xref: /linux/arch/x86/kernel/cpu/resctrl/pseudo_lock.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Resource Director Technology (RDT)
4  *
5  * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6  *
7  * Copyright (C) 2018 Intel Corporation
8  *
9  * Author: Reinette Chatre <reinette.chatre@intel.com>
10  */
11 
12 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
13 
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/debugfs.h>
17 #include <linux/kthread.h>
18 #include <linux/mman.h>
19 #include <linux/perf_event.h>
20 #include <linux/pm_qos.h>
21 #include <linux/slab.h>
22 #include <linux/uaccess.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/resctrl.h>
27 #include <asm/perf_event.h>
28 
29 #include "../../events/perf_event.h" /* For X86_CONFIG() */
30 #include "internal.h"
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 /*
36  * The bits needed to disable hardware prefetching varies based on the
37  * platform. During initialization we will discover which bits to use.
38  */
39 static u64 prefetch_disable_bits;
40 
41 /*
42  * Major number assigned to and shared by all devices exposing
43  * pseudo-locked regions.
44  */
45 static unsigned int pseudo_lock_major;
46 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
47 
48 static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode)
49 {
50 	const struct rdtgroup *rdtgrp;
51 
52 	rdtgrp = dev_get_drvdata(dev);
53 	if (mode)
54 		*mode = 0600;
55 	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
56 }
57 
58 static const struct class pseudo_lock_class = {
59 	.name = "pseudo_lock",
60 	.devnode = pseudo_lock_devnode,
61 };
62 
63 /**
64  * get_prefetch_disable_bits - prefetch disable bits of supported platforms
65  * @void: It takes no parameters.
66  *
67  * Capture the list of platforms that have been validated to support
68  * pseudo-locking. This includes testing to ensure pseudo-locked regions
69  * with low cache miss rates can be created under variety of load conditions
70  * as well as that these pseudo-locked regions can maintain their low cache
71  * miss rates under variety of load conditions for significant lengths of time.
72  *
73  * After a platform has been validated to support pseudo-locking its
74  * hardware prefetch disable bits are included here as they are documented
75  * in the SDM.
76  *
77  * When adding a platform here also add support for its cache events to
78  * measure_cycles_perf_fn()
79  *
80  * Return:
81  * If platform is supported, the bits to disable hardware prefetchers, 0
82  * if platform is not supported.
83  */
84 static u64 get_prefetch_disable_bits(void)
85 {
86 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
87 	    boot_cpu_data.x86 != 6)
88 		return 0;
89 
90 	switch (boot_cpu_data.x86_vfm) {
91 	case INTEL_BROADWELL_X:
92 		/*
93 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
94 		 * as:
95 		 * 0    L2 Hardware Prefetcher Disable (R/W)
96 		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
97 		 * 2    DCU Hardware Prefetcher Disable (R/W)
98 		 * 3    DCU IP Prefetcher Disable (R/W)
99 		 * 63:4 Reserved
100 		 */
101 		return 0xF;
102 	case INTEL_ATOM_GOLDMONT:
103 	case INTEL_ATOM_GOLDMONT_PLUS:
104 		/*
105 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
106 		 * as:
107 		 * 0     L2 Hardware Prefetcher Disable (R/W)
108 		 * 1     Reserved
109 		 * 2     DCU Hardware Prefetcher Disable (R/W)
110 		 * 63:3  Reserved
111 		 */
112 		return 0x5;
113 	}
114 
115 	return 0;
116 }
117 
118 /**
119  * pseudo_lock_minor_get - Obtain available minor number
120  * @minor: Pointer to where new minor number will be stored
121  *
122  * A bitmask is used to track available minor numbers. Here the next free
123  * minor number is marked as unavailable and returned.
124  *
125  * Return: 0 on success, <0 on failure.
