xref: /linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c (revision 1f20a5769446a1acae67ac9e63d07a594829a789)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Allocation in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 
39 /* Mutex to protect rdtgroup access. */
40 DEFINE_MUTEX(rdtgroup_mutex);
41 
42 static struct kernfs_root *rdt_root;
43 struct rdtgroup rdtgroup_default;
44 LIST_HEAD(rdt_all_groups);
45 
46 /* list of entries for the schemata file */
47 LIST_HEAD(resctrl_schema_all);
48 
49 /* The filesystem can only be mounted once. */
50 bool resctrl_mounted;
51 
52 /* Kernel fs node for "info" directory under root */
53 static struct kernfs_node *kn_info;
54 
55 /* Kernel fs node for "mon_groups" directory under root */
56 static struct kernfs_node *kn_mongrp;
57 
58 /* Kernel fs node for "mon_data" directory under root */
59 static struct kernfs_node *kn_mondata;
60 
61 static struct seq_buf last_cmd_status;
62 static char last_cmd_status_buf[512];
63 
64 static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
65 static void rdtgroup_destroy_root(void);
66 
67 struct dentry *debugfs_resctrl;
68 
69 static bool resctrl_debug;
70 
71 void rdt_last_cmd_clear(void)
72 {
73 	lockdep_assert_held(&rdtgroup_mutex);
74 	seq_buf_clear(&last_cmd_status);
75 }
76 
77 void rdt_last_cmd_puts(const char *s)
78 {
79 	lockdep_assert_held(&rdtgroup_mutex);
80 	seq_buf_puts(&last_cmd_status, s);
81 }
82 
83 void rdt_last_cmd_printf(const char *fmt, ...)
84 {
85 	va_list ap;
86 
87 	va_start(ap, fmt);
88 	lockdep_assert_held(&rdtgroup_mutex);
89 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
90 	va_end(ap);
91 }
92 
93 void rdt_staged_configs_clear(void)
94 {
95 	struct rdt_resource *r;
96 	struct rdt_domain *dom;
97 
98 	lockdep_assert_held(&rdtgroup_mutex);
99 
100 	for_each_alloc_capable_rdt_resource(r) {
101 		list_for_each_entry(dom, &r->domains, list)
102 			memset(dom->staged_config, 0, sizeof(dom->staged_config));
103 	}
104 }
105 
106 /*
107  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
108  * we can keep a bitmap of free CLOSIDs in a single integer.
109  *
110  * Using a global CLOSID across all resources has some advantages and
111  * some drawbacks:
112  * + We can simply set current's closid to assign a task to a resource
113  *   group.
114  * + Context switch code can avoid extra memory references deciding which
115  *   CLOSID to load into the PQR_ASSOC MSR
116  * - We give up some options in configuring resource groups across multi-socket
117  *   systems.
118  * - Our choices on how to configure each resource become progressively more
119  *   limited as the number of resources grows.
120  */
121 static unsigned long closid_free_map;
122 static int closid_free_map_len;
123 
124 int closids_supported(void)
125 {
126 	return closid_free_map_len;
127 }
128 
129 static void closid_init(void)
130 {
131 	struct resctrl_schema *s;
132 	u32 rdt_min_closid = 32;
133 
134 	/* Compute rdt_min_closid across all resources */
135 	list_for_each_entry(s, &resctrl_schema_all, list)
136 		rdt_min_closid = min(rdt_min_closid, s->num_closid);
137 
138 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
139 
140 	/* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
141 	__clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map);
142 	closid_free_map_len = rdt_min_closid;
143 }
144 
145 static int closid_alloc(void)
146 {
147 	int cleanest_closid;
148 	u32 closid;
149 
150 	lockdep_assert_held(&rdtgroup_mutex);
151 
152 	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
153 		cleanest_closid = resctrl_find_cleanest_closid();
154 		if (cleanest_closid < 0)
155 			return cleanest_closid;
156 		closid = cleanest_closid;
157 	} else {
158 		closid = ffs(closid_free_map);
159 		if (closid == 0)
160 			return -ENOSPC;
161 		closid--;
162 	}
163 	__clear_bit(closid, &closid_free_map);
164 
165 	return closid;
166 }
167 
168 void closid_free(int closid)
169 {
170 	lockdep_assert_held(&rdtgroup_mutex);
171 
172 	__set_bit(closid, &closid_free_map);
173 }
174 
175 /**
176  * closid_allocated - test if provided closid is in use
177  * @closid: closid to be tested
178  *
179  * Return: true if @closid is currently associated with a resource group,
180  * false if @closid is free
181  */
182 bool closid_allocated(unsigned int closid)
183 {
184 	lockdep_assert_held(&rdtgroup_mutex);
185 
186 	return !test_bit(closid, &closid_free_map);
187 }
188 
189 /**
190  * rdtgroup_mode_by_closid - Return mode of resource group with closid
191  * @closid: closid if the resource group
192  *
193  * Each resource group is associated with a @closid. Here the mode
194  * of a resource group can be queried by searching for it using its closid.
195  *
196  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
197  */
198 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
199 {
200 	struct rdtgroup *rdtgrp;
201 
202 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
203 		if (rdtgrp->closid == closid)
204 			return rdtgrp->mode;
205 	}
206 
207 	return RDT_NUM_MODES;
208 }
209 
210 static const char * const rdt_mode_str[] = {
211 	[RDT_MODE_SHAREABLE]		= "shareable",
212 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
213 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
214 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
215 };
216 
217 /**
218  * rdtgroup_mode_str - Return the string representation of mode
219  * @mode: the resource group mode as &enum rdtgroup_mode
220  *
221  * Return: string representation of valid mode, "unknown" otherwise
222  */
223 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
224 {
225 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
226 		return "unknown";
227 
228 	return rdt_mode_str[mode];
229 }
230 
231 /* set uid and gid of rdtgroup dirs and files to that of the creator */
232 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
233 {
234 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
235 				.ia_uid = current_fsuid(),
236 				.ia_gid = current_fsgid(), };
237 
238 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
239 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
240 		return 0;
241 
242 	return kernfs_setattr(kn, &iattr);
243 }
244 
245 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
246 {
247 	struct kernfs_node *kn;
248 	int ret;
249 
250 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
251 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
252 				  0, rft->kf_ops, rft, NULL, NULL);
253 	if (IS_ERR(kn))
254 		return PTR_ERR(kn);
255 
256 	ret = rdtgroup_kn_set_ugid(kn);
257 	if (ret) {
258 		kernfs_remove(kn);
259 		return ret;
260 	}
261 
262 	return 0;
263 }
264 
265 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
266 {
267 	struct kernfs_open_file *of = m->private;
268 	struct rftype *rft = of->kn->priv;
269 
270 	if (rft->seq_show)
271 		return rft->seq_show(of, m, arg);
272 	return 0;
273 }
274 
275 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
276 				   size_t nbytes, loff_t off)
277 {
278 	struct rftype *rft = of->kn->priv;
279 
280 	if (rft->write)
281 		return rft->write(of, buf, nbytes, off);
282 
283 	return -EINVAL;
284 }
285 
286 static const struct kernfs_ops rdtgroup_kf_single_ops = {
287 	.atomic_write_len	= PAGE_SIZE,
288 	.write			= rdtgroup_file_write,
289 	.seq_show		= rdtgroup_seqfile_show,
290 };
291 
292 static const struct kernfs_ops kf_mondata_ops = {
293 	.atomic_write_len	= PAGE_SIZE,
294 	.seq_show		= rdtgroup_mondata_show,
295 };
296 
297 static bool is_cpu_list(struct kernfs_open_file *of)
298 {
299 	struct rftype *rft = of->kn->priv;
300 
301 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
302 }
303 
304 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
305 			      struct seq_file *s, void *v)
306 {
307 	struct rdtgroup *rdtgrp;
308 	struct cpumask *mask;
309 	int ret = 0;
310 
311 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
312 
313 	if (rdtgrp) {
314 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
315 			if (!rdtgrp->plr->d) {
316 				rdt_last_cmd_clear();
317 				rdt_last_cmd_puts("Cache domain offline\n");
318 				ret = -ENODEV;
319 			} else {
320 				mask = &rdtgrp->plr->d->cpu_mask;
321 				seq_printf(s, is_cpu_list(of) ?
322 					   "%*pbl\n" : "%*pb\n",
323 					   cpumask_pr_args(mask));
324 			}
325 		} else {
326 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
327 				   cpumask_pr_args(&rdtgrp->cpu_mask));
328 		}
329 	} else {
330 		ret = -ENOENT;
331 	}
332 	rdtgroup_kn_unlock(of->kn);
333 
334 	return ret;
335 }
336 
337 /*
338  * This is safe against resctrl_sched_in() called from __switch_to()
339  * because __switch_to() is executed with interrupts disabled. A local call
340  * from update_closid_rmid() is protected against __switch_to() because
341  * preemption is disabled.
342  */
343 static void update_cpu_closid_rmid(void *info)
344 {
345 	struct rdtgroup *r = info;
346 
347 	if (r) {
348 		this_cpu_write(pqr_state.default_closid, r->closid);
349 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
350 	}
351 
352 	/*
353 	 * We cannot unconditionally write the MSR because the current
354 	 * executing task might have its own closid selected. Just reuse
355 	 * the context switch code.
356 	 */
357 	resctrl_sched_in(current);
358 }
359 
360 /*
361  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
362  *
363  * Per task closids/rmids must have been set up before calling this function.
364  */
365 static void
366 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
367 {
368 	on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
369 }
370 
371 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
372 			  cpumask_var_t tmpmask)
373 {
374 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
375 	struct list_head *head;
376 
377 	/* Check whether cpus belong to parent ctrl group */
378 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
379 	if (!cpumask_empty(tmpmask)) {
380 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
381 		return -EINVAL;
382 	}
383 
384 	/* Check whether cpus are dropped from this group */
385 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
386 	if (!cpumask_empty(tmpmask)) {
387 		/* Give any dropped cpus to parent rdtgroup */
388 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
389 		update_closid_rmid(tmpmask, prgrp);
390 	}
391 
392 	/*
393 	 * If we added cpus, remove them from previous group that owned them
394 	 * and update per-cpu rmid
395 	 */
396 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
397 	if (!cpumask_empty(tmpmask)) {
398 		head = &prgrp->mon.crdtgrp_list;
399 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
400 			if (crgrp == rdtgrp)
401 				continue;
402 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
403 				       tmpmask);
404 		}
405 		update_closid_rmid(tmpmask, rdtgrp);
406 	}
407 
408 	/* Done pushing/pulling - update this group with new mask */
409 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
410 
411 	return 0;
412 }
413 
414 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
415 {
416 	struct rdtgroup *crgrp;
417 
418 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
419 	/* update the child mon group masks as well*/
420 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
421 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
422 }
423 
424 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
425 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
426 {
427 	struct rdtgroup *r, *crgrp;
428 	struct list_head *head;
429 
430 	/* Check whether cpus are dropped from this group */
431 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
432 	if (!cpumask_empty(tmpmask)) {
433 		/* Can't drop from default group */
434 		if (rdtgrp == &rdtgroup_default) {
435 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
436 			return -EINVAL;
437 		}
438 
439 		/* Give any dropped cpus to rdtgroup_default */
440 		cpumask_or(&rdtgroup_default.cpu_mask,
441 			   &rdtgroup_default.cpu_mask, tmpmask);
442 		update_closid_rmid(tmpmask, &rdtgroup_default);
443 	}
444 
445 	/*
446 	 * If we added cpus, remove them from previous group and
447 	 * the prev group's child groups that owned them
448 	 * and update per-cpu closid/rmid.
449 	 */
450 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
451 	if (!cpumask_empty(tmpmask)) {
452 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
453 			if (r == rdtgrp)
454 				continue;
455 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
456 			if (!cpumask_empty(tmpmask1))
457 				cpumask_rdtgrp_clear(r, tmpmask1);
458 		}
459 		update_closid_rmid(tmpmask, rdtgrp);
460 	}
461 
462 	/* Done pushing/pulling - update this group with new mask */
463 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
464 
465 	/*
466 	 * Clear child mon group masks since there is a new parent mask
467 	 * now and update the rmid for the cpus the child lost.
468 	 */
469 	head = &rdtgrp->mon.crdtgrp_list;
470 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
471 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
472 		update_closid_rmid(tmpmask, rdtgrp);
473 		cpumask_clear(&crgrp->cpu_mask);
474 	}
475 
476 	return 0;
477 }
478 
479 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
480 				   char *buf, size_t nbytes, loff_t off)
481 {
482 	cpumask_var_t tmpmask, newmask, tmpmask1;
483 	struct rdtgroup *rdtgrp;
484 	int ret;
485 
486 	if (!buf)
487 		return -EINVAL;
488 
489 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
490 		return -ENOMEM;
491 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
492 		free_cpumask_var(tmpmask);
493 		return -ENOMEM;
494 	}
495 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
496 		free_cpumask_var(tmpmask);
497 		free_cpumask_var(newmask);
498 		return -ENOMEM;
499 	}
500 
501 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
502 	if (!rdtgrp) {
503 		ret = -ENOENT;
504 		goto unlock;
505 	}
506 
507 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
508 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
509 		ret = -EINVAL;
510 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
511 		goto unlock;
512 	}
513 
514 	if (is_cpu_list(of))
515 		ret = cpulist_parse(buf, newmask);
516 	else
517 		ret = cpumask_parse(buf, newmask);
518 
519 	if (ret) {
520 		rdt_last_cmd_puts("Bad CPU list/mask\n");
521 		goto unlock;
522 	}
523 
524 	/* check that user didn't specify any offline cpus */
525 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
526 	if (!cpumask_empty(tmpmask)) {
527 		ret = -EINVAL;
528 		rdt_last_cmd_puts("Can only assign online CPUs\n");
529 		goto unlock;
530 	}
531 
532 	if (rdtgrp->type == RDTCTRL_GROUP)
533 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
534 	else if (rdtgrp->type == RDTMON_GROUP)
535 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
536 	else
537 		ret = -EINVAL;
538 
539 unlock:
540 	rdtgroup_kn_unlock(of->kn);
541 	free_cpumask_var(tmpmask);
542 	free_cpumask_var(newmask);
543 	free_cpumask_var(tmpmask1);
544 
545 	return ret ?: nbytes;
546 }
547 
548 /**
549  * rdtgroup_remove - the helper to remove resource group safely
550  * @rdtgrp: resource group to remove
551  *
552  * On resource group creation via a mkdir, an extra kernfs_node reference is
553  * taken to ensure that the rdtgroup structure remains accessible for the
554  * rdtgroup_kn_unlock() calls where it is removed.
555  *
556  * Drop the extra reference here, then free the rdtgroup structure.
557  *
558  * Return: void
559  */
560 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
561 {
562 	kernfs_put(rdtgrp->kn);
563 	kfree(rdtgrp);
564 }
565 
566 static void _update_task_closid_rmid(void *task)
567 {
568 	/*
569 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
570 	 * Otherwise, the MSR is updated when the task is scheduled in.
571 	 */
572 	if (task == current)
573 		resctrl_sched_in(task);
574 }
575 
576 static void update_task_closid_rmid(struct task_struct *t)
577 {
578 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
579 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
580 	else
581 		_update_task_closid_rmid(t);
582 }
583 
584 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp)
585 {
586 	u32 closid, rmid = rdtgrp->mon.rmid;
587 
588 	if (rdtgrp->type == RDTCTRL_GROUP)
589 		closid = rdtgrp->closid;
590 	else if (rdtgrp->type == RDTMON_GROUP)
591 		closid = rdtgrp->mon.parent->closid;
592 	else
593 		return false;
594 
595 	return resctrl_arch_match_closid(tsk, closid) &&
596 	       resctrl_arch_match_rmid(tsk, closid, rmid);
597 }
598 
599 static int __rdtgroup_move_task(struct task_struct *tsk,
600 				struct rdtgroup *rdtgrp)
601 {
602 	/* If the task is already in rdtgrp, no need to move the task. */
603 	if (task_in_rdtgroup(tsk, rdtgrp))
604 		return 0;
605 
606 	/*
607 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
608 	 * updated by them.
