpl3_enable(void) 1970 { 1971 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, 1972 RDT_RESOURCE_L3CODE); 1973 } 1974 1975 static int cdpl2_enable(void) 1976 { 1977 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, 1978 RDT_RESOURCE_L2CODE); 1979 } 1980 1981 static void cdp_disable(int level, int data_type, int code_type) 1982 { 1983 struct rdt_resource *r = &rdt_resources_all[level]; 1984 1985 r->alloc_enabled = r->alloc_capable; 1986 1987 if (rdt_resources_all[data_type].alloc_enabled) { 1988 rdt_resources_all[data_type].alloc_enabled = false; 1989 rdt_resources_all[code_type].alloc_enabled = false; 1990 set_cache_qos_cfg(level, false); 1991 } 1992 } 1993 1994 static void cdpl3_disable(void) 1995 { 1996 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE); 1997 } 1998 1999 static void cdpl2_disable(void) 2000 { 2001 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE); 2002 } 2003 2004 static void cdp_disable_all(void) 2005 { 2006 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) 2007 cdpl3_disable(); 2008 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) 2009 cdpl2_disable(); 2010 } 2011 2012 /* 2013 * We don't allow rdtgroup directories to be created anywhere 2014 * except the root directory. Thus when looking for the rdtgroup 2015 * structure for a kernfs node we are either looking at a directory, 2016 * in which case the rdtgroup structure is pointed at by the "priv" 2017 * field, otherwise we have a file, and need only look to the parent 2018 * to find the rdtgroup. 2019 */ 2020 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2021 { 2022 if (kernfs_type(kn) == KERNFS_DIR) { 2023 /* 2024 * All the resource directories use "kn->priv" 2025 * to point to the "struct rdtgroup" for the 2026 * resource. "info" and its subdirectories don't 2027 * have rdtgroup structures, so return NULL here. 2028 */ 2029 if (kn == kn_info || kn->parent == kn_info) 2030 return NULL; 2031 else 2032 return kn->priv; 2033 } else { 2034 return kn->parent->priv; 2035 } 2036 } 2037 2038 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2039 { 2040 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2041 2042 if (!rdtgrp) 2043 return NULL; 2044 2045 atomic_inc(&rdtgrp->waitcount); 2046 kernfs_break_active_protection(kn); 2047 2048 mutex_lock(&rdtgroup_mutex); 2049 2050 /* Was this group deleted while we waited? */ 2051 if (rdtgrp->flags & RDT_DELETED) 2052 return NULL; 2053 2054 return rdtgrp; 2055 } 2056 2057 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2058 { 2059 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2060 2061 if (!rdtgrp) 2062 return; 2063 2064 mutex_unlock(&rdtgroup_mutex); 2065 2066 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2067 (rdtgrp->flags & RDT_DELETED)) { 2068 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2069 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2070 rdtgroup_pseudo_lock_remove(rdtgrp); 2071 kernfs_unbreak_active_protection(kn); 2072 rdtgroup_remove(rdtgrp); 2073 } else { 2074 kernfs_unbreak_active_protection(kn); 2075 } 2076 } 2077 2078 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2079 struct rdtgroup *prgrp, 2080 struct kernfs_node **mon_data_kn); 2081 2082 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2083 { 2084 int ret = 0; 2085 2086 if (ctx->enable_cdpl2) 2087 ret = cdpl2_enable(); 2088 2089 if (!ret && ctx->enable_cdpl3) 2090 ret = cdpl3_enable(); 2091 2092 if (!ret && ctx->enable_mba_mbps) 2093 ret = set_mba_sc(true); 2094 2095 return ret; 2096 } 2097 2098 static int rdt_get_tree(struct fs_context *fc) 2099 { 2100 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2101 struct rdt_domain *dom; 2102 struct rdt_resource *r; 2103 int ret; 2104 2105 cpus_read_lock(); 2106 mutex_lock(&rdtgroup_mutex); 2107 /* 2108 * resctrl file system can only be mounted once. 2109 */ 2110 if (static_branch_unlikely(&rdt_enable_key)) { 2111 ret = -EBUSY; 2112 goto out; 2113 } 2114 2115 ret = rdt_enable_ctx(ctx); 2116 if (ret < 0) 2117 goto out_cdp; 2118 2119 closid_init(); 2120 2121 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2122 if (ret < 0) 2123 goto out_mba; 2124 2125 if (rdt_mon_capable) { 2126 ret = mongroup_create_dir(rdtgroup_default.kn, 2127 &rdtgroup_default, "mon_groups", 2128 &kn_mongrp); 2129 if (ret < 0) 2130 goto out_info; 2131 2132 ret = mkdir_mondata_all(rdtgroup_default.kn, 2133 &rdtgroup_default, &kn_mondata); 2134 if (ret < 0) 2135 goto out_mongrp; 2136 