126  */
127 static int pseudo_lock_minor_get(unsigned int *minor)
128 {
129 	unsigned long first_bit;
130 
131 	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
132 
133 	if (first_bit == MINORBITS)
134 		return -ENOSPC;
135 
136 	__clear_bit(first_bit, &pseudo_lock_minor_avail);
137 	*minor = first_bit;
138 
139 	return 0;
140 }
141 
142 /**
143  * pseudo_lock_minor_release - Return minor number to available
144  * @minor: The minor number made available
145  */
146 static void pseudo_lock_minor_release(unsigned int minor)
147 {
148 	__set_bit(minor, &pseudo_lock_minor_avail);
149 }
150 
151 /**
152  * region_find_by_minor - Locate a pseudo-lock region by inode minor number
153  * @minor: The minor number of the device representing pseudo-locked region
154  *
155  * When the character device is accessed we need to determine which
156  * pseudo-locked region it belongs to. This is done by matching the minor
157  * number of the device to the pseudo-locked region it belongs.
158  *
159  * Minor numbers are assigned at the time a pseudo-locked region is associated
160  * with a cache instance.
161  *
162  * Return: On success return pointer to resource group owning the pseudo-locked
163  *         region, NULL on failure.
164  */
165 static struct rdtgroup *region_find_by_minor(unsigned int minor)
166 {
167 	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
168 
169 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
170 		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
171 			rdtgrp_match = rdtgrp;
172 			break;
173 		}
174 	}
175 	return rdtgrp_match;
176 }
177 
178 /**
179  * struct pseudo_lock_pm_req - A power management QoS request list entry
180  * @list:	Entry within the @pm_reqs list for a pseudo-locked region
181  * @req:	PM QoS request
182  */
183 struct pseudo_lock_pm_req {
184 	struct list_head list;
185 	struct dev_pm_qos_request req;
186 };
187 
188 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
189 {
190 	struct pseudo_lock_pm_req *pm_req, *next;
191 
192 	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
193 		dev_pm_qos_remove_request(&pm_req->req);
194 		list_del(&pm_req->list);
195 		kfree(pm_req);
196 	}
197 }
198 
199 /**
200  * pseudo_lock_cstates_constrain - Restrict cores from entering C6
201  * @plr: Pseudo-locked region
202  *
203  * To prevent the cache from being affected by power management entering
204  * C6 has to be avoided. This is accomplished by requesting a latency
205  * requirement lower than lowest C6 exit latency of all supported
206  * platforms as found in the cpuidle state tables in the intel_idle driver.
207  * At this time it is possible to do so with a single latency requirement
208  * for all supported platforms.
209  *
210  * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
211  * the ACPI latencies need to be considered while keeping in mind that C2
212  * may be set to map to deeper sleep states. In this case the latency
213  * requirement needs to prevent entering C2 also.
214  *
215  * Return: 0 on success, <0 on failure
216  */
217 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
218 {
219 	struct pseudo_lock_pm_req *pm_req;
220 	int cpu;
221 	int ret;
222 
223 	for_each_cpu(cpu, &plr->d->hdr.cpu_mask) {
224 		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
225 		if (!pm_req) {
226 			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
227 			ret = -ENOMEM;
228 			goto out_err;
229 		}
230 		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
231 					     &pm_req->req,
232 					     DEV_PM_QOS_RESUME_LATENCY,
233 					     30);
234 		if (ret < 0) {
235 			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
236 					    cpu);
237 			kfree(pm_req);
238 			ret = -1;
239 			goto out_err;
240 		}
241 		list_add(&pm_req->list, &plr->pm_reqs);
242 	}
243 
244 	return 0;
245 
246 out_err:
247 	pseudo_lock_cstates_relax(plr);
248 	return ret;
249 }
250 
251 /**
252  * pseudo_lock_region_clear - Reset pseudo-lock region data
253  * @plr: pseudo-lock region
254  *
255  * All content of the pseudo-locked region is reset - any memory allocated
256  * freed.