609 	 *
610 	 * For ctrl_mon groups, move both closid and rmid.
611 	 * For monitor groups, can move the tasks only from
612 	 * their parent CTRL group.
613 	 */
614 	if (rdtgrp->type == RDTMON_GROUP &&
615 	    !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) {
616 		rdt_last_cmd_puts("Can't move task to different control group\n");
617 		return -EINVAL;
618 	}
619 
620 	if (rdtgrp->type == RDTMON_GROUP)
621 		resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid,
622 					     rdtgrp->mon.rmid);
623 	else
624 		resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid,
625 					     rdtgrp->mon.rmid);
626 
627 	/*
628 	 * Ensure the task's closid and rmid are written before determining if
629 	 * the task is current that will decide if it will be interrupted.
630 	 * This pairs with the full barrier between the rq->curr update and
631 	 * resctrl_sched_in() during context switch.
632 	 */
633 	smp_mb();
634 
635 	/*
636 	 * By now, the task's closid and rmid are set. If the task is current
637 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
638 	 * group go into effect. If the task is not current, the MSR will be
639 	 * updated when the task is scheduled in.
640 	 */
641 	update_task_closid_rmid(tsk);
642 
643 	return 0;
644 }
645 
646 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
647 {
648 	return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) &&
649 		resctrl_arch_match_closid(t, r->closid));
650 }
651 
652 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
653 {
654 	return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) &&
655 		resctrl_arch_match_rmid(t, r->mon.parent->closid,
656 					r->mon.rmid));
657 }
658 
659 /**
660  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
661  * @r: Resource group
662  *
663  * Return: 1 if tasks have been assigned to @r, 0 otherwise
664  */
665 int rdtgroup_tasks_assigned(struct rdtgroup *r)
666 {
667 	struct task_struct *p, *t;
668 	int ret = 0;
669 
670 	lockdep_assert_held(&rdtgroup_mutex);
671 
672 	rcu_read_lock();
673 	for_each_process_thread(p, t) {
674 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
675 			ret = 1;
676 			break;
677 		}
678 	}
679 	rcu_read_unlock();
680 
681 	return ret;
682 }
683 
684 static int rdtgroup_task_write_permission(struct task_struct *task,
685 					  struct kernfs_open_file *of)
686 {
687 	const struct cred *tcred = get_task_cred(task);
688 	const struct cred *cred = current_cred();
689 	int ret = 0;
690 
691 	/*
692 	 * Even if we're attaching all tasks in the thread group, we only
693 	 * need to check permissions on one of them.
694 	 */
695 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
696 	    !uid_eq(cred->euid, tcred->uid) &&
697 	    !uid_eq(cred->euid, tcred->suid)) {
698 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
699 		ret = -EPERM;
700 	}
701 
702 	put_cred(tcred);
703 	return ret;
704 }
705 
706 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
707 			      struct kernfs_open_file *of)
708 {
709 	struct task_struct *tsk;
710 	int ret;
711 
712 	rcu_read_lock();
713 	if (pid) {
714 		tsk = find_task_by_vpid(pid);
715 		if (!tsk) {
716 			rcu_read_unlock();
717 			rdt_last_cmd_printf("No task %d\n", pid);
718 			return -ESRCH;
719 		}
720 	} else {
721 		tsk = current;
722 	}
723 
724 	get_task_struct(tsk);
725 	rcu_read_unlock();
726 
727 	ret = rdtgroup_task_write_permission(tsk, of);
728 	if (!ret)
729 		ret = __rdtgroup_move_task(tsk, rdtgrp);
730 
731 	put_task_struct(tsk);
732 	return ret;
733 }
734 
735 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
736 				    char *buf, size_t nbytes, loff_t off)
737 {
738 	struct rdtgroup *rdtgrp;
739 	char *pid_str;
740 	int ret = 0;
741 	pid_t pid;
742 
743 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
744 	if (!rdtgrp) {
745 		rdtgroup_kn_unlock(of->kn);
746 		return -ENOENT;
747 	}
748 	rdt_last_cmd_clear();
749 
750 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
751 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
752 		ret = -EINVAL;
753 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
754 		goto unlock;
755 	}
756 
757 	while (buf && buf[0] != '\0' && buf[0] != '\n') {
758 		pid_str = strim(strsep(&buf, ","));
759 
760 		if (kstrtoint(pid_str, 0, &pid)) {
761 			rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
762 			ret = -EINVAL;
763 			break;
764 		}
765 
766 		if (pid < 0) {
767 			rdt_last_cmd_printf("Invalid pid %d\n", pid);
768 			ret = -EINVAL;
769 			break;
770 		}
771 
772 		ret = rdtgroup_move_task(pid, rdtgrp, of);
773 		if (ret) {
774 			rdt_last_cmd_printf("Error while processing task %d\n", pid);
775 			break;
776 		}
777 	}
778 
779 unlock:
780 	rdtgroup_kn_unlock(of->kn);
781 
782 	return ret ?: nbytes;
783 }
784 
785 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
786 {
787 	struct task_struct *p, *t;
788 	pid_t pid;
789 
790 	rcu_read_lock();
791 	for_each_process_thread(p, t) {
792 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
793 			pid = task_pid_vnr(t);
794 			if (pid)
795 				seq_printf(s, "%d\n", pid);
796 		}
797 	}
798 	rcu_read_unlock();
799 }
800 
801 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
802 			       struct seq_file *s, void *v)
803 {
804 	struct rdtgroup *rdtgrp;
805 	int ret = 0;
806 
807 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
808 	if (rdtgrp)
809 		show_rdt_tasks(rdtgrp, s);
810 	else
811 		ret = -ENOENT;
812 	rdtgroup_kn_unlock(of->kn);
813 
814 	return ret;
815 }
816 
817 static int rdtgroup_closid_show(struct kernfs_open_file *of,
818 				struct seq_file *s, void *v)
819 {
820 	struct rdtgroup *rdtgrp;
821 	int ret = 0;
822 
823 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
824 	if (rdtgrp)
825 		seq_printf(s, "%u\n", rdtgrp->closid);
826 	else
827 		ret = -ENOENT;
828 	rdtgroup_kn_unlock(of->kn);
829 
830 	return ret;
831 }
832 
833 static int rdtgroup_rmid_show(struct kernfs_open_file *of,
834 			      struct seq_file *s, void *v)
835 {
836 	struct rdtgroup *rdtgrp;
837 	int ret = 0;
838 
839 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
840 	if (rdtgrp)
841 		seq_printf(s, "%u\n", rdtgrp->mon.rmid);
842 	else
843 		ret = -ENOENT;
844 	rdtgroup_kn_unlock(of->kn);
845 
846 	return ret;
847 }
848 
849 #ifdef CONFIG_PROC_CPU_RESCTRL
850 
851 /*
852  * A task can only be part of one resctrl control group and of one monitor
853  * group which is associated to that control group.
854  *
855  * 1)   res:
856  *      mon:
857  *
858  *    resctrl is not available.
859  *
860  * 2)   res:/
861  *      mon:
862  *
863  *    Task is part of the root resctrl control group, and it is not associated
864  *    to any monitor group.
865  *
866  * 3)  res:/
867  *     mon:mon0
868  *
869  *    Task is part of the root resctrl control group and monitor group mon0.
870  *
871  * 4)  res:group0
872  *     mon:
873  *
874  *    Task is part of resctrl control group group0, and it is not associated
875  *    to any monitor group.
876  *
877  * 5) res:group0
878  *    mon:mon1
879  *
880  *    Task is part of resctrl control group group0 and monitor group mon1.
881  */
882 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
883 		      struct pid *pid, struct task_struct *tsk)
884 {
885 	struct rdtgroup *rdtg;
886 	int ret = 0;
887 
888 	mutex_lock(&rdtgroup_mutex);
889 
890 	/* Return empty if resctrl has not been mounted. */
891 	if (!resctrl_mounted) {
892 		seq_puts(s, "res:\nmon:\n");
893 		goto unlock;
894 	}
895 
896 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
897 		struct rdtgroup *crg;
898 
899 		/*
900 		 * Task information is only relevant for shareable
901 		 * and exclusive groups.
902 		 */
903 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
904 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
905 			continue;
906 
907 		if (!resctrl_arch_match_closid(tsk, rdtg->closid))
908 			continue;
909 
910 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
911 			   rdtg->kn->name);
912 		seq_puts(s, "mon:");
913 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
914 				    mon.crdtgrp_list) {
915 			if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid,
916 						     crg->mon.rmid))
917 				continue;
918 			seq_printf(s, "%s", crg->kn->name);
919 			break;
920 		}
921 		seq_putc(s, '\n');
922 		goto unlock;
923 	}
924 	/*
925 	 * The above search should succeed. Otherwise return
926 	 * with an error.
927 	 */
928 	ret = -ENOENT;
929 unlock:
930 	mutex_unlock(&rdtgroup_mutex);
931 
932 	return ret;
933 }
934 #endif
935 
936 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
937 				    struct seq_file *seq, void *v)
938 {
939 	int len;
940 
941 	mutex_lock(&rdtgroup_mutex);
942 	len = seq_buf_used(&last_cmd_status);
943 	if (len)
944 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
945 	else
946 		seq_puts(seq, "ok\n");
947 	mutex_unlock(&rdtgroup_mutex);
948 	return 0;
949 }
950 
951 static int rdt_num_closids_show(struct kernfs_open_file *of,
952 				struct seq_file *seq, void *v)
953 {
954 	struct resctrl_schema *s = of->kn->parent->priv;
955 
956 	seq_printf(seq, "%u\n", s->num_closid);
957 	return 0;
958 }
959 
960 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
961 			     struct seq_file *seq, void *v)
962 {
963 	struct resctrl_schema *s = of->kn->parent->priv;
964 	struct rdt_resource *r = s->res;
965 
966 	seq_printf(seq, "%x\n", r->default_ctrl);
967 	return 0;
968 }
969 
970 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
971 			     struct seq_file *seq, void *v)
972 {
973 	struct resctrl_schema *s = of->kn->parent->priv;
974 	struct rdt_resource *r = s->res;
975 
976 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
977 	return 0;
978 }
979 
980 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
981 				   struct seq_file *seq, void *v)
982 {
983 	struct resctrl_schema *s = of->kn->parent->priv;
984 	struct rdt_resource *r = s->res;
985 
986 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
987 	return 0;
988 }
989 
990 /*
991  * rdt_bit_usage_show - Display current usage of resources
992  *
993  * A domain is a shared resource that can now be allocated differently. Here
994  * we display the current regions of the domain as an annotated bitmask.
995  * For each domain of this resource its allocation bitmask
996  * is annotated as below to indicate the current usage of the corresponding bit:
997  *   0 - currently unused
998  *   X - currently available for sharing and used by software and hardware
999  *   H - currently used by hardware only but available for software use
1000  *   S - currently used and shareable by software only
1001  *   E - currently used exclusively by one resource group
1002  *   P - currently pseudo-locked by one resource group
1003  */
1004 static int rdt_bit_usage_show(struct kernfs_open_file *of,
1005 			      struct seq_file *seq, void *v)
1006 {
1007 	struct resctrl_schema *s = of->kn->parent->priv;
1008 	/*
1009 	 * Use unsigned long even though only 32 bits are used to ensure
1010 	 * test_bit() is used safely.
1011 	 */
1012 	unsigned long sw_shareable = 0, hw_shareable = 0;
1013 	unsigned long exclusive = 0, pseudo_locked = 0;
1014 	struct rdt_resource *r = s->res;
1015 	struct rdt_domain *dom;
1016 	int i, hwb, swb, excl, psl;
1017 	enum rdtgrp_mode mode;
1018 	bool sep = false;
1019 	u32 ctrl_val;
1020 
1021 	cpus_read_lock();
1022 	mutex_lock(&rdtgroup_mutex);
1023 	hw_shareable = r->cache.shareable_bits;
1024 	list_for_each_entry(dom, &r->domains, list) {
1025 		if (sep)
1026 			seq_putc(seq, ';');
1027 		sw_shareable = 0;
1028 		exclusive = 0;
1029 		seq_printf(seq, "%d=", dom->id);
1030 		for (i = 0; i < closids_supported(); i++) {
1031 			if (!closid_allocated(i))
1032 				continue;
1033 			ctrl_val = resctrl_arch_get_config(r, dom, i,
1034 							   s->conf_type);
1035 			mode = rdtgroup_mode_by_closid(i);
1036 			switch (mode) {
1037 			case RDT_MODE_SHAREABLE:
1038 				sw_shareable |= ctrl_val;
1039 				break;
1040 			case RDT_MODE_EXCLUSIVE:
1041 				exclusive |= ctrl_val;
1042 				break;
1043 			case RDT_MODE_PSEUDO_LOCKSETUP:
1044 			/*
1045 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1046 			 * here but not included since the CBM
1047 			 * associated with this CLOSID in this mode
1048 			 * is not initialized and no task or cpu can be
1049 			 * assigned this CLOSID.