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2137 } 2138 2139 ret = rdt_pseudo_lock_init(); 2140 if (ret) 2141 goto out_mondata; 2142 2143 ret = kernfs_get_tree(fc); 2144 if (ret < 0) 2145 goto out_psl; 2146 2147 if (rdt_alloc_capable) 2148 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 2149 if (rdt_mon_capable) 2150 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 2151 2152 if (rdt_alloc_capable || rdt_mon_capable) 2153 static_branch_enable_cpuslocked(&rdt_enable_key); 2154 2155 if (is_mbm_enabled()) { 2156 r = &rdt_resources_all[RDT_RESOURCE_L3]; 2157 list_for_each_entry(dom, &r->domains, list) 2158 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2159 } 2160 2161 goto out; 2162 2163 out_psl: 2164 rdt_pseudo_lock_release(); 2165 out_mondata: 2166 if (rdt_mon_capable) 2167 kernfs_remove(kn_mondata); 2168 out_mongrp: 2169 if (rdt_mon_capable) 2170 kernfs_remove(kn_mongrp); 2171 out_info: 2172 kernfs_remove(kn_info); 2173 out_mba: 2174 if (ctx->enable_mba_mbps) 2175 set_mba_sc(false); 2176 out_cdp: 2177 cdp_disable_all(); 2178 out: 2179 rdt_last_cmd_clear(); 2180 mutex_unlock(&rdtgroup_mutex); 2181 cpus_read_unlock(); 2182 return ret; 2183 } 2184 2185 enum rdt_param { 2186 Opt_cdp, 2187 Opt_cdpl2, 2188 Opt_mba_mbps, 2189 nr__rdt_params 2190 }; 2191 2192 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2193 fsparam_flag("cdp", Opt_cdp), 2194 fsparam_flag("cdpl2", Opt_cdpl2), 2195 fsparam_flag("mba_MBps", Opt_mba_mbps), 2196 {} 2197 }; 2198 2199 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2200 { 2201 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2202 struct fs_parse_result result; 2203 int opt; 2204 2205 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2206 if (opt < 0) 2207 return opt; 2208 2209 switch (opt) { 2210 case Opt_cdp: 2211 ctx->enable_cdpl3 = true; 2212 return 0; 2213 case Opt_cdpl2: 2214 ctx->enable_cdpl2 = true; 2215 return 0; 2216 case Opt_mba_mbps: 2217 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 2218 return -EINVAL; 2219 ctx->enable_mba_mbps = true; 2220 return 0; 2221 } 2222 2223 return -EINVAL; 2224 } 2225 2226 static void rdt_fs_context_free(struct fs_context *fc) 2227 { 2228 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2229 2230 kernfs_free_fs_context(fc); 2231 kfree(ctx); 2232 } 2233 2234 static const struct fs_context_operations rdt_fs_context_ops = { 2235 .free = rdt_fs_context_free, 2236 .parse_param = rdt_parse_param, 2237 .get_tree = rdt_get_tree, 2238 }; 2239 2240 static int rdt_init_fs_context(struct fs_context *fc) 2241 { 2242 struct rdt_fs_context *ctx; 2243 2244 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2245 if (!ctx) 2246 return -ENOMEM; 2247 2248 ctx->kfc.root = rdt_root; 2249 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2250 fc->fs_private = &ctx->kfc; 2251 fc->ops = &rdt_fs_context_ops; 2252 put_user_ns(fc->user_ns); 2253 fc->user_ns = get_user_ns(&init_user_ns); 2254 fc->global = true; 2255 return 0; 2256 } 2257 2258 static int reset_all_ctrls(struct rdt_resource *r) 2259 { 2260 struct msr_param msr_param; 2261 cpumask_var_t cpu_mask; 2262 struct rdt_domain *d; 2263 int i, cpu; 2264 2265 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2266 return -ENOMEM; 2267 2268 msr_param.res = r; 2269 msr_param.low = 0; 2270 msr_param.high = r->num_closid; 2271 2272 /* 2273 * Disable resource control for this resource by setting all 2274 * CBMs in all domains to the maximum mask value. Pick one CPU 2275 * from each domain to update the MSRs below. 2276 */ 2277 list_for_each_entry(d, &r->domains, list) { 2278 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2279 2280 for (i = 0; i < r->num_closid; i++) 2281 d->ctrl_val[i] = r->default_ctrl; 2282 } 2283 cpu = get_cpu(); 2284 /* Update CBM on this cpu if it's in cpu_mask. */ 2285 if (cpumask_test_cpu(cpu, cpu_mask)) 2286 rdt_ctrl_update(&msr_param); 2287 /* Update CBM on all other cpus in cpu_mask. */ 2288 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2289 put_cpu(); 2290 2291 free_cpumask_var(cpu_mask); 2292 2293 return 0; 2294 } 2295 2296 /* 2297 * Move tasks from one to the other group. If @from is NULL, then all tasks 2298 * in the systems are moved unconditionally (used for teardown). 