257  *
258  * Return: void
259  */
260 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
261 {
262 	plr->size = 0;
263 	plr->line_size = 0;
264 	kfree(plr->kmem);
265 	plr->kmem = NULL;
266 	plr->s = NULL;
267 	if (plr->d)
268 		plr->d->plr = NULL;
269 	plr->d = NULL;
270 	plr->cbm = 0;
271 	plr->debugfs_dir = NULL;
272 }
273 
274 /**
275  * pseudo_lock_region_init - Initialize pseudo-lock region information
276  * @plr: pseudo-lock region
277  *
278  * Called after user provided a schemata to be pseudo-locked. From the
279  * schemata the &struct pseudo_lock_region is on entry already initialized
280  * with the resource, domain, and capacity bitmask. Here the information
281  * required for pseudo-locking is deduced from this data and &struct
282  * pseudo_lock_region initialized further. This information includes:
283  * - size in bytes of the region to be pseudo-locked
284  * - cache line size to know the stride with which data needs to be accessed
285  *   to be pseudo-locked
286  * - a cpu associated with the cache instance on which the pseudo-locking
287  *   flow can be executed
288  *
289  * Return: 0 on success, <0 on failure. Descriptive error will be written
290  * to last_cmd_status buffer.
291  */
292 static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
293 {
294 	enum resctrl_scope scope = plr->s->res->ctrl_scope;
295 	struct cacheinfo *ci;
296 	int ret;
297 
298 	if (WARN_ON_ONCE(scope != RESCTRL_L2_CACHE && scope != RESCTRL_L3_CACHE))
299 		return -ENODEV;
300 
301 	/* Pick the first cpu we find that is associated with the cache. */
302 	plr->cpu = cpumask_first(&plr->d->hdr.cpu_mask);
303 
304 	if (!cpu_online(plr->cpu)) {
305 		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
306 				    plr->cpu);
307 		ret = -ENODEV;
308 		goto out_region;
309 	}
310 
311 	ci = get_cpu_cacheinfo_level(plr->cpu, scope);
312 	if (ci) {
313 		plr->line_size = ci->coherency_line_size;
314 		plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
315 		return 0;
316 	}
317 
318 	ret = -1;
319 	rdt_last_cmd_puts("Unable to determine cache line size\n");
320 out_region:
321 	pseudo_lock_region_clear(plr);
322 	return ret;
323 }
324 
325 /**
326  * pseudo_lock_init - Initialize a pseudo-lock region
327  * @rdtgrp: resource group to which new pseudo-locked region will belong
328  *
329  * A pseudo-locked region is associated with a resource group. When this
330  * association is created the pseudo-locked region is initialized. The
331  * details of the pseudo-locked region are not known at this time so only
332  * allocation is done and association established.
333  *
334  * Return: 0 on success, <0 on failure
335  */
336 static int pseudo_lock_init(struct rdtgroup *rdtgrp)
337 {
338 	struct pseudo_lock_region *plr;
339 
340 	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
341 	if (!plr)
342 		return -ENOMEM;
343 
344 	init_waitqueue_head(&plr->lock_thread_wq);
345 	INIT_LIST_HEAD(&plr->pm_reqs);
346 	rdtgrp->plr = plr;
347 	return 0;
348 }
349 
350 /**
351  * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
352  * @plr: pseudo-lock region
353  *
354  * Initialize the details required to set up the pseudo-locked region and
355  * allocate the contiguous memory that will be pseudo-locked to the cache.
356  *
357  * Return: 0 on success, <0 on failure.  Descriptive error will be written
358  * to last_cmd_status buffer.
359  */
360 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
361 {
362 	int ret;
363 
364 	ret = pseudo_lock_region_init(plr);
365 	if (ret < 0)
366 		return ret;
367 
368 	/*
369 	 * We do not yet support contiguous regions larger than
370 	 * KMALLOC_MAX_SIZE.