1050 			 */
1051 				break;
1052 			case RDT_MODE_PSEUDO_LOCKED:
1053 			case RDT_NUM_MODES:
1054 				WARN(1,
1055 				     "invalid mode for closid %d\n", i);
1056 				break;
1057 			}
1058 		}
1059 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1060 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1061 			hwb = test_bit(i, &hw_shareable);
1062 			swb = test_bit(i, &sw_shareable);
1063 			excl = test_bit(i, &exclusive);
1064 			psl = test_bit(i, &pseudo_locked);
1065 			if (hwb && swb)
1066 				seq_putc(seq, 'X');
1067 			else if (hwb && !swb)
1068 				seq_putc(seq, 'H');
1069 			else if (!hwb && swb)
1070 				seq_putc(seq, 'S');
1071 			else if (excl)
1072 				seq_putc(seq, 'E');
1073 			else if (psl)
1074 				seq_putc(seq, 'P');
1075 			else /* Unused bits remain */
1076 				seq_putc(seq, '0');
1077 		}
1078 		sep = true;
1079 	}
1080 	seq_putc(seq, '\n');
1081 	mutex_unlock(&rdtgroup_mutex);
1082 	cpus_read_unlock();
1083 	return 0;
1084 }
1085 
1086 static int rdt_min_bw_show(struct kernfs_open_file *of,
1087 			     struct seq_file *seq, void *v)
1088 {
1089 	struct resctrl_schema *s = of->kn->parent->priv;
1090 	struct rdt_resource *r = s->res;
1091 
1092 	seq_printf(seq, "%u\n", r->membw.min_bw);
1093 	return 0;
1094 }
1095 
1096 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1097 			      struct seq_file *seq, void *v)
1098 {
1099 	struct rdt_resource *r = of->kn->parent->priv;
1100 
1101 	seq_printf(seq, "%d\n", r->num_rmid);
1102 
1103 	return 0;
1104 }
1105 
1106 static int rdt_mon_features_show(struct kernfs_open_file *of,
1107 				 struct seq_file *seq, void *v)
1108 {
1109 	struct rdt_resource *r = of->kn->parent->priv;
1110 	struct mon_evt *mevt;
1111 
1112 	list_for_each_entry(mevt, &r->evt_list, list) {
1113 		seq_printf(seq, "%s\n", mevt->name);
1114 		if (mevt->configurable)
1115 			seq_printf(seq, "%s_config\n", mevt->name);
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1122 			     struct seq_file *seq, void *v)
1123 {
1124 	struct resctrl_schema *s = of->kn->parent->priv;
1125 	struct rdt_resource *r = s->res;
1126 
1127 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1128 	return 0;
1129 }
1130 
1131 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1132 			     struct seq_file *seq, void *v)
1133 {
1134 	struct resctrl_schema *s = of->kn->parent->priv;
1135 	struct rdt_resource *r = s->res;
1136 
1137 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1138 	return 0;
1139 }
1140 
1141 static int max_threshold_occ_show(struct kernfs_open_file *of,
1142 				  struct seq_file *seq, void *v)
1143 {
1144 	seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1145 
1146 	return 0;
1147 }
1148 
1149 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1150 					 struct seq_file *seq, void *v)
1151 {
1152 	struct resctrl_schema *s = of->kn->parent->priv;
1153 	struct rdt_resource *r = s->res;
1154 
1155 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1156 		seq_puts(seq, "per-thread\n");
1157 	else
1158 		seq_puts(seq, "max\n");
1159 
1160 	return 0;
1161 }
1162 
1163 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1164 				       char *buf, size_t nbytes, loff_t off)
1165 {
1166 	unsigned int bytes;
1167 	int ret;
1168 
1169 	ret = kstrtouint(buf, 0, &bytes);
1170 	if (ret)
1171 		return ret;
1172 
1173 	if (bytes > resctrl_rmid_realloc_limit)
1174 		return -EINVAL;
1175 
1176 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1177 
1178 	return nbytes;
1179 }
1180 
1181 /*
1182  * rdtgroup_mode_show - Display mode of this resource group
1183  */
1184 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1185 			      struct seq_file *s, void *v)
1186 {
1187 	struct rdtgroup *rdtgrp;
1188 
1189 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1190 	if (!rdtgrp) {
1191 		rdtgroup_kn_unlock(of->kn);
1192 		return -ENOENT;
1193 	}
1194 
1195 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1196 
1197 	rdtgroup_kn_unlock(of->kn);
1198 	return 0;
1199 }
1200 
1201 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1202 {
1203 	switch (my_type) {
1204 	case CDP_CODE:
1205 		return CDP_DATA;
1206 	case CDP_DATA:
1207 		return CDP_CODE;
1208 	default:
1209 	case CDP_NONE:
1210 		return CDP_NONE;
1211 	}
1212 }
1213 
1214 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1215 					struct seq_file *seq, void *v)
1216 {
1217 	struct resctrl_schema *s = of->kn->parent->priv;
1218 	struct rdt_resource *r = s->res;
1219 
1220 	seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1221 
1222 	return 0;
1223 }
1224 
1225 /**
1226  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1227  * @r: Resource to which domain instance @d belongs.
1228  * @d: The domain instance for which @closid is being tested.
1229  * @cbm: Capacity bitmask being tested.
1230  * @closid: Intended closid for @cbm.
1231  * @type: CDP type of @r.
1232  * @exclusive: Only check if overlaps with exclusive resource groups
1233  *
1234  * Checks if provided @cbm intended to be used for @closid on domain
1235  * @d overlaps with any other closids or other hardware usage associated
1236  * with this domain. If @exclusive is true then only overlaps with
1237  * resource groups in exclusive mode will be considered. If @exclusive
1238  * is false then overlaps with any resource group or hardware entities
1239  * will be considered.
1240  *
1241  * @cbm is unsigned long, even if only 32 bits are used, to make the
1242  * bitmap functions work correctly.
1243  *
1244  * Return: false if CBM does not overlap, true if it does.
1245  */
1246 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1247 				    unsigned long cbm, int closid,
1248 				    enum resctrl_conf_type type, bool exclusive)
1249 {
1250 	enum rdtgrp_mode mode;
1251 	unsigned long ctrl_b;
1252 	int i;
1253 
1254 	/* Check for any overlap with regions used by hardware directly */
1255 	if (!exclusive) {
1256 		ctrl_b = r->cache.shareable_bits;
1257 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1258 			return true;
1259 	}
1260 
1261 	/* Check for overlap with other resource groups */
1262 	for (i = 0; i < closids_supported(); i++) {
1263 		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1264 		mode = rdtgroup_mode_by_closid(i);
1265 		if (closid_allocated(i) && i != closid &&
1266 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1267 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1268 				if (exclusive) {
1269 					if (mode == RDT_MODE_EXCLUSIVE)
1270 						return true;
1271 					continue;
1272 				}
1273 				return true;
1274 			}
1275 		}
1276 	}
1277 
1278 	return false;
1279 }
1280 
1281 /**
1282  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1283  * @s: Schema for the resource to which domain instance @d belongs.
1284  * @d: The domain instance for which @closid is being tested.
1285  * @cbm: Capacity bitmask being tested.
1286  * @closid: Intended closid for @cbm.
1287  * @exclusive: Only check if overlaps with exclusive resource groups
1288  *
1289  * Resources that can be allocated using a CBM can use the CBM to control
1290  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1291  * for overlap. Overlap test is not limited to the specific resource for
1292  * which the CBM is intended though - when dealing with CDP resources that
1293  * share the underlying hardware the overlap check should be performed on
1294  * the CDP resource sharing the hardware also.
1295  *
1296  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1297  * overlap test.
1298  *
1299  * Return: true if CBM overlap detected, false if there is no overlap
1300  */
1301 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1302 			   unsigned long cbm, int closid, bool exclusive)
1303 {
1304 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1305 	struct rdt_resource *r = s->res;
1306 
1307 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1308 				    exclusive))
1309 		return true;
1310 
1311 	if (!resctrl_arch_get_cdp_enabled(r->rid))
1312 		return false;
1313 	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1314 }
1315 
1316 /**
1317  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1318  * @rdtgrp: Resource group identified through its closid.
1319  *
1320  * An exclusive resource group implies that there should be no sharing of
1321  * its allocated resources. At the time this group is considered to be
1322  * exclusive this test can determine if its current schemata supports this
1323  * setting by testing for overlap with all other resource groups.
1324  *
1325  * Return: true if resource group can be exclusive, false if there is overlap
1326  * with allocations of other resource groups and thus this resource group
1327  * cannot be exclusive.
1328  */
1329 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1330 {
1331 	int closid = rdtgrp->closid;
1332 	struct resctrl_schema *s;
1333 	struct rdt_resource *r;
1334 	bool has_cache = false;
1335 	struct rdt_domain *d;
1336 	u32 ctrl;
1337 
1338 	/* Walking r->domains, ensure it can't race with cpuhp */
1339 	lockdep_assert_cpus_held();
1340 
1341 	list_for_each_entry(s, &resctrl_schema_all, list) {
1342 		r = s->res;
1343 		if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1344 			continue;
1345 		has_cache = true;
1346 		list_for_each_entry(d, &r->domains, list) {
1347 			ctrl = resctrl_arch_get_config(r, d, closid,
1348 						       s->conf_type);
1349 			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1350 				rdt_last_cmd_puts("Schemata overlaps\n");
1351 				return false;
1352 			}
1353 		}
1354 	}
1355 
1356 	if (!has_cache) {
1357 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1358 		return false;
1359 	}
1360 
1361 	return true;
1362 }
1363 
1364 /*
1365  * rdtgroup_mode_write - Modify the resource group's mode
1366  */
1367 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1368 				   char *buf, size_t nbytes, loff_t off)
1369 {
1370 	struct rdtgroup *rdtgrp;
1371 	enum rdtgrp_mode mode;
1372 	int ret = 0;
1373 
1374 	/* Valid input requires a trailing newline */
1375 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1376 		return -EINVAL;
1377 	buf[nbytes - 1] = '\0';
1378 
1379 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1380 	if (!rdtgrp) {
1381 		rdtgroup_kn_unlock(of->kn);
1382 		return -ENOENT;
1383 	}
1384 
1385 	rdt_last_cmd_clear();
1386 
1387 	mode = rdtgrp->mode;
1388 
1389 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1390 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1391 	    (!strcmp(buf, "pseudo-locksetup") &&
1392 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1393 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1394 		goto out;
1395 
1396 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1397 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1398 		ret = -EINVAL;
1399 		goto out;
1400 	}
1401 
1402 	if (!strcmp(buf, "shareable")) {
1403 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1404 			ret = rdtgroup_locksetup_exit(rdtgrp);
1405 			if (ret)
1406 				goto out;
1407 		}
1408 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1409 	} else if (!strcmp(buf, "exclusive")) {
1410 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1411 			ret = -EINVAL;
1412 			goto out;
1413 		}
1414 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1415 			ret = rdtgroup_locksetup_exit(rdtgrp);
1416 			if (ret)
1417 				goto out;
1418 		}
1419 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1420 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1421 		ret = rdtgroup_locksetup_enter(rdtgrp);
1422 		if (ret)
1423 			goto out;
1424 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1425 	} else {
1426 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1427 		ret = -EINVAL;
1428 	}
1429 
1430 out:
1431 	rdtgroup_kn_unlock(of->kn);
1432 	return ret ?: nbytes;
1433 }
1434 
1435 /**
1436  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1437  * @r: RDT resource to which @d belongs.
1438  * @d: RDT domain instance.
1439  * @cbm: bitmask for which the size should be computed.
1440  *
1441  * The bitmask provided associated with the RDT domain instance @d will be
1442  * translated into how many bytes it represents. The size in bytes is
1443  * computed by first dividing the total cache size by the CBM length to
1444  * determine how many bytes each bit in the bitmask represents. The result
1445  * is multiplied with the number of bits set in the bitmask.
1446  *
1447  * @cbm is unsigned long, even if only 32 bits are used to make the
1448  * bitmap functions work correctly.
1449  */
1450 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1451 				  struct rdt_domain *d, unsigned long cbm)
1452 {
1453 	struct cpu_cacheinfo *ci;
1454 	unsigned int size = 0;
1455 	int num_b, i;
1456 
1457 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1458 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1459 	for (i = 0; i < ci->num_leaves; i++) {
1460 		if (ci->info_list[i].level == r->cache_level) {
1461 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1462 			break;
1463 		}
1464 	}
1465 
1466 	return size;
1467 }
1468 
1469 /*
1470  * rdtgroup_size_show - Display size in bytes of allocated regions
1471  *
1472  * The "size" file mirrors the layout of the "schemata" file, printing the
1473  * size in bytes of each region instead of the capacity bitmask.
1474  */
1475 static int rdtgroup_size_show(struct kernfs_open_file *of,
1476 			      struct seq_file *s, void *v)
1477 {
1478 	struct resctrl_schema *schema;
1479 	enum resctrl_conf_type type;
1480 	struct rdtgroup *rdtgrp;
1481 	struct rdt_resource *r;
1482 	struct rdt_domain *d;
1483 	unsigned int size;
1484 	int ret = 0;
1485 	u32 closid;
1486 	bool sep;
1487 	u32 ctrl;
1488 
1489 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1490 	if (!rdtgrp) {
1491 		rdtgroup_kn_unlock(of->kn);
1492 		return -ENOENT;
1493 	}
1494 
1495 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1496 		if (!rdtgrp->plr->d) {
1497 			rdt_last_cmd_clear();
1498 			rdt_last_cmd_puts("Cache domain offline\n");
1499 			ret = -ENODEV;
1500 		} else {
1501 			seq_printf(s, "%*s:", max_name_width,
1502 				   rdtgrp->plr->s->name);
1503 			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1504 						    rdtgrp->plr->d,
1505 						    rdtgrp->plr->cbm);
1506 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1507 		}
1508 		goto out;
1509 	}
1510 
1511 	closid = rdtgrp->closid;
1512 
1513 	list_for_each_entry(schema, &resctrl_schema_all, list) {
1514 		r = schema->res;
1515 		type = schema->conf_type;
1516 		sep = false;
1517 		seq_printf(s, "%*s:", max_name_width, schema->name);
1518 		list_for_each_entry(d, &r->domains, list) {
1519 			if (sep)
1520 				seq_putc(s, ';');
1521 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1522 				size = 0;
1523 			} else {
1524 				if (is_mba_sc(r))
1525 					ctrl = d->mbps_val[closid];
1526 				else
1527 					ctrl = resctrl_arch_get_config(r, d,
1528 								       closid,
1529 								       type);
1530 				if (r->rid == RDT_RESOURCE_MBA ||
1531 				    r->rid == RDT_RESOURCE_SMBA)
1532 					size = ctrl;
1533 				else
1534 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1535 			}
1536 			seq_printf(s, "%d=%u", d->id, size);
1537 			sep = true;
1538 		}
1539 		seq_putc(s, '\n');
1540 	}
1541 
1542 out:
1543 	rdtgroup_kn_unlock(of->kn);
1544 
1545 	return ret;
1546 }
1547 
1548 struct mon_config_info {
1549 	u32 evtid;
1550 	u32 mon_config;
1551 };
1552 
1553 #define INVALID_CONFIG_INDEX   UINT_MAX
1554 
1555 /**
1556  * mon_event_config_index_get - get the hardware index for the
1557  *                              configurable event
1558  * @evtid: event id.
1559  *
1560  * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1561  *         1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1562  *         INVALID_CONFIG_INDEX for invalid evtid
1563  */
1564 static inline unsigned int mon_event_config_index_get(u32 evtid)
1565 {
1566 	switch (evtid) {
1567 	case QOS_L3_MBM_TOTAL_EVENT_ID:
1568 		return 0;
1569 	case QOS_L3_MBM_LOCAL_EVENT_ID:
1570 		return 1;
1571 	default:
1572 		/* Should never reach here */
1573 		return INVALID_CONFIG_INDEX;
1574 	}
1575 }
1576 
1577 static void mon_event_config_read(void *info)
1578 {
1579 	struct mon_config_info *mon_info = info;
1580 	unsigned int index;
1581 	u64 msrval;
1582 
1583 	index = mon_event_config_index_get(mon_info->evtid);
1584 	if (index == INVALID_CONFIG_INDEX) {
1585 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1586 		return;
1587 	}
1588 	rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1589 
1590 	/* Report only the valid event configuration bits */
1591 	mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1592 }
1593 
1594 static void mondata_config_read(struct rdt_domain *d, struct mon_config_info *mon_info)
1595 {
1596 	smp_call_function_any(&d->cpu_mask, mon_event_config_read, mon_info, 1);
1597 }
1598 
1599 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1600 {
1601 	struct mon_config_info mon_info = {0};
1602 	struct rdt_domain *dom;
1603 	bool sep = false;
1604 
1605 	cpus_read_lock();
1606 	mutex_lock(&rdtgroup_mutex);
1607 
1608 	list_for_each_entry(dom, &r->domains, list) {
1609 		if (sep)
1610 			seq_puts(s, ";");
1611 
1612 		memset(&mon_info, 0, sizeof(struct mon_config_info));
1613 		mon_info.evtid = evtid;
1614 		mondata_config_read(dom, &mon_info);
1615 
1616 		seq_printf(s, "%d=0x%02x", dom->id, mon_info.mon_config);
1617 		sep = true;
1618 	}
1619 	seq_puts(s, "\n");
1620 
1621 	mutex_unlock(&rdtgroup_mutex);
1622 	cpus_read_unlock();
1623 
1624 	return 0;
1625 }
1626 
1627 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1628 				       struct seq_file *seq, void *v)
1629 {
1630 	struct rdt_resource *r = of->kn->parent->priv;
1631 
1632 	mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1633 
1634 	return 0;
1635 }
1636 
1637 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1638 				       struct seq_file *seq, void *v)
1639 {
1640 	struct rdt_resource *r = of->kn->parent->priv;
1641 
1642 	mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1643 
1644 	return 0;
1645 }
1646 
1647 static void mon_event_config_write(void *info)
1648 {
1649 	struct mon_config_info *mon_info = info;
1650 	unsigned int index;
1651 
1652 	index = mon_event_config_index_get(mon_info->evtid);
1653 	if (index == INVALID_CONFIG_INDEX) {
1654 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1655 		return;
1656 	}
1657 	wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1658 }
1659 
1660 static void mbm_config_write_domain(struct rdt_resource *r,
1661 				    struct rdt_domain *d, u32 evtid, u32 val)
1662 {
1663 	struct mon_config_info mon_info = {0};
1664 
1665 	/*
1666 	 * Read the current config value first. If both are the same then
1667 	 * no need to write it again.