2299 * 2300 * If @mask is not NULL the cpus on which moved tasks are running are set 2301 * in that mask so the update smp function call is restricted to affected 2302 * cpus. 2303 */ 2304 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2305 struct cpumask *mask) 2306 { 2307 struct task_struct *p, *t; 2308 2309 read_lock(&tasklist_lock); 2310 for_each_process_thread(p, t) { 2311 if (!from || is_closid_match(t, from) || 2312 is_rmid_match(t, from)) { 2313 t->closid = to->closid; 2314 t->rmid = to->mon.rmid; 2315 2316 #ifdef CONFIG_SMP 2317 /* 2318 * This is safe on x86 w/o barriers as the ordering 2319 * of writing to task_cpu() and t->on_cpu is 2320 * reverse to the reading here. The detection is 2321 * inaccurate as tasks might move or schedule 2322 * before the smp function call takes place. In 2323 * such a case the function call is pointless, but 2324 * there is no other side effect. 2325 */ 2326 if (mask && t->on_cpu) 2327 cpumask_set_cpu(task_cpu(t), mask); 2328 #endif 2329 } 2330 } 2331 read_unlock(&tasklist_lock); 2332 } 2333 2334 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2335 { 2336 struct rdtgroup *sentry, *stmp; 2337 struct list_head *head; 2338 2339 head = &rdtgrp->mon.crdtgrp_list; 2340 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2341 free_rmid(sentry->mon.rmid); 2342 list_del(&sentry->mon.crdtgrp_list); 2343 2344 if (atomic_read(&sentry->waitcount) != 0) 2345 sentry->flags = RDT_DELETED; 2346 else 2347 rdtgroup_remove(sentry); 2348 } 2349 } 2350 2351 /* 2352 * Forcibly remove all of subdirectories under root. 2353 */ 2354 static void rmdir_all_sub(void) 2355 { 2356 struct rdtgroup *rdtgrp, *tmp; 2357 2358 /* Move all tasks to the default resource group */ 2359 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2360 2361 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2362 /* Free any child rmids */ 2363 free_all_child_rdtgrp(rdtgrp); 2364 2365 /* Remove each rdtgroup other than root */ 2366 if (rdtgrp == &rdtgroup_default) 2367 continue; 2368 2369 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2370 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2371 rdtgroup_pseudo_lock_remove(rdtgrp); 2372 2373 /* 2374 * Give any CPUs back to the default group. We cannot copy 2375 * cpu_online_mask because a CPU might have executed the 2376 * offline callback already, but is still marked online. 2377 */ 2378 cpumask_or(&rdtgroup_default.cpu_mask, 2379 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2380 2381 free_rmid(rdtgrp->mon.rmid); 2382 2383 kernfs_remove(rdtgrp->kn); 2384 list_del(&rdtgrp->rdtgroup_list); 2385 2386 if (atomic_read(&rdtgrp->waitcount) != 0) 2387 rdtgrp->flags = RDT_DELETED; 2388 else 2389 rdtgroup_remove(rdtgrp); 2390 } 2391 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2392 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2393 2394 kernfs_remove(kn_info); 2395 kernfs_remove(kn_mongrp); 2396 kernfs_remove(kn_mondata); 2397 } 2398 2399 static void rdt_kill_sb(struct super_block *sb) 2400 { 2401 struct rdt_resource *r; 2402 2403 cpus_read_lock(); 2404 mutex_lock(&rdtgroup_mutex); 2405 2406 set_mba_sc(false); 2407 2408 /*Put everything back to default values. */ 2409 for_each_alloc_enabled_rdt_resource(r) 2410 reset_all_ctrls(r); 2411 cdp_disable_all(); 2412 rmdir_all_sub(); 2413 rdt_pseudo_lock_release(); 2414 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2415 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2416 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2417 static_branch_disable_cpuslocked(&rdt_enable_key); 2418 kernfs_kill_sb(sb); 2419 mutex_unlock(&rdtgroup_mutex); 2420 cpus_read_unlock(); 2421 } 2422 2423 static struct file_system_type rdt_fs_type = { 2424 .name = "resctrl", 2425 .init_fs_context = rdt_init_fs_context, 2426 .parameters = rdt_fs_parameters, 2427 .kill_sb = rdt_kill_sb, 2428 }; 2429 2430 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2431 void *priv) 2432 { 2433 struct kernfs_node *kn; 2434 int ret = 0; 2435 2436 kn = __kernfs_create_file(parent_kn, name, 0444, 2437 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2438 &kf_mondata_ops, priv, NULL, NULL); 2439 if (IS_ERR(kn)) 2440 return PTR_ERR(kn); 2441 2442 ret = rdtgroup_kn_set_ugid(kn); 2443 if (ret) { 2444 kernfs_remove(kn); 2445 return ret; 2446 } 2447 2448 return ret; 2449 } 2450 2451 /* 2452 * Remove all subdirectories of mon_data of ctrl_mon groups 2453 * and monitor groups with given domain id. 2454 */ 2455 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id) 2456 { 2457 struct rdtgroup *prgrp, *crgrp; 2458 char name[32]; 2459 2460 if (!r->mon_enabled) 2461 return; 2462 2463 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2464 