371 	 */
372 	if (plr->size > KMALLOC_MAX_SIZE) {
373 		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
374 		ret = -E2BIG;
375 		goto out_region;
376 	}
377 
378 	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
379 	if (!plr->kmem) {
380 		rdt_last_cmd_puts("Unable to allocate memory\n");
381 		ret = -ENOMEM;
382 		goto out_region;
383 	}
384 
385 	ret = 0;
386 	goto out;
387 out_region:
388 	pseudo_lock_region_clear(plr);
389 out:
390 	return ret;
391 }
392 
393 /**
394  * pseudo_lock_free - Free a pseudo-locked region
395  * @rdtgrp: resource group to which pseudo-locked region belonged
396  *
397  * The pseudo-locked region's resources have already been released, or not
398  * yet created at this point. Now it can be freed and disassociated from the
399  * resource group.
400  *
401  * Return: void
402  */
403 static void pseudo_lock_free(struct rdtgroup *rdtgrp)
404 {
405 	pseudo_lock_region_clear(rdtgrp->plr);
406 	kfree(rdtgrp->plr);
407 	rdtgrp->plr = NULL;
408 }
409 
410 /**
411  * pseudo_lock_fn - Load kernel memory into cache
412  * @_rdtgrp: resource group to which pseudo-lock region belongs
413  *
414  * This is the core pseudo-locking flow.
415  *
416  * First we ensure that the kernel memory cannot be found in the cache.
417  * Then, while taking care that there will be as little interference as
418  * possible, the memory to be loaded is accessed while core is running
419  * with class of service set to the bitmask of the pseudo-locked region.
420  * After this is complete no future CAT allocations will be allowed to
421  * overlap with this bitmask.
422  *
423  * Local register variables are utilized to ensure that the memory region
424  * to be locked is the only memory access made during the critical locking
425  * loop.
426  *
427  * Return: 0. Waiter on waitqueue will be woken on completion.
428  */
429 static int pseudo_lock_fn(void *_rdtgrp)
430 {
431 	struct rdtgroup *rdtgrp = _rdtgrp;
432 	struct pseudo_lock_region *plr = rdtgrp->plr;
433 	u32 rmid_p, closid_p;
434 	unsigned long i;
435 	u64 saved_msr;
436 #ifdef CONFIG_KASAN
437 	/*
438 	 * The registers used for local register variables are also used
439 	 * when KASAN is active. When KASAN is active we use a regular
440 	 * variable to ensure we always use a valid pointer, but the cost
441 	 * is that this variable will enter the cache through evicting the
442 	 * memory we are trying to lock into the cache. Thus expect lower
443 	 * pseudo-locking success rate when KASAN is active.
444 	 */
445 	unsigned int line_size;
446 	unsigned int size;
447 	void *mem_r;
448 #else
449 	register unsigned int line_size asm("esi");
450 	register unsigned int size asm("edi");
451 	register void *mem_r asm(_ASM_BX);
452 #endif /* CONFIG_KASAN */
453 
454 	/*
455 	 * Make sure none of the allocated memory is cached. If it is we
456 	 * will get a cache hit in below loop from outside of pseudo-locked
457 	 * region.
458 	 * wbinvd (as opposed to clflush/clflushopt) is required to
459 	 * increase likelihood that allocated cache portion will be filled
460 	 * with associated memory.
461 	 */
462 	native_wbinvd();
463 
464 	/*
465 	 * Always called with interrupts enabled. By disabling interrupts
466 	 * ensure that we will not be preempted during this critical section.
467 	 */
468 	local_irq_disable();
469 
470 	/*
471 	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
472 	 * clobbering local register variables or affecting cache accesses.
473 	 *
474 	 * Disable the hardware prefetcher so that when the end of the memory
475 	 * being pseudo-locked is reached the hardware will not read beyond
476 	 * the buffer and evict pseudo-locked memory read earlier from the
477 	 * cache.