1668 	 */
1669 	mon_info.evtid = evtid;
1670 	mondata_config_read(d, &mon_info);
1671 	if (mon_info.mon_config == val)
1672 		return;
1673 
1674 	mon_info.mon_config = val;
1675 
1676 	/*
1677 	 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1678 	 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1679 	 * are scoped at the domain level. Writing any of these MSRs
1680 	 * on one CPU is observed by all the CPUs in the domain.
1681 	 */
1682 	smp_call_function_any(&d->cpu_mask, mon_event_config_write,
1683 			      &mon_info, 1);
1684 
1685 	/*
1686 	 * When an Event Configuration is changed, the bandwidth counters
1687 	 * for all RMIDs and Events will be cleared by the hardware. The
1688 	 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1689 	 * every RMID on the next read to any event for every RMID.
1690 	 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1691 	 * cleared while it is tracked by the hardware. Clear the
1692 	 * mbm_local and mbm_total counts for all the RMIDs.
1693 	 */
1694 	resctrl_arch_reset_rmid_all(r, d);
1695 }
1696 
1697 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1698 {
1699 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1700 	char *dom_str = NULL, *id_str;
1701 	unsigned long dom_id, val;
1702 	struct rdt_domain *d;
1703 
1704 	/* Walking r->domains, ensure it can't race with cpuhp */
1705 	lockdep_assert_cpus_held();
1706 
1707 next:
1708 	if (!tok || tok[0] == '\0')
1709 		return 0;
1710 
1711 	/* Start processing the strings for each domain */
1712 	dom_str = strim(strsep(&tok, ";"));
1713 	id_str = strsep(&dom_str, "=");
1714 
1715 	if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1716 		rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1717 		return -EINVAL;
1718 	}
1719 
1720 	if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1721 		rdt_last_cmd_puts("Non-numeric event configuration value\n");
1722 		return -EINVAL;
1723 	}
1724 
1725 	/* Value from user cannot be more than the supported set of events */
1726 	if ((val & hw_res->mbm_cfg_mask) != val) {
1727 		rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1728 				    hw_res->mbm_cfg_mask);
1729 		return -EINVAL;
1730 	}
1731 
1732 	list_for_each_entry(d, &r->domains, list) {
1733 		if (d->id == dom_id) {
1734 			mbm_config_write_domain(r, d, evtid, val);
1735 			goto next;
1736 		}
1737 	}
1738 
1739 	return -EINVAL;
1740 }
1741 
1742 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1743 					    char *buf, size_t nbytes,
1744 					    loff_t off)
1745 {
1746 	struct rdt_resource *r = of->kn->parent->priv;
1747 	int ret;
1748 
1749 	/* Valid input requires a trailing newline */
1750 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1751 		return -EINVAL;
1752 
1753 	cpus_read_lock();
1754 	mutex_lock(&rdtgroup_mutex);
1755 
1756 	rdt_last_cmd_clear();
1757 
1758 	buf[nbytes - 1] = '\0';
1759 
1760 	ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1761 
1762 	mutex_unlock(&rdtgroup_mutex);
1763 	cpus_read_unlock();
1764 
1765 	return ret ?: nbytes;
1766 }
1767 
1768 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1769 					    char *buf, size_t nbytes,
1770 					    loff_t off)
1771 {
1772 	struct rdt_resource *r = of->kn->parent->priv;
1773 	int ret;
1774 
1775 	/* Valid input requires a trailing newline */
1776 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1777 		return -EINVAL;
1778 
1779 	cpus_read_lock();
1780 	mutex_lock(&rdtgroup_mutex);
1781 
1782 	rdt_last_cmd_clear();
1783 
1784 	buf[nbytes - 1] = '\0';
1785 
1786 	ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1787 
1788 	mutex_unlock(&rdtgroup_mutex);
1789 	cpus_read_unlock();
1790 
1791 	return ret ?: nbytes;
1792 }
1793 
1794 /* rdtgroup information files for one cache resource. */
1795 static struct rftype res_common_files[] = {
1796 	{
1797 		.name		= "last_cmd_status",
1798 		.mode		= 0444,
1799 		.kf_ops		= &rdtgroup_kf_single_ops,
1800 		.seq_show	= rdt_last_cmd_status_show,
1801 		.fflags		= RFTYPE_TOP_INFO,
1802 	},
1803 	{
1804 		.name		= "num_closids",
1805 		.mode		= 0444,
1806 		.kf_ops		= &rdtgroup_kf_single_ops,
1807 		.seq_show	= rdt_num_closids_show,
1808 		.fflags		= RFTYPE_CTRL_INFO,
1809 	},
1810 	{
1811 		.name		= "mon_features",
1812 		.mode		= 0444,
1813 		.kf_ops		= &rdtgroup_kf_single_ops,
1814 		.seq_show	= rdt_mon_features_show,
1815 		.fflags		= RFTYPE_MON_INFO,
1816 	},
1817 	{
1818 		.name		= "num_rmids",
1819 		.mode		= 0444,
1820 		.kf_ops		= &rdtgroup_kf_single_ops,
1821 		.seq_show	= rdt_num_rmids_show,
1822 		.fflags		= RFTYPE_MON_INFO,
1823 	},
1824 	{
1825 		.name		= "cbm_mask",
1826 		.mode		= 0444,
1827 		.kf_ops		= &rdtgroup_kf_single_ops,
1828 		.seq_show	= rdt_default_ctrl_show,
1829 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1830 	},
1831 	{
1832 		.name		= "min_cbm_bits",
1833 		.mode		= 0444,
1834 		.kf_ops		= &rdtgroup_kf_single_ops,
1835 		.seq_show	= rdt_min_cbm_bits_show,
1836 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1837 	},
1838 	{
1839 		.name		= "shareable_bits",
1840 		.mode		= 0444,
1841 		.kf_ops		= &rdtgroup_kf_single_ops,
1842 		.seq_show	= rdt_shareable_bits_show,
1843 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1844 	},
1845 	{
1846 		.name		= "bit_usage",
1847 		.mode		= 0444,
1848 		.kf_ops		= &rdtgroup_kf_single_ops,
1849 		.seq_show	= rdt_bit_usage_show,
1850 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1851 	},
1852 	{
1853 		.name		= "min_bandwidth",
1854 		.mode		= 0444,
1855 		.kf_ops		= &rdtgroup_kf_single_ops,
1856 		.seq_show	= rdt_min_bw_show,
1857 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1858 	},
1859 	{
1860 		.name		= "bandwidth_gran",
1861 		.mode		= 0444,
1862 		.kf_ops		= &rdtgroup_kf_single_ops,
1863 		.seq_show	= rdt_bw_gran_show,
1864 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1865 	},
1866 	{
1867 		.name		= "delay_linear",
1868 		.mode		= 0444,
1869 		.kf_ops		= &rdtgroup_kf_single_ops,
1870 		.seq_show	= rdt_delay_linear_show,
1871 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1872 	},
1873 	/*
1874 	 * Platform specific which (if any) capabilities are provided by
1875 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1876 	 * discovery.
1877 	 */
1878 	{
1879 		.name		= "thread_throttle_mode",
1880 		.mode		= 0444,
1881 		.kf_ops		= &rdtgroup_kf_single_ops,
1882 		.seq_show	= rdt_thread_throttle_mode_show,
1883 	},
1884 	{
1885 		.name		= "max_threshold_occupancy",
1886 		.mode		= 0644,
1887 		.kf_ops		= &rdtgroup_kf_single_ops,
1888 		.write		= max_threshold_occ_write,
1889 		.seq_show	= max_threshold_occ_show,
1890 		.fflags		= RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1891 	},
1892 	{
1893 		.name		= "mbm_total_bytes_config",
1894 		.mode		= 0644,
1895 		.kf_ops		= &rdtgroup_kf_single_ops,
1896 		.seq_show	= mbm_total_bytes_config_show,
1897 		.write		= mbm_total_bytes_config_write,
1898 	},
1899 	{
1900 		.name		= "mbm_local_bytes_config",
1901 		.mode		= 0644,
1902 		.kf_ops		= &rdtgroup_kf_single_ops,
1903 		.seq_show	= mbm_local_bytes_config_show,
1904 		.write		= mbm_local_bytes_config_write,
1905 	},
1906 	{
1907 		.name		= "cpus",
1908 		.mode		= 0644,
1909 		.kf_ops		= &rdtgroup_kf_single_ops,
1910 		.write		= rdtgroup_cpus_write,
1911 		.seq_show	= rdtgroup_cpus_show,
1912 		.fflags		= RFTYPE_BASE,
1913 	},
1914 	{
1915 		.name		= "cpus_list",
1916 		.mode		= 0644,
1917 		.kf_ops		= &rdtgroup_kf_single_ops,
1918 		.write		= rdtgroup_cpus_write,
1919 		.seq_show	= rdtgroup_cpus_show,
1920 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1921 		.fflags		= RFTYPE_BASE,
1922 	},
1923 	{
1924 		.name		= "tasks",
1925 		.mode		= 0644,
1926 		.kf_ops		= &rdtgroup_kf_single_ops,
1927 		.write		= rdtgroup_tasks_write,
1928 		.seq_show	= rdtgroup_tasks_show,
1929 		.fflags		= RFTYPE_BASE,
1930 	},
1931 	{
1932 		.name		= "mon_hw_id",
1933 		.mode		= 0444,
1934 		.kf_ops		= &rdtgroup_kf_single_ops,
1935 		.seq_show	= rdtgroup_rmid_show,
1936 		.fflags		= RFTYPE_MON_BASE | RFTYPE_DEBUG,
1937 	},
1938 	{
1939 		.name		= "schemata",
1940 		.mode		= 0644,
1941 		.kf_ops		= &rdtgroup_kf_single_ops,
1942 		.write		= rdtgroup_schemata_write,
1943 		.seq_show	= rdtgroup_schemata_show,
1944 		.fflags		= RFTYPE_CTRL_BASE,
1945 	},
1946 	{
1947 		.name		= "mode",
1948 		.mode		= 0644,
1949 		.kf_ops		= &rdtgroup_kf_single_ops,
1950 		.write		= rdtgroup_mode_write,
1951 		.seq_show	= rdtgroup_mode_show,
1952 		.fflags		= RFTYPE_CTRL_BASE,
1953 	},
1954 	{
1955 		.name		= "size",
1956 		.mode		= 0444,
1957 		.kf_ops		= &rdtgroup_kf_single_ops,
1958 		.seq_show	= rdtgroup_size_show,
1959 		.fflags		= RFTYPE_CTRL_BASE,
1960 	},
1961 	{
1962 		.name		= "sparse_masks",
1963 		.mode		= 0444,
1964 		.kf_ops		= &rdtgroup_kf_single_ops,
1965 		.seq_show	= rdt_has_sparse_bitmasks_show,
1966 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1967 	},
1968 	{
1969 		.name		= "ctrl_hw_id",
1970 		.mode		= 0444,
1971 		.kf_ops		= &rdtgroup_kf_single_ops,
1972 		.seq_show	= rdtgroup_closid_show,
1973 		.fflags		= RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
1974 	},
1975 
1976 };
1977 
1978 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1979 {
1980 	struct rftype *rfts, *rft;
1981 	int ret, len;
1982 
1983 	rfts = res_common_files;
1984 	len = ARRAY_SIZE(res_common_files);
1985 
1986 	lockdep_assert_held(&rdtgroup_mutex);
1987 
1988 	if (resctrl_debug)
1989 		fflags |= RFTYPE_DEBUG;
1990 
1991 	for (rft = rfts; rft < rfts + len; rft++) {
1992 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1993 			ret = rdtgroup_add_file(kn, rft);
1994 			if (ret)
1995 				goto error;
1996 		}
1997 	}
1998 
1999 	return 0;
2000 error:
2001 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
2002 	while (--rft >= rfts) {
2003 		if ((fflags & rft->fflags) == rft->fflags)
2004 			kernfs_remove_by_name(kn, rft->name);
2005 	}
2006 	return ret;
2007 }
2008 
2009 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
2010 {
2011 	struct rftype *rfts, *rft;
2012 	int len;
2013 
2014 	rfts = res_common_files;
2015 	len = ARRAY_SIZE(res_common_files);
2016 
2017 	for (rft = rfts; rft < rfts + len; rft++) {
2018 		if (!strcmp(rft->name, name))
2019 			return rft;
2020 	}
2021 
2022 	return NULL;
2023 }
2024 
2025 void __init thread_throttle_mode_init(void)
2026 {
2027 	struct rftype *rft;
2028 
2029 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
2030 	if (!rft)
2031 		return;
2032 
2033 	rft->fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB;
2034 }
2035 
2036 void __init mbm_config_rftype_init(const char *config)
2037 {
2038 	struct rftype *rft;
2039 
2040 	rft = rdtgroup_get_rftype_by_name(config);
2041 	if (rft)
2042 		rft->fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE;
2043 }
2044 
2045 /**
2046  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2047  * @r: The resource group with which the file is associated.
2048  * @name: Name of the file
2049  *
2050  * The permissions of named resctrl file, directory, or link are modified
2051  * to not allow read, write, or execute by any user.
2052  *
2053  * WARNING: This function is intended to communicate to the user that the
2054  * resctrl file has been locked down - that it is not relevant to the
2055  * particular state the system finds itself in. It should not be relied
2056  * on to protect from user access because after the file's permissions
2057  * are restricted the user can still change the permissions using chmod
2058  * from the command line.
2059  *
2060  * Return: 0 on success, <0 on failure.
2061  */
2062 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2063 {
2064 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2065 	struct kernfs_node *kn;
2066 	int ret = 0;
2067 
2068 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2069 	if (!kn)
2070 		return -ENOENT;
2071 
2072 	switch (kernfs_type(kn)) {
2073 	case KERNFS_DIR:
2074 		iattr.ia_mode = S_IFDIR;
2075 		break;
2076 	case KERNFS_FILE:
2077 		iattr.ia_mode = S_IFREG;
2078 		break;
2079 	case KERNFS_LINK:
2080 		iattr.ia_mode = S_IFLNK;
2081 		break;
2082 	}
2083 
2084 	ret = kernfs_setattr(kn, &iattr);
2085 	kernfs_put(kn);
2086 	return ret;
2087 }
2088 
2089 /**
2090  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2091  * @r: The resource group with which the file is associated.
2092  * @name: Name of the file
2093  * @mask: Mask of permissions that should be restored
2094  *
2095  * Restore the permissions of the named file. If @name is a directory the
2096  * permissions of its parent will be used.
2097  *
2098  * Return: 0 on success, <0 on failure.