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2465 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2466 2467 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2468 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2469 } 2470 } 2471 2472 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2473 struct rdt_domain *d, 2474 struct rdt_resource *r, struct rdtgroup *prgrp) 2475 { 2476 union mon_data_bits priv; 2477 struct kernfs_node *kn; 2478 struct mon_evt *mevt; 2479 struct rmid_read rr; 2480 char name[32]; 2481 int ret; 2482 2483 sprintf(name, "mon_%s_%02d", r->name, d->id); 2484 /* create the directory */ 2485 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2486 if (IS_ERR(kn)) 2487 return PTR_ERR(kn); 2488 2489 ret = rdtgroup_kn_set_ugid(kn); 2490 if (ret) 2491 goto out_destroy; 2492 2493 if (WARN_ON(list_empty(&r->evt_list))) { 2494 ret = -EPERM; 2495 goto out_destroy; 2496 } 2497 2498 priv.u.rid = r->rid; 2499 priv.u.domid = d->id; 2500 list_for_each_entry(mevt, &r->evt_list, list) { 2501 priv.u.evtid = mevt->evtid; 2502 ret = mon_addfile(kn, mevt->name, priv.priv); 2503 if (ret) 2504 goto out_destroy; 2505 2506 if (is_mbm_event(mevt->evtid)) 2507 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true); 2508 } 2509 kernfs_activate(kn); 2510 return 0; 2511 2512 out_destroy: 2513 kernfs_remove(kn); 2514 return ret; 2515 } 2516 2517 /* 2518 * Add all subdirectories of mon_data for "ctrl_mon" groups 2519 * and "monitor" groups with given domain id. 2520 */ 2521 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2522 struct rdt_domain *d) 2523 { 2524 struct kernfs_node *parent_kn; 2525 struct rdtgroup *prgrp, *crgrp; 2526 struct list_head *head; 2527 2528 if (!r->mon_enabled) 2529 return; 2530 2531 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2532 parent_kn = prgrp->mon.mon_data_kn; 2533 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2534 2535 head = &prgrp->mon.crdtgrp_list; 2536 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2537 parent_kn = crgrp->mon.mon_data_kn; 2538 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2539 } 2540 } 2541 } 2542 2543 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2544 struct rdt_resource *r, 2545 struct rdtgroup *prgrp) 2546 { 2547 struct rdt_domain *dom; 2548 int ret; 2549 2550 list_for_each_entry(dom, &r->domains, list) { 2551 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2552 if (ret) 2553 return ret; 2554 } 2555 2556 return 0; 2557 } 2558 2559 /* 2560 * This creates a directory mon_data which contains the monitored data. 2561 * 2562 * mon_data has one directory for each domain whic are named 2563 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2564 * with L3 domain looks as below: 2565 * ./mon_data: 2566 * mon_L3_00 2567 * mon_L3_01 2568 * mon_L3_02 2569 * ... 2570 * 2571 * Each domain directory has one file per event: 2572 * ./mon_L3_00/: 2573 * llc_occupancy 2574 * 2575 */ 2576 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2577 struct rdtgroup *prgrp, 2578 struct kernfs_node **dest_kn) 2579 { 2580 struct rdt_resource *r; 2581 struct kernfs_node *kn; 2582 int ret; 2583 2584 /* 2585 * Create the mon_data directory first. 2586 */ 2587 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 2588 if (ret) 2589 return ret; 2590 2591 if (dest_kn) 2592 *dest_kn = kn; 2593 2594 /* 2595 * Create the subdirectories for each domain. Note that all events 2596 * in a domain like L3 are grouped into a resource whose domain is L3 2597 */ 2598 for_each_mon_enabled_rdt_resource(r) { 2599 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2600 if (ret) 2601 goto out_destroy; 2602 } 2603 2604 return 0; 2605 2606 out_destroy: 2607 kernfs_remove(kn); 2608 return ret; 2609 } 2610 2611 /** 2612 * cbm_ensure_valid - Enforce validity on provided CBM 2613 * @_val: Candidate CBM 2614 * @r: RDT resource to which the CBM belongs 2615 * 2616 * The provided CBM represents all cache portions available for use. This 2617 * may be represented by a bitmap that does not consist of contiguous ones 2618 * and thus be an invalid CBM. 2619 * Here the provided CBM is forced to be a valid CBM by only considering 2620 * the first set of contiguous bits as valid and clearing all bits. 2621 * The intention here is to provide a valid default CBM with which a new 2622 * resource group is initialized. The user can follow this with a 2623 * modification to the CBM if the default does not satisfy the 2624 * requirements. 