478 	 */
479 	saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL);
480 	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
481 	closid_p = this_cpu_read(pqr_state.cur_closid);
482 	rmid_p = this_cpu_read(pqr_state.cur_rmid);
483 	mem_r = plr->kmem;
484 	size = plr->size;
485 	line_size = plr->line_size;
486 	/*
487 	 * Critical section begin: start by writing the closid associated
488 	 * with the capacity bitmask of the cache region being
489 	 * pseudo-locked followed by reading of kernel memory to load it
490 	 * into the cache.
491 	 */
492 	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
493 	/*
494 	 * Cache was flushed earlier. Now access kernel memory to read it
495 	 * into cache region associated with just activated plr->closid.
496 	 * Loop over data twice:
497 	 * - In first loop the cache region is shared with the page walker
498 	 *   as it populates the paging structure caches (including TLB).
499 	 * - In the second loop the paging structure caches are used and
500 	 *   cache region is populated with the memory being referenced.
501 	 */
502 	for (i = 0; i < size; i += PAGE_SIZE) {
503 		/*
504 		 * Add a barrier to prevent speculative execution of this
505 		 * loop reading beyond the end of the buffer.
506 		 */
507 		rmb();
508 		asm volatile("mov (%0,%1,1), %%eax\n\t"
509 			:
510 			: "r" (mem_r), "r" (i)
511 			: "%eax", "memory");
512 	}
513 	for (i = 0; i < size; i += line_size) {
514 		/*
515 		 * Add a barrier to prevent speculative execution of this
516 		 * loop reading beyond the end of the buffer.
517 		 */
518 		rmb();
519 		asm volatile("mov (%0,%1,1), %%eax\n\t"
520 			:
521 			: "r" (mem_r), "r" (i)
522 			: "%eax", "memory");
523 	}
524 	/*
525 	 * Critical section end: restore closid with capacity bitmask that
526 	 * does not overlap with pseudo-locked region.
527 	 */
528 	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p);
529 
530 	/* Re-enable the hardware prefetcher(s) */
531 	wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr);
532 	local_irq_enable();
533 
534 	plr->thread_done = 1;
535 	wake_up_interruptible(&plr->lock_thread_wq);
536 	return 0;
537 }
538 
539 /**
540  * rdtgroup_monitor_in_progress - Test if monitoring in progress
541  * @rdtgrp: resource group being queried
542  *
543  * Return: 1 if monitor groups have been created for this resource
544  * group, 0 otherwise.
545  */
546 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
547 {
548 	return !list_empty(&rdtgrp->mon.crdtgrp_list);
549 }
550 
551 /**
552  * rdtgroup_locksetup_user_restrict - Restrict user access to group
553  * @rdtgrp: resource group needing access restricted
554  *
555  * A resource group used for cache pseudo-locking cannot have cpus or tasks
556  * assigned to it. This is communicated to the user by restricting access
557  * to all the files that can be used to make such changes.
558  *
559  * Permissions restored with rdtgroup_locksetup_user_restore()
560  *
561  * Return: 0 on success, <0 on failure. If a failure occurs during the
562  * restriction of access an attempt will be made to restore permissions but
563  * the state of the mode of these files will be uncertain when a failure
564  * occurs.
565  */
566 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
567 {
568 	int ret;
569 
570 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
571 	if (ret)
572 		return ret;
573 
574 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
575 	if (ret)
576 		goto err_tasks;
577 
578 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
579 	if (ret)
580 		goto err_cpus;
581 
582 	if (resctrl_arch_mon_capable()) {
583 		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
584 		if (ret)
585 			goto err_cpus_list;
586 	}
587 
588 	ret = 0;
589 	goto out;
590 
591 err_cpus_list:
592 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
593 err_cpus:
594 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
595 err_tasks:
596 	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
597 out:
598 	return ret;
599 }
600 
601 /**
602  * rdtgroup_locksetup_user_restore - Restore user access to group
603  * @rdtgrp: resource group needing access restored
604  *
605  * Restore all file access previously removed using
606  * rdtgroup_locksetup_user_restrict()
607  *
608  * Return: 0 on success, <0 on failure.  If a failure occurs during the
609  * restoration of access an attempt will be made to restrict permissions
610  * again but the state of the mode of these files will be uncertain when
611  * a failure occurs.