2099  */
2100 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2101 			     umode_t mask)
2102 {
2103 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2104 	struct kernfs_node *kn, *parent;
2105 	struct rftype *rfts, *rft;
2106 	int ret, len;
2107 
2108 	rfts = res_common_files;
2109 	len = ARRAY_SIZE(res_common_files);
2110 
2111 	for (rft = rfts; rft < rfts + len; rft++) {
2112 		if (!strcmp(rft->name, name))
2113 			iattr.ia_mode = rft->mode & mask;
2114 	}
2115 
2116 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2117 	if (!kn)
2118 		return -ENOENT;
2119 
2120 	switch (kernfs_type(kn)) {
2121 	case KERNFS_DIR:
2122 		parent = kernfs_get_parent(kn);
2123 		if (parent) {
2124 			iattr.ia_mode |= parent->mode;
2125 			kernfs_put(parent);
2126 		}
2127 		iattr.ia_mode |= S_IFDIR;
2128 		break;
2129 	case KERNFS_FILE:
2130 		iattr.ia_mode |= S_IFREG;
2131 		break;
2132 	case KERNFS_LINK:
2133 		iattr.ia_mode |= S_IFLNK;
2134 		break;
2135 	}
2136 
2137 	ret = kernfs_setattr(kn, &iattr);
2138 	kernfs_put(kn);
2139 	return ret;
2140 }
2141 
2142 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2143 				      unsigned long fflags)
2144 {
2145 	struct kernfs_node *kn_subdir;
2146 	int ret;
2147 
2148 	kn_subdir = kernfs_create_dir(kn_info, name,
2149 				      kn_info->mode, priv);
2150 	if (IS_ERR(kn_subdir))
2151 		return PTR_ERR(kn_subdir);
2152 
2153 	ret = rdtgroup_kn_set_ugid(kn_subdir);
2154 	if (ret)
2155 		return ret;
2156 
2157 	ret = rdtgroup_add_files(kn_subdir, fflags);
2158 	if (!ret)
2159 		kernfs_activate(kn_subdir);
2160 
2161 	return ret;
2162 }
2163 
2164 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2165 {
2166 	struct resctrl_schema *s;
2167 	struct rdt_resource *r;
2168 	unsigned long fflags;
2169 	char name[32];
2170 	int ret;
2171 
2172 	/* create the directory */
2173 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2174 	if (IS_ERR(kn_info))
2175 		return PTR_ERR(kn_info);
2176 
2177 	ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2178 	if (ret)
2179 		goto out_destroy;
2180 
2181 	/* loop over enabled controls, these are all alloc_capable */
2182 	list_for_each_entry(s, &resctrl_schema_all, list) {
2183 		r = s->res;
2184 		fflags = r->fflags | RFTYPE_CTRL_INFO;
2185 		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2186 		if (ret)
2187 			goto out_destroy;
2188 	}
2189 
2190 	for_each_mon_capable_rdt_resource(r) {
2191 		fflags = r->fflags | RFTYPE_MON_INFO;
2192 		sprintf(name, "%s_MON", r->name);
2193 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2194 		if (ret)
2195 			goto out_destroy;
2196 	}
2197 
2198 	ret = rdtgroup_kn_set_ugid(kn_info);
2199 	if (ret)
2200 		goto out_destroy;
2201 
2202 	kernfs_activate(kn_info);
2203 
2204 	return 0;
2205 
2206 out_destroy:
2207 	kernfs_remove(kn_info);
2208 	return ret;
2209 }
2210 
2211 static int
2212 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2213 		    char *name, struct kernfs_node **dest_kn)
2214 {
2215 	struct kernfs_node *kn;
2216 	int ret;
2217 
2218 	/* create the directory */
2219 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2220 	if (IS_ERR(kn))
2221 		return PTR_ERR(kn);
2222 
2223 	if (dest_kn)
2224 		*dest_kn = kn;
2225 
2226 	ret = rdtgroup_kn_set_ugid(kn);
2227 	if (ret)
2228 		goto out_destroy;
2229 
2230 	kernfs_activate(kn);
2231 
2232 	return 0;
2233 
2234 out_destroy:
2235 	kernfs_remove(kn);
2236 	return ret;
2237 }
2238 
2239 static void l3_qos_cfg_update(void *arg)
2240 {
2241 	bool *enable = arg;
2242 
2243 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2244 }
2245 
2246 static void l2_qos_cfg_update(void *arg)
2247 {
2248 	bool *enable = arg;
2249 
2250 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2251 }
2252 
2253 static inline bool is_mba_linear(void)
2254 {
2255 	return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2256 }
2257 
2258 static int set_cache_qos_cfg(int level, bool enable)
2259 {
2260 	void (*update)(void *arg);
2261 	struct rdt_resource *r_l;
2262 	cpumask_var_t cpu_mask;
2263 	struct rdt_domain *d;
2264 	int cpu;
2265 
2266 	/* Walking r->domains, ensure it can't race with cpuhp */
2267 	lockdep_assert_cpus_held();
2268 
2269 	if (level == RDT_RESOURCE_L3)
2270 		update = l3_qos_cfg_update;
2271 	else if (level == RDT_RESOURCE_L2)
2272 		update = l2_qos_cfg_update;
2273 	else
2274 		return -EINVAL;
2275 
2276 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2277 		return -ENOMEM;
2278 
2279 	r_l = &rdt_resources_all[level].r_resctrl;
2280 	list_for_each_entry(d, &r_l->domains, list) {
2281 		if (r_l->cache.arch_has_per_cpu_cfg)
2282 			/* Pick all the CPUs in the domain instance */
2283 			for_each_cpu(cpu, &d->cpu_mask)
2284 				cpumask_set_cpu(cpu, cpu_mask);
2285 		else
2286 			/* Pick one CPU from each domain instance to update MSR */
2287 			cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2288 	}
2289 
2290 	/* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2291 	on_each_cpu_mask(cpu_mask, update, &enable, 1);
2292 
2293 	free_cpumask_var(cpu_mask);
2294 
2295 	return 0;
2296 }
2297 
2298 /* Restore the qos cfg state when a domain comes online */
2299 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2300 {
2301 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2302 
2303 	if (!r->cdp_capable)
2304 		return;
2305 
2306 	if (r->rid == RDT_RESOURCE_L2)
2307 		l2_qos_cfg_update(&hw_res->cdp_enabled);
2308 
2309 	if (r->rid == RDT_RESOURCE_L3)
2310 		l3_qos_cfg_update(&hw_res->cdp_enabled);
2311 }
2312 
2313 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
2314 {
2315 	u32 num_closid = resctrl_arch_get_num_closid(r);
2316 	int cpu = cpumask_any(&d->cpu_mask);
2317 	int i;
2318 
2319 	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2320 				   GFP_KERNEL, cpu_to_node(cpu));
2321 	if (!d->mbps_val)
2322 		return -ENOMEM;
2323 
2324 	for (i = 0; i < num_closid; i++)
2325 		d->mbps_val[i] = MBA_MAX_MBPS;
2326 
2327 	return 0;
2328 }
2329 
2330 static void mba_sc_domain_destroy(struct rdt_resource *r,
2331 				  struct rdt_domain *d)
2332 {
2333 	kfree(d->mbps_val);
2334 	d->mbps_val = NULL;
2335 }
2336 
2337 /*
2338  * MBA software controller is supported only if
2339  * MBM is supported and MBA is in linear scale.
2340  */
2341 static bool supports_mba_mbps(void)
2342 {
2343 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2344 
2345 	return (is_mbm_local_enabled() &&
2346 		r->alloc_capable && is_mba_linear());
2347 }
2348 
2349 /*
2350  * Enable or disable the MBA software controller
2351  * which helps user specify bandwidth in MBps.
2352  */
2353 static int set_mba_sc(bool mba_sc)
2354 {
2355 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2356 	u32 num_closid = resctrl_arch_get_num_closid(r);
2357 	struct rdt_domain *d;
2358 	int i;
2359 
2360 	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2361 		return -EINVAL;
2362 
2363 	r->membw.mba_sc = mba_sc;
2364 
2365 	list_for_each_entry(d, &r->domains, list) {
2366 		for (i = 0; i < num_closid; i++)
2367 			d->mbps_val[i] = MBA_MAX_MBPS;
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 static int cdp_enable(int level)
2374 {
2375 	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2376 	int ret;
2377 
2378 	if (!r_l->alloc_capable)
2379 		return -EINVAL;
2380 
2381 	ret = set_cache_qos_cfg(level, true);
2382 	if (!ret)
2383 		rdt_resources_all[level].cdp_enabled = true;
2384 
2385 	return ret;
2386 }
2387 
2388 static void cdp_disable(int level)
2389 {
2390 	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2391 
2392 	if (r_hw->cdp_enabled) {
2393 		set_cache_qos_cfg(level, false);
2394 		r_hw->cdp_enabled = false;
2395 	}
2396 }
2397 
2398 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2399 {
2400 	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2401 
2402 	if (!hw_res->r_resctrl.cdp_capable)
2403 		return -EINVAL;
2404 
2405 	if (enable)
2406 		return cdp_enable(l);
2407 
2408 	cdp_disable(l);
2409 
2410 	return 0;
2411 }
2412 
2413 /*
2414  * We don't allow rdtgroup directories to be created anywhere
2415  * except the root directory. Thus when looking for the rdtgroup
2416  * structure for a kernfs node we are either looking at a directory,
2417  * in which case the rdtgroup structure is pointed at by the "priv"
2418  * field, otherwise we have a file, and need only look to the parent
2419  * to find the rdtgroup.
2420  */
2421 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2422 {
2423 	if (kernfs_type(kn) == KERNFS_DIR) {
2424 		/*
2425 		 * All the resource directories use "kn->priv"
2426 		 * to point to the "struct rdtgroup" for the
2427 		 * resource. "info" and its subdirectories don't
2428 		 * have rdtgroup structures, so return NULL here.
2429 		 */
2430 		if (kn == kn_info || kn->parent == kn_info)
2431 			return NULL;
2432 		else
2433 			return kn->priv;
2434 	} else {
2435 		return kn->parent->priv;
2436 	}
2437 }
2438 
2439 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2440 {
2441 	atomic_inc(&rdtgrp->waitcount);
2442 	kernfs_break_active_protection(kn);
2443 }
2444 
2445 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2446 {
2447 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2448 	    (rdtgrp->flags & RDT_DELETED)) {
2449 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2450 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2451 			rdtgroup_pseudo_lock_remove(rdtgrp);
2452 		kernfs_unbreak_active_protection(kn);
2453 		rdtgroup_remove(rdtgrp);
2454 	} else {
2455 		kernfs_unbreak_active_protection(kn);
2456 	}
2457 }
2458 
2459 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2460 {
2461 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2462 
2463 	if (!rdtgrp)
2464 		return NULL;
2465 
2466 	rdtgroup_kn_get(rdtgrp, kn);
2467 
2468 	cpus_read_lock();
2469 	mutex_lock(&rdtgroup_mutex);
2470 
2471 	/* Was this group deleted while we waited? */
2472 	if (rdtgrp->flags & RDT_DELETED)
2473 		return NULL;
2474 
2475 	return rdtgrp;
2476 }
2477 
2478 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2479 {
2480 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2481 
2482 	if (!rdtgrp)
2483 		return;
2484 
2485 	mutex_unlock(&rdtgroup_mutex);
2486 	cpus_read_unlock();
2487 
2488 	rdtgroup_kn_put(rdtgrp, kn);
2489 }
2490 
2491 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2492 			     struct rdtgroup *prgrp,
2493 			     struct kernfs_node **mon_data_kn);
2494 
2495 static void rdt_disable_ctx(void)
2496 {
2497 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2498 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2499 	set_mba_sc(false);
2500 
2501 	resctrl_debug = false;
2502 }
2503 
2504 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2505 {
2506 	int ret = 0;
2507 
2508 	if (ctx->enable_cdpl2) {
2509 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2510 		if (ret)
2511 			goto out_done;
2512 	}
2513 
2514 	if (ctx->enable_cdpl3) {
2515 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2516 		if (ret)
2517 			goto out_cdpl2;
2518 	}
2519 
2520 	if (ctx->enable_mba_mbps) {
2521 		ret = set_mba_sc(true);
2522 		if (ret)
2523 			goto out_cdpl3;
2524 	}
2525 
2526 	if (ctx->enable_debug)
2527 		resctrl_debug = true;
2528 
2529 	return 0;
2530 
2531 out_cdpl3:
2532 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2533 out_cdpl2:
2534 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2535 out_done:
2536 	return ret;
2537 }
2538 
2539 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2540 {
2541 	struct resctrl_schema *s;
2542 	const char *suffix = "";
2543 	int ret, cl;
2544 
2545 	s = kzalloc(sizeof(*s), GFP_KERNEL);
2546 	if (!s)
2547 		return -ENOMEM;
2548 
2549 	s->res = r;
2550 	s->num_closid = resctrl_arch_get_num_closid(r);
2551 	if (resctrl_arch_get_cdp_enabled(r->rid))
2552 		s->num_closid /= 2;
2553 
2554 	s->conf_type = type;
2555 	switch (type) {
2556 	case CDP_CODE:
2557 		suffix = "CODE";
2558 		break;
2559 	case CDP_DATA:
2560 		suffix = "DATA";
2561 		break;
2562 	case CDP_NONE:
2563 		suffix = "";
2564 		break;
2565 	}
2566 
2567 	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2568 	if (ret >= sizeof(s->name)) {
2569 		kfree(s);
2570 		return -EINVAL;
2571 	}
2572 
2573 	cl = strlen(s->name);
2574 
2575 	/*
2576 	 * If CDP is supported by this resource, but not enabled,
2577 	 * include the suffix. This ensures the tabular format of the
2578 	 * schemata file does not change between mounts of the filesystem.
2579 	 */
2580 	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2581 		cl += 4;
2582 
2583 	if (cl > max_name_width)
2584 		max_name_width = cl;
2585 
2586 	INIT_LIST_HEAD(&s->list);
2587 	list_add(&s->list, &resctrl_schema_all);
2588 
2589 	return 0;
2590 }
2591 
2592 static int schemata_list_create(void)
2593 {
2594 	struct rdt_resource *r;
2595 	int ret = 0;
2596 
2597 	for_each_alloc_capable_rdt_resource(r) {
2598 		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2599 			ret = schemata_list_add(r, CDP_CODE);
2600 			if (ret)
2601 				break;
2602 
2603 			ret = schemata_list_add(r, CDP_DATA);
2604 		} else {
2605 			ret = schemata_list_add(r, CDP_NONE);
2606 		}
2607 
2608 		if (ret)
2609 			break;
2610 	}
2611 
2612 	return ret;
2613 }
2614 
2615 static void schemata_list_destroy(void)
2616 {
2617 	struct resctrl_schema *s, *tmp;
2618 
2619 	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2620 		list_del(&s->list);
2621 		kfree(s);
2622 	}
2623 }
2624 
2625 static int rdt_get_tree(struct fs_context *fc)
2626 {
2627 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2628 	unsigned long flags = RFTYPE_CTRL_BASE;
2629 	struct rdt_domain *dom;
2630 	struct rdt_resource *r;
2631 	int ret;
2632 
2633 	cpus_read_lock();
2634 	mutex_lock(&rdtgroup_mutex);
2635 	/*
2636 	 * resctrl file system can only be mounted once.