2625 */ 2626 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 2627 { 2628 unsigned int cbm_len = r->cache.cbm_len; 2629 unsigned long first_bit, zero_bit; 2630 unsigned long val = _val; 2631 2632 if (!val) 2633 return 0; 2634 2635 first_bit = find_first_bit(&val, cbm_len); 2636 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 2637 2638 /* Clear any remaining bits to ensure contiguous region */ 2639 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 2640 return (u32)val; 2641 } 2642 2643 /* 2644 * Initialize cache resources per RDT domain 2645 * 2646 * Set the RDT domain up to start off with all usable allocations. That is, 2647 * all shareable and unused bits. All-zero CBM is invalid. 2648 */ 2649 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r, 2650 u32 closid) 2651 { 2652 struct rdt_resource *r_cdp = NULL; 2653 struct rdt_domain *d_cdp = NULL; 2654 u32 used_b = 0, unused_b = 0; 2655 unsigned long tmp_cbm; 2656 enum rdtgrp_mode mode; 2657 u32 peer_ctl, *ctrl; 2658 int i; 2659 2660 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp); 2661 d->have_new_ctrl = false; 2662 d->new_ctrl = r->cache.shareable_bits; 2663 used_b = r->cache.shareable_bits; 2664 ctrl = d->ctrl_val; 2665 for (i = 0; i < closids_supported(); i++, ctrl++) { 2666 if (closid_allocated(i) && i != closid) { 2667 mode = rdtgroup_mode_by_closid(i); 2668 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 2669 /* 2670 * ctrl values for locksetup aren't relevant 2671 * until the schemata is written, and the mode 2672 * becomes RDT_MODE_PSEUDO_LOCKED. 2673 */ 2674 continue; 2675 /* 2676 * If CDP is active include peer domain's 2677 * usage to ensure there is no overlap 2678 * with an exclusive group. 2679 */ 2680 if (d_cdp) 2681 peer_ctl = d_cdp->ctrl_val[i]; 2682 else 2683 peer_ctl = 0; 2684 used_b |= *ctrl | peer_ctl; 2685 if (mode == RDT_MODE_SHAREABLE) 2686 d->new_ctrl |= *ctrl | peer_ctl; 2687 } 2688 } 2689 if (d->plr && d->plr->cbm > 0) 2690 used_b |= d->plr->cbm; 2691 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 2692 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 2693 d->new_ctrl |= unused_b; 2694 /* 2695 * Force the initial CBM to be valid, user can 2696 * modify the CBM based on system availability. 2697 */ 2698 d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r); 2699 /* 2700 * Assign the u32 CBM to an unsigned long to ensure that 2701 * bitmap_weight() does not access out-of-bound memory. 2702 */ 2703 tmp_cbm = d->new_ctrl; 2704 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 2705 rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id); 2706 return -ENOSPC; 2707 } 2708 d->have_new_ctrl = true; 2709 2710 return 0; 2711 } 2712 2713 /* 2714 * Initialize cache resources with default values. 2715 * 2716 * A new RDT group is being created on an allocation capable (CAT) 2717 * supporting system. Set this group up to start off with all usable 2718 * allocations. 2719 * 2720 * If there are no more shareable bits available on any domain then 2721 * the entire allocation will fail. 2722 */ 2723 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid) 2724 { 2725 struct rdt_domain *d; 2726 int ret; 2727 2728 list_for_each_entry(d, &r->domains, list) { 2729 ret = __init_one_rdt_domain(d, r, closid); 2730 if (ret < 0) 2731 return ret; 2732 } 2733 2734 return 0; 2735 } 2736 2737 /* Initialize MBA resource with default values. */ 2738 static void rdtgroup_init_mba(struct rdt_resource *r) 2739 { 2740 struct rdt_domain *d; 2741 2742 list_for_each_entry(d, &r->domains, list) { 2743 d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl; 2744 d->have_new_ctrl = true; 2745 } 2746 } 2747 2748 /* Initialize the RDT group's allocations. */ 2749 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 2750 { 2751 struct rdt_resource *r; 2752 int ret; 2753 2754 for_each_alloc_enabled_rdt_resource(r) { 2755 if (r->rid == RDT_RESOURCE_MBA) { 2756 rdtgroup_init_mba(r); 2757 } else { 2758 ret = rdtgroup_init_cat(r, rdtgrp->closid); 2759 if (ret < 0) 2760 return ret; 2761 } 2762 2763 ret = update_domains(r, rdtgrp->closid); 2764 if (ret < 0) { 2765 rdt_last_cmd_puts("Failed to initialize allocations\n"); 2766 return ret; 2767 } 2768 2769 } 2770 2771 rdtgrp->mode = RDT_MODE_SHAREABLE; 2772 2773 return 0; 2774 } 2775 2776 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 2777 const char *name, umode_t mode, 2778 enum rdt_group_type rtype, struct rdtgroup **r) 2779 { 2780 struct rdtgroup *prdtgrp, *rdtgrp; 2781 struct