612  */
613 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
614 {
615 	int ret;
616 
617 	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
618 	if (ret)
619 		return ret;
620 
621 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
622 	if (ret)
623 		goto err_tasks;
624 
625 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
626 	if (ret)
627 		goto err_cpus;
628 
629 	if (resctrl_arch_mon_capable()) {
630 		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
631 		if (ret)
632 			goto err_cpus_list;
633 	}
634 
635 	ret = 0;
636 	goto out;
637 
638 err_cpus_list:
639 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
640 err_cpus:
641 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
642 err_tasks:
643 	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
644 out:
645 	return ret;
646 }
647 
648 /**
649  * rdtgroup_locksetup_enter - Resource group enters locksetup mode
650  * @rdtgrp: resource group requested to enter locksetup mode
651  *
652  * A resource group enters locksetup mode to reflect that it would be used
653  * to represent a pseudo-locked region and is in the process of being set
654  * up to do so. A resource group used for a pseudo-locked region would
655  * lose the closid associated with it so we cannot allow it to have any
656  * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
657  * future. Monitoring of a pseudo-locked region is not allowed either.
658  *
659  * The above and more restrictions on a pseudo-locked region are checked
660  * for and enforced before the resource group enters the locksetup mode.
661  *
662  * Returns: 0 if the resource group successfully entered locksetup mode, <0
663  * on failure. On failure the last_cmd_status buffer is updated with text to
664  * communicate details of failure to the user.
665  */
666 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
667 {
668 	int ret;
669 
670 	/*
671 	 * The default resource group can neither be removed nor lose the
672 	 * default closid associated with it.
673 	 */
674 	if (rdtgrp == &rdtgroup_default) {
675 		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
676 		return -EINVAL;
677 	}
678 
679 	/*
680 	 * Cache Pseudo-locking not supported when CDP is enabled.
681 	 *
682 	 * Some things to consider if you would like to enable this
683 	 * support (using L3 CDP as example):
684 	 * - When CDP is enabled two separate resources are exposed,
685 	 *   L3DATA and L3CODE, but they are actually on the same cache.
686 	 *   The implication for pseudo-locking is that if a
687 	 *   pseudo-locked region is created on a domain of one
688 	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
689 	 *   be created on that same domain of the other resource
690 	 *   (eg. L3DATA). This is because the creation of a
691 	 *   pseudo-locked region involves a call to wbinvd that will
692 	 *   affect all cache allocations on particular domain.
693 	 * - Considering the previous, it may be possible to only
694 	 *   expose one of the CDP resources to pseudo-locking and
695 	 *   hide the other. For example, we could consider to only
696 	 *   expose L3DATA and since the L3 cache is unified it is
697 	 *   still possible to place instructions there are execute it.
698 	 * - If only one region is exposed to pseudo-locking we should
699 	 *   still keep in mind that availability of a portion of cache
700 	 *   for pseudo-locking should take into account both resources.
701 	 *   Similarly, if a pseudo-locked region is created in one
702 	 *   resource, the portion of cache used by it should be made
703 	 *   unavailable to all future allocations from both resources.
704 	 */
705 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
706 	    resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
707 		rdt_last_cmd_puts("CDP enabled\n");
708 		return -EINVAL;
709 	}
710 
711 	/*
712 	 * Not knowing the bits to disable prefetching implies that this
713 	 * platform does not support Cache Pseudo-Locking.