2637 	 */
2638 	if (resctrl_mounted) {
2639 		ret = -EBUSY;
2640 		goto out;
2641 	}
2642 
2643 	ret = rdtgroup_setup_root(ctx);
2644 	if (ret)
2645 		goto out;
2646 
2647 	ret = rdt_enable_ctx(ctx);
2648 	if (ret)
2649 		goto out_root;
2650 
2651 	ret = schemata_list_create();
2652 	if (ret) {
2653 		schemata_list_destroy();
2654 		goto out_ctx;
2655 	}
2656 
2657 	closid_init();
2658 
2659 	if (resctrl_arch_mon_capable())
2660 		flags |= RFTYPE_MON;
2661 
2662 	ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2663 	if (ret)
2664 		goto out_schemata_free;
2665 
2666 	kernfs_activate(rdtgroup_default.kn);
2667 
2668 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2669 	if (ret < 0)
2670 		goto out_schemata_free;
2671 
2672 	if (resctrl_arch_mon_capable()) {
2673 		ret = mongroup_create_dir(rdtgroup_default.kn,
2674 					  &rdtgroup_default, "mon_groups",
2675 					  &kn_mongrp);
2676 		if (ret < 0)
2677 			goto out_info;
2678 
2679 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2680 					&rdtgroup_default, &kn_mondata);
2681 		if (ret < 0)
2682 			goto out_mongrp;
2683 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2684 	}
2685 
2686 	ret = rdt_pseudo_lock_init();
2687 	if (ret)
2688 		goto out_mondata;
2689 
2690 	ret = kernfs_get_tree(fc);
2691 	if (ret < 0)
2692 		goto out_psl;
2693 
2694 	if (resctrl_arch_alloc_capable())
2695 		resctrl_arch_enable_alloc();
2696 	if (resctrl_arch_mon_capable())
2697 		resctrl_arch_enable_mon();
2698 
2699 	if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2700 		resctrl_mounted = true;
2701 
2702 	if (is_mbm_enabled()) {
2703 		r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2704 		list_for_each_entry(dom, &r->domains, list)
2705 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL,
2706 						   RESCTRL_PICK_ANY_CPU);
2707 	}
2708 
2709 	goto out;
2710 
2711 out_psl:
2712 	rdt_pseudo_lock_release();
2713 out_mondata:
2714 	if (resctrl_arch_mon_capable())
2715 		kernfs_remove(kn_mondata);
2716 out_mongrp:
2717 	if (resctrl_arch_mon_capable())
2718 		kernfs_remove(kn_mongrp);
2719 out_info:
2720 	kernfs_remove(kn_info);
2721 out_schemata_free:
2722 	schemata_list_destroy();
2723 out_ctx:
2724 	rdt_disable_ctx();
2725 out_root:
2726 	rdtgroup_destroy_root();
2727 out:
2728 	rdt_last_cmd_clear();
2729 	mutex_unlock(&rdtgroup_mutex);
2730 	cpus_read_unlock();
2731 	return ret;
2732 }
2733 
2734 enum rdt_param {
2735 	Opt_cdp,
2736 	Opt_cdpl2,
2737 	Opt_mba_mbps,
2738 	Opt_debug,
2739 	nr__rdt_params
2740 };
2741 
2742 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2743 	fsparam_flag("cdp",		Opt_cdp),
2744 	fsparam_flag("cdpl2",		Opt_cdpl2),
2745 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2746 	fsparam_flag("debug",		Opt_debug),
2747 	{}
2748 };
2749 
2750 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2751 {
2752 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2753 	struct fs_parse_result result;
2754 	int opt;
2755 
2756 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2757 	if (opt < 0)
2758 		return opt;
2759 
2760 	switch (opt) {
2761 	case Opt_cdp:
2762 		ctx->enable_cdpl3 = true;
2763 		return 0;
2764 	case Opt_cdpl2:
2765 		ctx->enable_cdpl2 = true;
2766 		return 0;
2767 	case Opt_mba_mbps:
2768 		if (!supports_mba_mbps())
2769 			return -EINVAL;
2770 		ctx->enable_mba_mbps = true;
2771 		return 0;
2772 	case Opt_debug:
2773 		ctx->enable_debug = true;
2774 		return 0;
2775 	}
2776 
2777 	return -EINVAL;
2778 }
2779 
2780 static void rdt_fs_context_free(struct fs_context *fc)
2781 {
2782 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2783 
2784 	kernfs_free_fs_context(fc);
2785 	kfree(ctx);
2786 }
2787 
2788 static const struct fs_context_operations rdt_fs_context_ops = {
2789 	.free		= rdt_fs_context_free,
2790 	.parse_param	= rdt_parse_param,
2791 	.get_tree	= rdt_get_tree,
2792 };
2793 
2794 static int rdt_init_fs_context(struct fs_context *fc)
2795 {
2796 	struct rdt_fs_context *ctx;
2797 
2798 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2799 	if (!ctx)
2800 		return -ENOMEM;
2801 
2802 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2803 	fc->fs_private = &ctx->kfc;
2804 	fc->ops = &rdt_fs_context_ops;
2805 	put_user_ns(fc->user_ns);
2806 	fc->user_ns = get_user_ns(&init_user_ns);
2807 	fc->global = true;
2808 	return 0;
2809 }
2810 
2811 static int reset_all_ctrls(struct rdt_resource *r)
2812 {
2813 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2814 	struct rdt_hw_domain *hw_dom;
2815 	struct msr_param msr_param;
2816 	cpumask_var_t cpu_mask;
2817 	struct rdt_domain *d;
2818 	int i;
2819 
2820 	/* Walking r->domains, ensure it can't race with cpuhp */
2821 	lockdep_assert_cpus_held();
2822 
2823 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2824 		return -ENOMEM;
2825 
2826 	msr_param.res = r;
2827 	msr_param.low = 0;
2828 	msr_param.high = hw_res->num_closid;
2829 
2830 	/*
2831 	 * Disable resource control for this resource by setting all
2832 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2833 	 * from each domain to update the MSRs below.
2834 	 */
2835 	list_for_each_entry(d, &r->domains, list) {
2836 		hw_dom = resctrl_to_arch_dom(d);
2837 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2838 
2839 		for (i = 0; i < hw_res->num_closid; i++)
2840 			hw_dom->ctrl_val[i] = r->default_ctrl;
2841 	}
2842 
2843 	/* Update CBM on all the CPUs in cpu_mask */
2844 	on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2845 
2846 	free_cpumask_var(cpu_mask);
2847 
2848 	return 0;
2849 }
2850 
2851 /*
2852  * Move tasks from one to the other group. If @from is NULL, then all tasks
2853  * in the systems are moved unconditionally (used for teardown).
2854  *
2855  * If @mask is not NULL the cpus on which moved tasks are running are set
2856  * in that mask so the update smp function call is restricted to affected
2857  * cpus.
2858  */
2859 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2860 				 struct cpumask *mask)
2861 {
2862 	struct task_struct *p, *t;
2863 
2864 	read_lock(&tasklist_lock);
2865 	for_each_process_thread(p, t) {
2866 		if (!from || is_closid_match(t, from) ||
2867 		    is_rmid_match(t, from)) {
2868 			resctrl_arch_set_closid_rmid(t, to->closid,
2869 						     to->mon.rmid);
2870 
2871 			/*
2872 			 * Order the closid/rmid stores above before the loads
2873 			 * in task_curr(). This pairs with the full barrier
2874 			 * between the rq->curr update and resctrl_sched_in()
2875 			 * during context switch.
2876 			 */
2877 			smp_mb();
2878 
2879 			/*
2880 			 * If the task is on a CPU, set the CPU in the mask.
2881 			 * The detection is inaccurate as tasks might move or
2882 			 * schedule before the smp function call takes place.
2883 			 * In such a case the function call is pointless, but
2884 			 * there is no other side effect.
2885 			 */
2886 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2887 				cpumask_set_cpu(task_cpu(t), mask);
2888 		}
2889 	}
2890 	read_unlock(&tasklist_lock);
2891 }
2892 
2893 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2894 {
2895 	struct rdtgroup *sentry, *stmp;
2896 	struct list_head *head;
2897 
2898 	head = &rdtgrp->mon.crdtgrp_list;
2899 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2900 		free_rmid(sentry->closid, sentry->mon.rmid);
2901 		list_del(&sentry->mon.crdtgrp_list);
2902 
2903 		if (atomic_read(&sentry->waitcount) != 0)
2904 			sentry->flags = RDT_DELETED;
2905 		else
2906 			rdtgroup_remove(sentry);
2907 	}
2908 }
2909 
2910 /*
2911  * Forcibly remove all of subdirectories under root.
2912  */
2913 static void rmdir_all_sub(void)
2914 {
2915 	struct rdtgroup *rdtgrp, *tmp;
2916 
2917 	/* Move all tasks to the default resource group */
2918 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2919 
2920 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2921 		/* Free any child rmids */
2922 		free_all_child_rdtgrp(rdtgrp);
2923 
2924 		/* Remove each rdtgroup other than root */
2925 		if (rdtgrp == &rdtgroup_default)
2926 			continue;
2927 
2928 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2929 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2930 			rdtgroup_pseudo_lock_remove(rdtgrp);
2931 
2932 		/*
2933 		 * Give any CPUs back to the default group. We cannot copy
2934 		 * cpu_online_mask because a CPU might have executed the
2935 		 * offline callback already, but is still marked online.
2936 		 */
2937 		cpumask_or(&rdtgroup_default.cpu_mask,
2938 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2939 
2940 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
2941 
2942 		kernfs_remove(rdtgrp->kn);
2943 		list_del(&rdtgrp->rdtgroup_list);
2944 
2945 		if (atomic_read(&rdtgrp->waitcount) != 0)
2946 			rdtgrp->flags = RDT_DELETED;
2947 		else
2948 			rdtgroup_remove(rdtgrp);
2949 	}
2950 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2951 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2952 
2953 	kernfs_remove(kn_info);
2954 	kernfs_remove(kn_mongrp);
2955 	kernfs_remove(kn_mondata);
2956 }
2957 
2958 static void rdt_kill_sb(struct super_block *sb)
2959 {
2960 	struct rdt_resource *r;
2961 
2962 	cpus_read_lock();
2963 	mutex_lock(&rdtgroup_mutex);
2964 
2965 	rdt_disable_ctx();
2966 
2967 	/*Put everything back to default values. */
2968 	for_each_alloc_capable_rdt_resource(r)
2969 		reset_all_ctrls(r);
2970 	rmdir_all_sub();
2971 	rdt_pseudo_lock_release();
2972 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2973 	schemata_list_destroy();
2974 	rdtgroup_destroy_root();
2975 	if (resctrl_arch_alloc_capable())
2976 		resctrl_arch_disable_alloc();
2977 	if (resctrl_arch_mon_capable())
2978 		resctrl_arch_disable_mon();
2979 	resctrl_mounted = false;
2980 	kernfs_kill_sb(sb);
2981 	mutex_unlock(&rdtgroup_mutex);
2982 	cpus_read_unlock();
2983 }
2984 
2985 static struct file_system_type rdt_fs_type = {
2986 	.name			= "resctrl",
2987 	.init_fs_context	= rdt_init_fs_context,
2988 	.parameters		= rdt_fs_parameters,
2989 	.kill_sb		= rdt_kill_sb,
2990 };
2991 
2992 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2993 		       void *priv)
2994 {
2995 	struct kernfs_node *kn;
2996 	int ret = 0;
2997 
2998 	kn = __kernfs_create_file(parent_kn, name, 0444,
2999 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
3000 				  &kf_mondata_ops, priv, NULL, NULL);
3001 	if (IS_ERR(kn))
3002 		return PTR_ERR(kn);
3003 
3004 	ret = rdtgroup_kn_set_ugid(kn);
3005 	if (ret) {
3006 		kernfs_remove(kn);
3007 		return ret;
3008 	}
3009 
3010 	return ret;
3011 }
3012 
3013 /*
3014  * Remove all subdirectories of mon_data of ctrl_mon groups
3015  * and monitor groups with given domain id.
3016  */
3017 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3018 					   unsigned int dom_id)
3019 {
3020 	struct rdtgroup *prgrp, *crgrp;
3021 	char name[32];
3022 
3023 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3024 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
3025 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
3026 
3027 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
3028 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
3029 	}
3030 }
3031 
3032 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
3033 				struct rdt_domain *d,
3034 				struct rdt_resource *r, struct rdtgroup *prgrp)
3035 {
3036 	union mon_data_bits priv;
3037 	struct kernfs_node *kn;
3038 	struct mon_evt *mevt;
3039 	struct rmid_read rr;
3040 	char name[32];
3041 	int ret;
3042 
3043 	sprintf(name, "mon_%s_%02d", r->name, d->id);
3044 	/* create the directory */
3045 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
3046 	if (IS_ERR(kn))
3047 		return PTR_ERR(kn);
3048 
3049 	ret = rdtgroup_kn_set_ugid(kn);
3050 	if (ret)
3051 		goto out_destroy;
3052 
3053 	if (WARN_ON(list_empty(&r->evt_list))) {
3054 		ret = -EPERM;
3055 		goto out_destroy;
3056 	}
3057 
3058 	priv.u.rid = r->rid;
3059 	priv.u.domid = d->id;
3060 	list_for_each_entry(mevt, &r->evt_list, list) {
3061 		priv.u.evtid = mevt->evtid;
3062 		ret = mon_addfile(kn, mevt->name, priv.priv);
3063 		if (ret)
3064 			goto out_destroy;
3065 
3066 		if (is_mbm_event(mevt->evtid))
3067 			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
3068 	}
3069 	kernfs_activate(kn);
3070 	return 0;
3071 
3072 out_destroy:
3073 	kernfs_remove(kn);
3074 	return ret;
3075 }
3076 
3077 /*
3078  * Add all subdirectories of mon_data for "ctrl_mon" groups
3079  * and "monitor" groups with given domain id.
3080  */
3081 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3082 					   struct rdt_domain *d)
3083 {
3084 	struct kernfs_node *parent_kn;
3085 	struct rdtgroup *prgrp, *crgrp;
3086 	struct list_head *head;
3087 
3088 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3089 		parent_kn = prgrp->mon.mon_data_kn;
3090 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3091 
3092 		head = &prgrp->mon.crdtgrp_list;
3093 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3094 			parent_kn = crgrp->mon.mon_data_kn;
3095 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3096 		}
3097 	}
3098 }
3099 
3100 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3101 				       struct rdt_resource *r,
3102 				       struct rdtgroup *prgrp)
3103 {
3104 	struct rdt_domain *dom;
3105 	int ret;
3106 
3107 	/* Walking r->domains, ensure it can't race with cpuhp */
3108 	lockdep_assert_cpus_held();
3109 
3110 	list_for_each_entry(dom, &r->domains, list) {
3111 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3112 		if (ret)
3113 			return ret;
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 /*
3120  * This creates a directory mon_data which contains the monitored data.
3121  *
3122  * mon_data has one directory for each domain which are named
3123  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3124  * with L3 domain looks as below:
3125  * ./mon_data:
3126  * mon_L3_00
3127  * mon_L3_01
3128  * mon_L3_02
3129  * ...
3130  *
3131  * Each domain directory has one file per event:
3132  * ./mon_L3_00/:
3133  * llc_occupancy
3134  *
3135  */
3136 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3137 			     struct rdtgroup *prgrp,
3138 			     struct kernfs_node **dest_kn)
3139 {
3140 	struct rdt_resource *r;
3141 	struct kernfs_node *kn;
3142 	int ret;
3143 
3144 	/*
3145 	 * Create the mon_data directory first.
3146 	 */
3147 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3148 	if (ret)
3149 		return ret;
3150 
3151 	if (dest_kn)
3152 		*dest_kn = kn;
3153 
3154 	/*
3155 	 * Create the subdirectories for each domain. Note that all events
3156 	 * in a domain like L3 are grouped into a resource whose domain is L3
3157 	 */
3158 	for_each_mon_capable_rdt_resource(r) {
3159 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3160 		if (ret)
3161 			goto out_destroy;
3162 	}
3163 
3164 	return 0;
3165 
3166 out_destroy:
3167 	kernfs_remove(kn);
3168 	return ret;
3169 }
3170 
3171 /**
3172  * cbm_ensure_valid - Enforce validity on provided CBM
3173  * @_val:	Candidate CBM
3174  * @r:		RDT resource to which the CBM belongs
3175  *
3176  * The provided CBM represents all cache portions available for use. This
3177  * may be represented by a bitmap that does not consist of contiguous ones
3178  * and thus be an invalid CBM.