kernfs_node *kn; 2782 uint files = 0; 2783 int ret; 2784 2785 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 2786 if (!prdtgrp) { 2787 ret = -ENODEV; 2788 goto out_unlock; 2789 } 2790 2791 if (rtype == RDTMON_GROUP && 2792 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2793 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 2794 ret = -EINVAL; 2795 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 2796 goto out_unlock; 2797 } 2798 2799 /* allocate the rdtgroup. */ 2800 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 2801 if (!rdtgrp) { 2802 ret = -ENOSPC; 2803 rdt_last_cmd_puts("Kernel out of memory\n"); 2804 goto out_unlock; 2805 } 2806 *r = rdtgrp; 2807 rdtgrp->mon.parent = prdtgrp; 2808 rdtgrp->type = rtype; 2809 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 2810 2811 /* kernfs creates the directory for rdtgrp */ 2812 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 2813 if (IS_ERR(kn)) { 2814 ret = PTR_ERR(kn); 2815 rdt_last_cmd_puts("kernfs create error\n"); 2816 goto out_free_rgrp; 2817 } 2818 rdtgrp->kn = kn; 2819 2820 /* 2821 * kernfs_remove() will drop the reference count on "kn" which 2822 * will free it. But we still need it to stick around for the 2823 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 2824 * which will be dropped by kernfs_put() in rdtgroup_remove(). 2825 */ 2826 kernfs_get(kn); 2827 2828 ret = rdtgroup_kn_set_ugid(kn); 2829 if (ret) { 2830 rdt_last_cmd_puts("kernfs perm error\n"); 2831 goto out_destroy; 2832 } 2833 2834 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 2835 ret = rdtgroup_add_files(kn, files); 2836 if (ret) { 2837 rdt_last_cmd_puts("kernfs fill error\n"); 2838 goto out_destroy; 2839 } 2840 2841 if (rdt_mon_capable) { 2842 ret = alloc_rmid(); 2843 if (ret < 0) { 2844 rdt_last_cmd_puts("Out of RMIDs\n"); 2845 goto out_destroy; 2846 } 2847 rdtgrp->mon.rmid = ret; 2848 2849 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 2850 if (ret) { 2851 rdt_last_cmd_puts("kernfs subdir error\n"); 2852 goto out_idfree; 2853 } 2854 } 2855 kernfs_activate(kn); 2856 2857 /* 2858 * The caller unlocks the parent_kn upon success. 2859 */ 2860 return 0; 2861 2862 out_idfree: 2863 free_rmid(rdtgrp->mon.rmid); 2864 out_destroy: 2865 kernfs_put(rdtgrp->kn); 2866 kernfs_remove(rdtgrp->kn); 2867 out_free_rgrp: 2868 kfree(rdtgrp); 2869 out_unlock: 2870 rdtgroup_kn_unlock(parent_kn); 2871 return ret; 2872 } 2873 2874 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 2875 { 2876 kernfs_remove(rgrp->kn); 2877 free_rmid(rgrp->mon.rmid); 2878 rdtgroup_remove(rgrp); 2879 } 2880 2881 /* 2882 * Create a monitor group under "mon_groups" directory of a control 2883 * and monitor group(ctrl_mon). This is a resource group 2884 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 2885 */ 2886 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 2887 const char *name, umode_t mode) 2888 { 2889 struct rdtgroup *rdtgrp, *prgrp; 2890 int ret; 2891 2892 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 2893 if (ret) 2894 return ret; 2895 2896 prgrp = rdtgrp->mon.parent; 2897 rdtgrp->closid = prgrp->closid; 2898 2899 /* 2900 * Add the rdtgrp to the list of rdtgrps the parent 2901 * ctrl_mon group has to track. 2902 */ 2903 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 2904 2905 rdtgroup_kn_unlock(parent_kn); 2906 return ret; 2907 } 2908 2909 /* 2910 * These are rdtgroups created under the root directory. Can be used 2911 * to allocate and monitor resources. 2912 */ 2913 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 2914 const char *name, umode_t mode) 2915 { 2916 struct rdtgroup *rdtgrp; 2917 struct kernfs_node *kn; 2918 u32 closid; 2919 int ret; 2920 2921 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 2922 if (ret) 2923 return ret; 2924 2925 kn = rdtgrp->kn; 2926 ret = closid_alloc(); 2927 if (ret < 0) { 2928 rdt_last_cmd_puts("Out of CLOSIDs\n"); 2929 goto out_common_fail; 2930 } 2931 closid = ret; 2932 ret = 0; 2933 2934 rdtgrp->closid = closid; 2935 ret = rdtgroup_init_alloc(rdtgrp); 2936 if (ret < 0) 2937 goto out_id_free; 2938 2939 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 2940 2941 if (rdt_mon_capable) { 2942 /* 2943 * Create an empty mon_groups directory to hold the subset 2944 * of tasks and cpus to monitor. 