714 	 */
715 	prefetch_disable_bits = get_prefetch_disable_bits();
716 	if (prefetch_disable_bits == 0) {
717 		rdt_last_cmd_puts("Pseudo-locking not supported\n");
718 		return -EINVAL;
719 	}
720 
721 	if (rdtgroup_monitor_in_progress(rdtgrp)) {
722 		rdt_last_cmd_puts("Monitoring in progress\n");
723 		return -EINVAL;
724 	}
725 
726 	if (rdtgroup_tasks_assigned(rdtgrp)) {
727 		rdt_last_cmd_puts("Tasks assigned to resource group\n");
728 		return -EINVAL;
729 	}
730 
731 	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
732 		rdt_last_cmd_puts("CPUs assigned to resource group\n");
733 		return -EINVAL;
734 	}
735 
736 	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
737 		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
738 		return -EIO;
739 	}
740 
741 	ret = pseudo_lock_init(rdtgrp);
742 	if (ret) {
743 		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
744 		goto out_release;
745 	}
746 
747 	/*
748 	 * If this system is capable of monitoring a rmid would have been
749 	 * allocated when the control group was created. This is not needed
750 	 * anymore when this group would be used for pseudo-locking. This
751 	 * is safe to call on platforms not capable of monitoring.
752 	 */
753 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
754 
755 	ret = 0;
756 	goto out;
757 
758 out_release:
759 	rdtgroup_locksetup_user_restore(rdtgrp);
760 out:
761 	return ret;
762 }
763 
764 /**
765  * rdtgroup_locksetup_exit - resource group exist locksetup mode
766  * @rdtgrp: resource group
767  *
768  * When a resource group exits locksetup mode the earlier restrictions are
769  * lifted.
770  *
771  * Return: 0 on success, <0 on failure
772  */
773 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
774 {
775 	int ret;
776 
777 	if (resctrl_arch_mon_capable()) {
778 		ret = alloc_rmid(rdtgrp->closid);
779 		if (ret < 0) {
780 			rdt_last_cmd_puts("Out of RMIDs\n");
781 			return ret;
782 		}
783 		rdtgrp->mon.rmid = ret;
784 	}
785 
786 	ret = rdtgroup_locksetup_user_restore(rdtgrp);
787 	if (ret) {
788 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
789 		return ret;
790 	}
791 
792 	pseudo_lock_free(rdtgrp);
793 	return 0;
794 }
795 
796 /**
797  * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
798  * @d: RDT domain
799  * @cbm: CBM to test
800  *
801  * @d represents a cache instance and @cbm a capacity bitmask that is
802  * considered for it. Determine if @cbm overlaps with any existing
803  * pseudo-locked region on @d.
804  *
805  * @cbm is unsigned long, even if only 32 bits are used, to make the
806  * bitmap functions work correctly.
807  *
808  * Return: true if @cbm overlaps with pseudo-locked region on @d, false
809  * otherwise.
810  */
811 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm)
812 {
813 	unsigned int cbm_len;
814 	unsigned long cbm_b;
815 
816 	if (d->plr) {
817 		cbm_len = d->plr->s->res->cache.cbm_len;
818 		cbm_b = d->plr->cbm;
819 		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
820 			return true;
821 	}
822 	return false;
823 }
824 
825 /**
826  * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
827  * @d: RDT domain under test
828  *
829  * The setup of a pseudo-locked region affects all cache instances within
830  * the hierarchy of the region. It is thus essential to know if any
831  * pseudo-locked regions exist within a cache hierarchy to prevent any
832  * attempts to create new pseudo-locked regions in the same hierarchy.
833  *
834  * Return: true if a pseudo-locked region exists in the hierarchy of @d or
835  *         if it is not possible to test due to memory allocation issue,
836  *         false otherwise.
837  */
838 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d)
839 {
840 	struct rdt_ctrl_domain *d_i;
841 	cpumask_var_t cpu_with_psl;
842 	struct rdt_resource *r;
843 	bool ret = false;
844 
845 	/* Walking r->domains, ensure it can't race with cpuhp */
846 	lockdep_assert_cpus_held();
847 
848 	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
849 		return true;
850 
851 	/*
852 	 * First determine which cpus have pseudo-locked regions
853 	 * associated with them.