3179  * Here the provided CBM is forced to be a valid CBM by only considering
3180  * the first set of contiguous bits as valid and clearing all bits.
3181  * The intention here is to provide a valid default CBM with which a new
3182  * resource group is initialized. The user can follow this with a
3183  * modification to the CBM if the default does not satisfy the
3184  * requirements.
3185  */
3186 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3187 {
3188 	unsigned int cbm_len = r->cache.cbm_len;
3189 	unsigned long first_bit, zero_bit;
3190 	unsigned long val = _val;
3191 
3192 	if (!val)
3193 		return 0;
3194 
3195 	first_bit = find_first_bit(&val, cbm_len);
3196 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3197 
3198 	/* Clear any remaining bits to ensure contiguous region */
3199 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3200 	return (u32)val;
3201 }
3202 
3203 /*
3204  * Initialize cache resources per RDT domain
3205  *
3206  * Set the RDT domain up to start off with all usable allocations. That is,
3207  * all shareable and unused bits. All-zero CBM is invalid.
3208  */
3209 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
3210 				 u32 closid)
3211 {
3212 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3213 	enum resctrl_conf_type t = s->conf_type;
3214 	struct resctrl_staged_config *cfg;
3215 	struct rdt_resource *r = s->res;
3216 	u32 used_b = 0, unused_b = 0;
3217 	unsigned long tmp_cbm;
3218 	enum rdtgrp_mode mode;
3219 	u32 peer_ctl, ctrl_val;
3220 	int i;
3221 
3222 	cfg = &d->staged_config[t];
3223 	cfg->have_new_ctrl = false;
3224 	cfg->new_ctrl = r->cache.shareable_bits;
3225 	used_b = r->cache.shareable_bits;
3226 	for (i = 0; i < closids_supported(); i++) {
3227 		if (closid_allocated(i) && i != closid) {
3228 			mode = rdtgroup_mode_by_closid(i);
3229 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3230 				/*
3231 				 * ctrl values for locksetup aren't relevant
3232 				 * until the schemata is written, and the mode
3233 				 * becomes RDT_MODE_PSEUDO_LOCKED.
3234 				 */
3235 				continue;
3236 			/*
3237 			 * If CDP is active include peer domain's
3238 			 * usage to ensure there is no overlap
3239 			 * with an exclusive group.
3240 			 */
3241 			if (resctrl_arch_get_cdp_enabled(r->rid))
3242 				peer_ctl = resctrl_arch_get_config(r, d, i,
3243 								   peer_type);
3244 			else
3245 				peer_ctl = 0;
3246 			ctrl_val = resctrl_arch_get_config(r, d, i,
3247 							   s->conf_type);
3248 			used_b |= ctrl_val | peer_ctl;
3249 			if (mode == RDT_MODE_SHAREABLE)
3250 				cfg->new_ctrl |= ctrl_val | peer_ctl;
3251 		}
3252 	}
3253 	if (d->plr && d->plr->cbm > 0)
3254 		used_b |= d->plr->cbm;
3255 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3256 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3257 	cfg->new_ctrl |= unused_b;
3258 	/*
3259 	 * Force the initial CBM to be valid, user can
3260 	 * modify the CBM based on system availability.
3261 	 */
3262 	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3263 	/*
3264 	 * Assign the u32 CBM to an unsigned long to ensure that
3265 	 * bitmap_weight() does not access out-of-bound memory.
3266 	 */
3267 	tmp_cbm = cfg->new_ctrl;
3268 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3269 		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
3270 		return -ENOSPC;
3271 	}
3272 	cfg->have_new_ctrl = true;
3273 
3274 	return 0;
3275 }
3276 
3277 /*
3278  * Initialize cache resources with default values.
3279  *
3280  * A new RDT group is being created on an allocation capable (CAT)
3281  * supporting system. Set this group up to start off with all usable
3282  * allocations.
3283  *
3284  * If there are no more shareable bits available on any domain then
3285  * the entire allocation will fail.
3286  */
3287 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3288 {
3289 	struct rdt_domain *d;
3290 	int ret;
3291 
3292 	list_for_each_entry(d, &s->res->domains, list) {
3293 		ret = __init_one_rdt_domain(d, s, closid);
3294 		if (ret < 0)
3295 			return ret;
3296 	}
3297 
3298 	return 0;
3299 }
3300 
3301 /* Initialize MBA resource with default values. */
3302 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3303 {
3304 	struct resctrl_staged_config *cfg;
3305 	struct rdt_domain *d;
3306 
3307 	list_for_each_entry(d, &r->domains, list) {
3308 		if (is_mba_sc(r)) {
3309 			d->mbps_val[closid] = MBA_MAX_MBPS;
3310 			continue;
3311 		}
3312 
3313 		cfg = &d->staged_config[CDP_NONE];
3314 		cfg->new_ctrl = r->default_ctrl;
3315 		cfg->have_new_ctrl = true;
3316 	}
3317 }
3318 
3319 /* Initialize the RDT group's allocations. */
3320 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3321 {
3322 	struct resctrl_schema *s;
3323 	struct rdt_resource *r;
3324 	int ret = 0;
3325 
3326 	rdt_staged_configs_clear();
3327 
3328 	list_for_each_entry(s, &resctrl_schema_all, list) {
3329 		r = s->res;
3330 		if (r->rid == RDT_RESOURCE_MBA ||
3331 		    r->rid == RDT_RESOURCE_SMBA) {
3332 			rdtgroup_init_mba(r, rdtgrp->closid);
3333 			if (is_mba_sc(r))
3334 				continue;
3335 		} else {
3336 			ret = rdtgroup_init_cat(s, rdtgrp->closid);
3337 			if (ret < 0)
3338 				goto out;
3339 		}
3340 
3341 		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3342 		if (ret < 0) {
3343 			rdt_last_cmd_puts("Failed to initialize allocations\n");
3344 			goto out;
3345 		}
3346 
3347 	}
3348 
3349 	rdtgrp->mode = RDT_MODE_SHAREABLE;
3350 
3351 out:
3352 	rdt_staged_configs_clear();
3353 	return ret;
3354 }
3355 
3356 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp)
3357 {
3358 	int ret;
3359 
3360 	if (!resctrl_arch_mon_capable())
3361 		return 0;
3362 
3363 	ret = alloc_rmid(rdtgrp->closid);
3364 	if (ret < 0) {
3365 		rdt_last_cmd_puts("Out of RMIDs\n");
3366 		return ret;
3367 	}
3368 	rdtgrp->mon.rmid = ret;
3369 
3370 	ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3371 	if (ret) {
3372 		rdt_last_cmd_puts("kernfs subdir error\n");
3373 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3374 		return ret;
3375 	}
3376 
3377 	return 0;
3378 }
3379 
3380 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp)
3381 {
3382 	if (resctrl_arch_mon_capable())
3383 		free_rmid(rgrp->closid, rgrp->mon.rmid);
3384 }
3385 
3386 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3387 			     const char *name, umode_t mode,
3388 			     enum rdt_group_type rtype, struct rdtgroup **r)
3389 {
3390 	struct rdtgroup *prdtgrp, *rdtgrp;
3391 	unsigned long files = 0;
3392 	struct kernfs_node *kn;
3393 	int ret;
3394 
3395 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3396 	if (!prdtgrp) {
3397 		ret = -ENODEV;
3398 		goto out_unlock;
3399 	}
3400 
3401 	if (rtype == RDTMON_GROUP &&
3402 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3403 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3404 		ret = -EINVAL;
3405 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
3406 		goto out_unlock;
3407 	}
3408 
3409 	/* allocate the rdtgroup. */
3410 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3411 	if (!rdtgrp) {
3412 		ret = -ENOSPC;
3413 		rdt_last_cmd_puts("Kernel out of memory\n");
3414 		goto out_unlock;
3415 	}
3416 	*r = rdtgrp;
3417 	rdtgrp->mon.parent = prdtgrp;
3418 	rdtgrp->type = rtype;
3419 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3420 
3421 	/* kernfs creates the directory for rdtgrp */
3422 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3423 	if (IS_ERR(kn)) {
3424 		ret = PTR_ERR(kn);
3425 		rdt_last_cmd_puts("kernfs create error\n");
3426 		goto out_free_rgrp;
3427 	}
3428 	rdtgrp->kn = kn;
3429 
3430 	/*
3431 	 * kernfs_remove() will drop the reference count on "kn" which
3432 	 * will free it. But we still need it to stick around for the
3433 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3434 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
3435 	 */
3436 	kernfs_get(kn);
3437 
3438 	ret = rdtgroup_kn_set_ugid(kn);
3439 	if (ret) {
3440 		rdt_last_cmd_puts("kernfs perm error\n");
3441 		goto out_destroy;
3442 	}
3443 
3444 	if (rtype == RDTCTRL_GROUP) {
3445 		files = RFTYPE_BASE | RFTYPE_CTRL;
3446 		if (resctrl_arch_mon_capable())
3447 			files |= RFTYPE_MON;
3448 	} else {
3449 		files = RFTYPE_BASE | RFTYPE_MON;
3450 	}
3451 
3452 	ret = rdtgroup_add_files(kn, files);
3453 	if (ret) {
3454 		rdt_last_cmd_puts("kernfs fill error\n");
3455 		goto out_destroy;
3456 	}
3457 
3458 	/*
3459 	 * The caller unlocks the parent_kn upon success.
3460 	 */
3461 	return 0;
3462 
3463 out_destroy:
3464 	kernfs_put(rdtgrp->kn);
3465 	kernfs_remove(rdtgrp->kn);
3466 out_free_rgrp:
3467 	kfree(rdtgrp);
3468 out_unlock:
3469 	rdtgroup_kn_unlock(parent_kn);
3470 	return ret;
3471 }
3472 
3473 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3474 {
3475 	kernfs_remove(rgrp->kn);
3476 	rdtgroup_remove(rgrp);
3477 }
3478 
3479 /*
3480  * Create a monitor group under "mon_groups" directory of a control
3481  * and monitor group(ctrl_mon). This is a resource group
3482  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3483  */
3484 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3485 			      const char *name, umode_t mode)
3486 {
3487 	struct rdtgroup *rdtgrp, *prgrp;
3488 	int ret;
3489 
3490 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3491 	if (ret)
3492 		return ret;
3493 
3494 	prgrp = rdtgrp->mon.parent;
3495 	rdtgrp->closid = prgrp->closid;
3496 
3497 	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3498 	if (ret) {
3499 		mkdir_rdt_prepare_clean(rdtgrp);
3500 		goto out_unlock;
3501 	}
3502 
3503 	kernfs_activate(rdtgrp->kn);
3504 
3505 	/*
3506 	 * Add the rdtgrp to the list of rdtgrps the parent
3507 	 * ctrl_mon group has to track.
3508 	 */
3509 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3510 
3511 out_unlock:
3512 	rdtgroup_kn_unlock(parent_kn);
3513 	return ret;
3514 }
3515 
3516 /*
3517  * These are rdtgroups created under the root directory. Can be used
3518  * to allocate and monitor resources.
3519  */
3520 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3521 				   const char *name, umode_t mode)
3522 {
3523 	struct rdtgroup *rdtgrp;
3524 	struct kernfs_node *kn;
3525 	u32 closid;
3526 	int ret;
3527 
3528 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3529 	if (ret)
3530 		return ret;
3531 
3532 	kn = rdtgrp->kn;
3533 	ret = closid_alloc();
3534 	if (ret < 0) {
3535 		rdt_last_cmd_puts("Out of CLOSIDs\n");
3536 		goto out_common_fail;
3537 	}
3538 	closid = ret;
3539 	ret = 0;
3540 
3541 	rdtgrp->closid = closid;
3542 
3543 	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3544 	if (ret)
3545 		goto out_closid_free;
3546 
3547 	kernfs_activate(rdtgrp->kn);
3548 
3549 	ret = rdtgroup_init_alloc(rdtgrp);
3550 	if (ret < 0)
3551 		goto out_rmid_free;
3552 
3553 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3554 
3555 	if (resctrl_arch_mon_capable()) {
3556 		/*
3557 		 * Create an empty mon_groups directory to hold the subset
3558 		 * of tasks and cpus to monitor.
3559 		 */
3560 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3561 		if (ret) {
3562 			rdt_last_cmd_puts("kernfs subdir error\n");
3563 			goto out_del_list;
3564 		}
3565 	}
3566 
3567 	goto out_unlock;
3568 
3569 out_del_list:
3570 	list_del(&rdtgrp->rdtgroup_list);
3571 out_rmid_free:
3572 	mkdir_rdt_prepare_rmid_free(rdtgrp);
3573 out_closid_free:
3574 	closid_free(closid);
3575 out_common_fail:
3576 	mkdir_rdt_prepare_clean(rdtgrp);
3577 out_unlock:
3578 	rdtgroup_kn_unlock(parent_kn);
3579 	return ret;
3580 }
3581 
3582 /*
3583  * We allow creating mon groups only with in a directory called "mon_groups"
3584  * which is present in every ctrl_mon group. Check if this is a valid
3585  * "mon_groups" directory.
3586  *
3587  * 1. The directory should be named "mon_groups".
3588  * 2. The mon group itself should "not" be named "mon_groups".
3589  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3590  *   as parent.
3591  */
3592 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3593 {
3594 	return (!strcmp(kn->name, "mon_groups") &&
3595 		strcmp(name, "mon_groups"));
3596 }
3597 
3598 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3599 			  umode_t mode)
3600 {
3601 	/* Do not accept '\n' to avoid unparsable situation. */
3602 	if (strchr(name, '\n'))
3603 		return -EINVAL;
3604 
3605 	/*
3606 	 * If the parent directory is the root directory and RDT
3607 	 * allocation is supported, add a control and monitoring
3608 	 * subdirectory
3609 	 */
3610 	if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn)
3611 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3612 
3613 	/*
3614 	 * If RDT monitoring is supported and the parent directory is a valid
3615 	 * "mon_groups" directory, add a monitoring subdirectory.
3616 	 */
3617 	if (resctrl_arch_mon_capable() && is_mon_groups(parent_kn, name))
3618 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3619 
3620 	return -EPERM;
3621 }
3622 
3623 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3624 {
3625 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3626 	int cpu;
3627 
3628 	/* Give any tasks back to the parent group */
3629 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3630 
3631 	/* Update per cpu rmid of the moved CPUs first */
3632 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3633 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3634 	/*
3635 	 * Update the MSR on moved CPUs and CPUs which have moved
3636 	 * task running on them.
3637 	 */
3638 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3639 	update_closid_rmid(tmpmask, NULL);
3640 
3641 	rdtgrp->flags = RDT_DELETED;
3642 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3643 
3644 	/*
3645 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3646 	 */
3647 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3648 	list_del(&rdtgrp->mon.crdtgrp_list);
3649 
3650 	kernfs_remove(rdtgrp->kn);
3651 
3652 	return 0;
3653 }
3654 
3655 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3656 {
3657 	rdtgrp->flags = RDT_DELETED;
3658 	list_del(&rdtgrp->rdtgroup_list);
3659 
3660 	kernfs_remove(rdtgrp->kn);
3661 	return 0;
3662 }
3663 
3664 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3665 {
3666 	int cpu;
3667 
3668 	/* Give any tasks back to the default group */
3669 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3670 
3671 	/* Give any CPUs back to the default group */
3672 	cpumask_or(&rdtgroup_default.cpu_mask,
3673 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3674 
3675 	/* Update per cpu closid and rmid of the moved CPUs first */
3676 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3677 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3678 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3679 	}
3680 
3681 	/*
3682 	 * Update the MSR on moved CPUs and CPUs which have moved
3683 	 * task running on them.