2945 */ 2946 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 2947 if (ret) { 2948 rdt_last_cmd_puts("kernfs subdir error\n"); 2949 goto out_del_list; 2950 } 2951 } 2952 2953 goto out_unlock; 2954 2955 out_del_list: 2956 list_del(&rdtgrp->rdtgroup_list); 2957 out_id_free: 2958 closid_free(closid); 2959 out_common_fail: 2960 mkdir_rdt_prepare_clean(rdtgrp); 2961 out_unlock: 2962 rdtgroup_kn_unlock(parent_kn); 2963 return ret; 2964 } 2965 2966 /* 2967 * We allow creating mon groups only with in a directory called "mon_groups" 2968 * which is present in every ctrl_mon group. Check if this is a valid 2969 * "mon_groups" directory. 2970 * 2971 * 1. The directory should be named "mon_groups". 2972 * 2. The mon group itself should "not" be named "mon_groups". 2973 * This makes sure "mon_groups" directory always has a ctrl_mon group 2974 * as parent. 2975 */ 2976 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 2977 { 2978 return (!strcmp(kn->name, "mon_groups") && 2979 strcmp(name, "mon_groups")); 2980 } 2981 2982 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 2983 umode_t mode) 2984 { 2985 /* Do not accept '\n' to avoid unparsable situation. */ 2986 if (strchr(name, '\n')) 2987 return -EINVAL; 2988 2989 /* 2990 * If the parent directory is the root directory and RDT 2991 * allocation is supported, add a control and monitoring 2992 * subdirectory 2993 */ 2994 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 2995 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 2996 2997 /* 2998 * If RDT monitoring is supported and the parent directory is a valid 2999 * "mon_groups" directory, add a monitoring subdirectory. 3000 */ 3001 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 3002 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3003 3004 return -EPERM; 3005 } 3006 3007 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3008 { 3009 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3010 int cpu; 3011 3012 /* Give any tasks back to the parent group */ 3013 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3014 3015 /* Update per cpu rmid of the moved CPUs first */ 3016 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3017 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 3018 /* 3019 * Update the MSR on moved CPUs and CPUs which have moved 3020 * task running on them. 3021 */ 3022 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3023 update_closid_rmid(tmpmask, NULL); 3024 3025 rdtgrp->flags = RDT_DELETED; 3026 free_rmid(rdtgrp->mon.rmid); 3027 3028 /* 3029 * Remove the rdtgrp from the parent ctrl_mon group's list 3030 */ 3031 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3032 list_del(&rdtgrp->mon.crdtgrp_list); 3033 3034 kernfs_remove(rdtgrp->kn); 3035 3036 return 0; 3037 } 3038 3039 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3040 { 3041 rdtgrp->flags = RDT_DELETED; 3042 list_del(&rdtgrp->rdtgroup_list); 3043 3044 kernfs_remove(rdtgrp->kn); 3045 return 0; 3046 } 3047 3048 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3049 { 3050 int cpu; 3051 3052 /* Give any tasks back to the default group */ 3053 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3054 3055 /* Give any CPUs back to the default group */ 3056 cpumask_or(&rdtgroup_default.cpu_mask, 3057 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3058 3059 /* Update per cpu closid and rmid of the moved CPUs first */ 3060 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3061 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3062 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3063 } 3064 3065 /* 3066 * Update the MSR on moved CPUs and CPUs which have moved 3067 * task running on them. 3068 */ 3069 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3070 update_closid_rmid(tmpmask, NULL); 3071 3072 closid_free(rdtgrp->closid); 3073 free_rmid(rdtgrp->mon.rmid); 3074 3075 rdtgroup_ctrl_remove(rdtgrp); 3076 3077 /* 3078 * Free all the child monitor group rmids. 3079 */ 3080 free_all_child_rdtgrp(rdtgrp); 3081 3082 return 0; 3083 } 3084 3085 static int rdtgroup_rmdir(struct kernfs_node *kn) 3086 { 3087 struct kernfs_node *parent_kn = kn->parent; 3088 struct rdtgroup *rdtgrp; 3089 cpumask_var_t tmpmask; 3090 int ret = 0; 3091 3092 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3093 return -ENOMEM; 3094 3095 rdtgrp = rdtgroup_kn_lock_live(kn); 3096 if (!rdtgrp) { 3097 ret = -EPERM; 3098 goto out; 3099 } 3100 3101 /* 3102 * If the rdtgroup is a ctrl_mon group and parent directory 3103 * is the root directory, remove the ctrl_mon group. 3104 * 3105 * If the rdtgroup is a mon group and parent directory 3106 * is a valid "mon_groups" directory, remove the mon group. 