3684 	 */
3685 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3686 	update_closid_rmid(tmpmask, NULL);
3687 
3688 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3689 	closid_free(rdtgrp->closid);
3690 
3691 	rdtgroup_ctrl_remove(rdtgrp);
3692 
3693 	/*
3694 	 * Free all the child monitor group rmids.
3695 	 */
3696 	free_all_child_rdtgrp(rdtgrp);
3697 
3698 	return 0;
3699 }
3700 
3701 static int rdtgroup_rmdir(struct kernfs_node *kn)
3702 {
3703 	struct kernfs_node *parent_kn = kn->parent;
3704 	struct rdtgroup *rdtgrp;
3705 	cpumask_var_t tmpmask;
3706 	int ret = 0;
3707 
3708 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3709 		return -ENOMEM;
3710 
3711 	rdtgrp = rdtgroup_kn_lock_live(kn);
3712 	if (!rdtgrp) {
3713 		ret = -EPERM;
3714 		goto out;
3715 	}
3716 
3717 	/*
3718 	 * If the rdtgroup is a ctrl_mon group and parent directory
3719 	 * is the root directory, remove the ctrl_mon group.
3720 	 *
3721 	 * If the rdtgroup is a mon group and parent directory
3722 	 * is a valid "mon_groups" directory, remove the mon group.
3723 	 */
3724 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3725 	    rdtgrp != &rdtgroup_default) {
3726 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3727 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3728 			ret = rdtgroup_ctrl_remove(rdtgrp);
3729 		} else {
3730 			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3731 		}
3732 	} else if (rdtgrp->type == RDTMON_GROUP &&
3733 		 is_mon_groups(parent_kn, kn->name)) {
3734 		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3735 	} else {
3736 		ret = -EPERM;
3737 	}
3738 
3739 out:
3740 	rdtgroup_kn_unlock(kn);
3741 	free_cpumask_var(tmpmask);
3742 	return ret;
3743 }
3744 
3745 /**
3746  * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3747  * @rdtgrp:		the MON group whose parent should be replaced
3748  * @new_prdtgrp:	replacement parent CTRL_MON group for @rdtgrp
3749  * @cpus:		cpumask provided by the caller for use during this call
3750  *
3751  * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3752  * tasks' CLOSID immediately changing to that of the new parent group.
3753  * Monitoring data for the group is unaffected by this operation.
3754  */
3755 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3756 			    struct rdtgroup *new_prdtgrp,
3757 			    cpumask_var_t cpus)
3758 {
3759 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3760 
3761 	WARN_ON(rdtgrp->type != RDTMON_GROUP);
3762 	WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3763 
3764 	/* Nothing to do when simply renaming a MON group. */
3765 	if (prdtgrp == new_prdtgrp)
3766 		return;
3767 
3768 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3769 	list_move_tail(&rdtgrp->mon.crdtgrp_list,
3770 		       &new_prdtgrp->mon.crdtgrp_list);
3771 
3772 	rdtgrp->mon.parent = new_prdtgrp;
3773 	rdtgrp->closid = new_prdtgrp->closid;
3774 
3775 	/* Propagate updated closid to all tasks in this group. */
3776 	rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3777 
3778 	update_closid_rmid(cpus, NULL);
3779 }
3780 
3781 static int rdtgroup_rename(struct kernfs_node *kn,
3782 			   struct kernfs_node *new_parent, const char *new_name)
3783 {
3784 	struct rdtgroup *new_prdtgrp;
3785 	struct rdtgroup *rdtgrp;
3786 	cpumask_var_t tmpmask;
3787 	int ret;
3788 
3789 	rdtgrp = kernfs_to_rdtgroup(kn);
3790 	new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3791 	if (!rdtgrp || !new_prdtgrp)
3792 		return -ENOENT;
3793 
3794 	/* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3795 	rdtgroup_kn_get(rdtgrp, kn);
3796 	rdtgroup_kn_get(new_prdtgrp, new_parent);
3797 
3798 	mutex_lock(&rdtgroup_mutex);
3799 
3800 	rdt_last_cmd_clear();
3801 
3802 	/*
3803 	 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3804 	 * either kernfs_node is a file.
3805 	 */
3806 	if (kernfs_type(kn) != KERNFS_DIR ||
3807 	    kernfs_type(new_parent) != KERNFS_DIR) {
3808 		rdt_last_cmd_puts("Source and destination must be directories");
3809 		ret = -EPERM;
3810 		goto out;
3811 	}
3812 
3813 	if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3814 		ret = -ENOENT;
3815 		goto out;
3816 	}
3817 
3818 	if (rdtgrp->type != RDTMON_GROUP || !kn->parent ||
3819 	    !is_mon_groups(kn->parent, kn->name)) {
3820 		rdt_last_cmd_puts("Source must be a MON group\n");
3821 		ret = -EPERM;
3822 		goto out;
3823 	}
3824 
3825 	if (!is_mon_groups(new_parent, new_name)) {
3826 		rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3827 		ret = -EPERM;
3828 		goto out;
3829 	}
3830 
3831 	/*
3832 	 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3833 	 * current parent CTRL_MON group and therefore cannot be assigned to
3834 	 * the new parent, making the move illegal.
3835 	 */
3836 	if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3837 	    rdtgrp->mon.parent != new_prdtgrp) {
3838 		rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3839 		ret = -EPERM;
3840 		goto out;
3841 	}
3842 
3843 	/*
3844 	 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3845 	 * possibility of failing to allocate it after kernfs_rename() has
3846 	 * succeeded.
3847 	 */
3848 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3849 		ret = -ENOMEM;
3850 		goto out;
3851 	}
3852 
3853 	/*
3854 	 * Perform all input validation and allocations needed to ensure
3855 	 * mongrp_reparent() will succeed before calling kernfs_rename(),
3856 	 * otherwise it would be necessary to revert this call if
3857 	 * mongrp_reparent() failed.
3858 	 */
3859 	ret = kernfs_rename(kn, new_parent, new_name);
3860 	if (!ret)
3861 		mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3862 
3863 	free_cpumask_var(tmpmask);
3864 
3865 out:
3866 	mutex_unlock(&rdtgroup_mutex);
3867 	rdtgroup_kn_put(rdtgrp, kn);
3868 	rdtgroup_kn_put(new_prdtgrp, new_parent);
3869 	return ret;
3870 }
3871 
3872 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3873 {
3874 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3875 		seq_puts(seq, ",cdp");
3876 
3877 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3878 		seq_puts(seq, ",cdpl2");
3879 
3880 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3881 		seq_puts(seq, ",mba_MBps");
3882 
3883 	if (resctrl_debug)
3884 		seq_puts(seq, ",debug");
3885 
3886 	return 0;
3887 }
3888 
3889 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3890 	.mkdir		= rdtgroup_mkdir,
3891 	.rmdir		= rdtgroup_rmdir,
3892 	.rename		= rdtgroup_rename,
3893 	.show_options	= rdtgroup_show_options,
3894 };
3895 
3896 static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
3897 {
3898 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3899 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3900 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3901 				      &rdtgroup_default);
3902 	if (IS_ERR(rdt_root))
3903 		return PTR_ERR(rdt_root);
3904 
3905 	ctx->kfc.root = rdt_root;
3906 	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3907 
3908 	return 0;
3909 }
3910 
3911 static void rdtgroup_destroy_root(void)
3912 {
3913 	kernfs_destroy_root(rdt_root);
3914 	rdtgroup_default.kn = NULL;
3915 }
3916 
3917 static void __init rdtgroup_setup_default(void)
3918 {
3919 	mutex_lock(&rdtgroup_mutex);
3920 
3921 	rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID;
3922 	rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID;
3923 	rdtgroup_default.type = RDTCTRL_GROUP;
3924 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3925 
3926 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3927 
3928 	mutex_unlock(&rdtgroup_mutex);
3929 }
3930 
3931 static void domain_destroy_mon_state(struct rdt_domain *d)
3932 {
3933 	bitmap_free(d->rmid_busy_llc);
3934 	kfree(d->mbm_total);
3935 	kfree(d->mbm_local);
3936 }
3937 
3938 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3939 {
3940 	mutex_lock(&rdtgroup_mutex);
3941 
3942 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3943 		mba_sc_domain_destroy(r, d);
3944 
3945 	if (!r->mon_capable)
3946 		goto out_unlock;
3947 
3948 	/*
3949 	 * If resctrl is mounted, remove all the
3950 	 * per domain monitor data directories.
3951 	 */
3952 	if (resctrl_mounted && resctrl_arch_mon_capable())
3953 		rmdir_mondata_subdir_allrdtgrp(r, d->id);
3954 
3955 	if (is_mbm_enabled())
3956 		cancel_delayed_work(&d->mbm_over);
3957 	if (is_llc_occupancy_enabled() && has_busy_rmid(d)) {
3958 		/*
3959 		 * When a package is going down, forcefully
3960 		 * decrement rmid->ebusy. There is no way to know
3961 		 * that the L3 was flushed and hence may lead to
3962 		 * incorrect counts in rare scenarios, but leaving
3963 		 * the RMID as busy creates RMID leaks if the
3964 		 * package never comes back.
3965 		 */
3966 		__check_limbo(d, true);
3967 		cancel_delayed_work(&d->cqm_limbo);
3968 	}
3969 
3970 	domain_destroy_mon_state(d);
3971 
3972 out_unlock:
3973 	mutex_unlock(&rdtgroup_mutex);
3974 }
3975 
3976 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3977 {
3978 	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
3979 	size_t tsize;
3980 
3981 	if (is_llc_occupancy_enabled()) {
3982 		d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL);
3983 		if (!d->rmid_busy_llc)
3984 			return -ENOMEM;
3985 	}
3986 	if (is_mbm_total_enabled()) {
3987 		tsize = sizeof(*d->mbm_total);
3988 		d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL);
3989 		if (!d->mbm_total) {
3990 			bitmap_free(d->rmid_busy_llc);
3991 			return -ENOMEM;
3992 		}
3993 	}
3994 	if (is_mbm_local_enabled()) {
3995 		tsize = sizeof(*d->mbm_local);
3996 		d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL);
3997 		if (!d->mbm_local) {
3998 			bitmap_free(d->rmid_busy_llc);
3999 			kfree(d->mbm_total);
4000 			return -ENOMEM;
4001 		}
4002 	}
4003 
4004 	return 0;
4005 }
4006 
4007 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
4008 {
4009 	int err = 0;
4010 
4011 	mutex_lock(&rdtgroup_mutex);
4012 
4013 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) {
4014 		/* RDT_RESOURCE_MBA is never mon_capable */
4015 		err = mba_sc_domain_allocate(r, d);
4016 		goto out_unlock;
4017 	}
4018 
4019 	if (!r->mon_capable)
4020 		goto out_unlock;
4021 
4022 	err = domain_setup_mon_state(r, d);
4023 	if (err)
4024 		goto out_unlock;
4025 
4026 	if (is_mbm_enabled()) {
4027 		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
4028 		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL,
4029 					   RESCTRL_PICK_ANY_CPU);
4030 	}
4031 
4032 	if (is_llc_occupancy_enabled())
4033 		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
4034 
4035 	/*
4036 	 * If the filesystem is not mounted then only the default resource group
4037 	 * exists. Creation of its directories is deferred until mount time
4038 	 * by rdt_get_tree() calling mkdir_mondata_all().
4039 	 * If resctrl is mounted, add per domain monitor data directories.
4040 	 */
4041 	if (resctrl_mounted && resctrl_arch_mon_capable())
4042 		mkdir_mondata_subdir_allrdtgrp(r, d);
4043 
4044 out_unlock:
4045 	mutex_unlock(&rdtgroup_mutex);
4046 
4047 	return err;
4048 }
4049 
4050 void resctrl_online_cpu(unsigned int cpu)
4051 {
4052 	mutex_lock(&rdtgroup_mutex);
4053 	/* The CPU is set in default rdtgroup after online. */
4054 	cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
4055 	mutex_unlock(&rdtgroup_mutex);
4056 }
4057 
4058 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
4059 {
4060 	struct rdtgroup *cr;
4061 
4062 	list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
4063 		if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask))
4064 			break;
4065 	}
4066 }
4067 
4068 void resctrl_offline_cpu(unsigned int cpu)
4069 {
4070 	struct rdt_resource *l3 = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
4071 	struct rdtgroup *rdtgrp;
4072 	struct rdt_domain *d;
4073 
4074 	mutex_lock(&rdtgroup_mutex);
4075 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
4076 		if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
4077 			clear_childcpus(rdtgrp, cpu);
4078 			break;
4079 		}
4080 	}
4081 
4082 	if (!l3->mon_capable)
4083 		goto out_unlock;
4084 
4085 	d = get_domain_from_cpu(cpu, l3);
4086 	if (d) {
4087 		if (is_mbm_enabled() && cpu == d->mbm_work_cpu) {
4088 			cancel_delayed_work(&d->mbm_over);
4089 			mbm_setup_overflow_handler(d, 0, cpu);
4090 		}
4091 		if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu &&
4092 		    has_busy_rmid(d)) {
4093 			cancel_delayed_work(&d->cqm_limbo);
4094 			cqm_setup_limbo_handler(d, 0, cpu);
4095 		}
4096 	}
4097 
4098 out_unlock:
4099 	mutex_unlock(&rdtgroup_mutex);
4100 }
4101 
4102 /*
4103  * rdtgroup_init - rdtgroup initialization
4104  *
4105  * Setup resctrl file system including set up root, create mount point,
4106  * register rdtgroup filesystem, and initialize files under root directory.
4107  *
4108  * Return: 0 on success or -errno
4109  */
4110 int __init rdtgroup_init(void)
4111 {
4112 	int ret = 0;
4113 
4114 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
4115 		     sizeof(last_cmd_status_buf));
4116 
4117 	rdtgroup_setup_default();
4118 
4119 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
4120 	if (ret)
4121 		return ret;
4122 
4123 	ret = register_filesystem(&rdt_fs_type);
4124 	if (ret)
4125 		goto cleanup_mountpoint;
4126 
4127 	/*
4128 	 * Adding the resctrl debugfs directory here may not be ideal since
4129 	 * it would let the resctrl debugfs directory appear on the debugfs
4130 	 * filesystem before the resctrl filesystem is mounted.
4131 	 * It may also be ok since that would enable debugging of RDT before
4132 	 * resctrl is mounted.
4133 	 * The reason why the debugfs directory is created here and not in
4134 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4135 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
4136 	 * (the lockdep class of inode->i_rwsem). Other filesystem
4137 	 * interactions (eg. SyS_getdents) have the lock ordering:
4138 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4139 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4140 	 * is taken, thus creating dependency:
4141 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4142 	 * issues considering the other two lock dependencies.
4143 	 * By creating the debugfs directory here we avoid a dependency
4144 	 * that may cause deadlock (even though file operations cannot
4145 	 * occur until the filesystem is mounted, but I do not know how to
4146 	 * tell lockdep that).
4147 	 */
4148 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
4149 
4150 	return 0;
4151 
4152 cleanup_mountpoint:
4153 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4154 
4155 	return ret;
4156 }
4157 
4158 void __exit rdtgroup_exit(void)
4159 {
4160 	debugfs_remove_recursive(debugfs_resctrl);
4161 	unregister_filesystem(&rdt_fs_type);
4162 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4163 }
4164