3107 */ 3108 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3109 rdtgrp != &rdtgroup_default) { 3110 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3111 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3112 ret = rdtgroup_ctrl_remove(rdtgrp); 3113 } else { 3114 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 3115 } 3116 } else if (rdtgrp->type == RDTMON_GROUP && 3117 is_mon_groups(parent_kn, kn->name)) { 3118 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 3119 } else { 3120 ret = -EPERM; 3121 } 3122 3123 out: 3124 rdtgroup_kn_unlock(kn); 3125 free_cpumask_var(tmpmask); 3126 return ret; 3127 } 3128 3129 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3130 { 3131 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) 3132 seq_puts(seq, ",cdp"); 3133 3134 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) 3135 seq_puts(seq, ",cdpl2"); 3136 3137 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA])) 3138 seq_puts(seq, ",mba_MBps"); 3139 3140 return 0; 3141 } 3142 3143 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3144 .mkdir = rdtgroup_mkdir, 3145 .rmdir = rdtgroup_rmdir, 3146 .show_options = rdtgroup_show_options, 3147 }; 3148 3149 static int __init rdtgroup_setup_root(void) 3150 { 3151 int ret; 3152 3153 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3154 KERNFS_ROOT_CREATE_DEACTIVATED | 3155 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3156 &rdtgroup_default); 3157 if (IS_ERR(rdt_root)) 3158 return PTR_ERR(rdt_root); 3159 3160 mutex_lock(&rdtgroup_mutex); 3161 3162 rdtgroup_default.closid = 0; 3163 rdtgroup_default.mon.rmid = 0; 3164 rdtgroup_default.type = RDTCTRL_GROUP; 3165 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3166 3167 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3168 3169 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE); 3170 if (ret) { 3171 kernfs_destroy_root(rdt_root); 3172 goto out; 3173 } 3174 3175 rdtgroup_default.kn = rdt_root->kn; 3176 kernfs_activate(rdtgroup_default.kn); 3177 3178 out: 3179 mutex_unlock(&rdtgroup_mutex); 3180 3181 return ret; 3182 } 3183 3184 /* 3185 * rdtgroup_init - rdtgroup initialization 3186 * 3187 * Setup resctrl file system including set up root, create mount point, 3188 * register rdtgroup filesystem, and initialize files under root directory. 3189 * 3190 * Return: 0 on success or -errno 3191 */ 3192 int __init rdtgroup_init(void) 3193 { 3194 int ret = 0; 3195 3196 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3197 sizeof(last_cmd_status_buf)); 3198 3199 ret = rdtgroup_setup_root(); 3200 if (ret) 3201 return ret; 3202 3203 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3204 if (ret) 3205 goto cleanup_root; 3206 3207 ret = register_filesystem(&rdt_fs_type); 3208 if (ret) 3209 goto cleanup_mountpoint; 3210 3211 /* 3212 * Adding the resctrl debugfs directory here may not be ideal since 3213 * it would let the resctrl debugfs directory appear on the debugfs 3214 * filesystem before the resctrl filesystem is mounted. 3215 * It may also be ok since that would enable debugging of RDT before 3216 * resctrl is mounted. 3217 * The reason why the debugfs directory is created here and not in 3218 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 3219 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3220 * (the lockdep class of inode->i_rwsem). Other filesystem 3221 * interactions (eg. SyS_getdents) have the lock ordering: 3222 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 3223 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 3224 * is taken, thus creating dependency: 3225 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 3226 * issues considering the other two lock dependencies. 3227 * By creating the debugfs directory here we avoid a dependency 3228 * that may cause deadlock (even though file operations cannot 3229 * occur until the filesystem is mounted, but I do not know how to 3230 * tell lockdep that). 3231 */ 3232 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3233 3234 return 0; 3235 3236 cleanup_mountpoint: 3237 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3238 cleanup_root: 3239 kernfs_destroy_root(rdt_root); 3240 3241 return ret; 3242 } 3243 3244 void __exit rdtgroup_exit(void) 3245 { 3246 debugfs_remove_recursive(debugfs_resctrl); 3247 unregister_filesystem(&rdt_fs_type); 3248 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3249 kernfs_destroy_root(rdt_root); 3250 } 3251