854 	 */
855 	for_each_alloc_capable_rdt_resource(r) {
856 		list_for_each_entry(d_i, &r->ctrl_domains, hdr.list) {
857 			if (d_i->plr)
858 				cpumask_or(cpu_with_psl, cpu_with_psl,
859 					   &d_i->hdr.cpu_mask);
860 		}
861 	}
862 
863 	/*
864 	 * Next test if new pseudo-locked region would intersect with
865 	 * existing region.
866 	 */
867 	if (cpumask_intersects(&d->hdr.cpu_mask, cpu_with_psl))
868 		ret = true;
869 
870 	free_cpumask_var(cpu_with_psl);
871 	return ret;
872 }
873 
874 /**
875  * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
876  * @_plr: pseudo-lock region to measure
877  *
878  * There is no deterministic way to test if a memory region is cached. One
879  * way is to measure how long it takes to read the memory, the speed of
880  * access is a good way to learn how close to the cpu the data was. Even
881  * more, if the prefetcher is disabled and the memory is read at a stride
882  * of half the cache line, then a cache miss will be easy to spot since the
883  * read of the first half would be significantly slower than the read of
884  * the second half.
885  *
886  * Return: 0. Waiter on waitqueue will be woken on completion.
887  */
888 static int measure_cycles_lat_fn(void *_plr)
889 {
890 	struct pseudo_lock_region *plr = _plr;
891 	u32 saved_low, saved_high;
892 	unsigned long i;
893 	u64 start, end;
894 	void *mem_r;
895 
896 	local_irq_disable();
897 	/*
898 	 * Disable hardware prefetchers.
899 	 */
900 	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
901 	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
902 	mem_r = READ_ONCE(plr->kmem);
903 	/*
904 	 * Dummy execute of the time measurement to load the needed
905 	 * instructions into the L1 instruction cache.
906 	 */
907 	start = rdtsc_ordered();
908 	for (i = 0; i < plr->size; i += 32) {
909 		start = rdtsc_ordered();
910 		asm volatile("mov (%0,%1,1), %%eax\n\t"
911 			     :
912 			     : "r" (mem_r), "r" (i)
913 			     : "%eax", "memory");
914 		end = rdtsc_ordered();
915 		trace_pseudo_lock_mem_latency((u32)(end - start));
916 	}
917 	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
918 	local_irq_enable();
919 	plr->thread_done = 1;
920 	wake_up_interruptible(&plr->lock_thread_wq);
921 	return 0;
922 }
923 
924 /*
925  * Create a perf_event_attr for the hit and miss perf events that will
926  * be used during the performance measurement. A perf_event maintains
927  * a pointer to its perf_event_attr so a unique attribute structure is
928  * created for each perf_event.
929  *
930  * The actual configuration of the event is set right before use in order
931  * to use the X86_CONFIG macro.
932  */
933 static struct perf_event_attr perf_miss_attr = {
934 	.type		= PERF_TYPE_RAW,
935 	.size		= sizeof(struct perf_event_attr),
936 	.pinned		= 1,
937 	.disabled	= 0,
938 	.exclude_user	= 1,
939 };
940 
941 static struct perf_event_attr perf_hit_attr = {
942 	.type		= PERF_TYPE_RAW,
943 	.size		= sizeof(struct perf_event_attr),
944 	.pinned		= 1,
945 	.disabled	= 0,
946 	.exclude_user	= 1,
947 };
948 
949 struct residency_counts {
950 	u64 miss_before, hits_before;
951 	u64 miss_after,  hits_after;
952 };
953 
954 static int measure_residency_fn(struct perf_event_attr *miss_attr,
955 				struct perf_event_attr *hit_attr,
956 				struct pseudo_lock_region *plr,
957 				struct residency_counts *counts)
958 {
959 	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
960 	struct perf_event *miss_event, *hit_event;
961 	int hit_pmcnum, miss_pmcnum;
962 	u32 saved_low, saved_high;
963 	unsigned int line_size;
964 	unsigned int size;
965 	unsigned long i;
966 	void *mem_r;
967 	u64 tmp;
968 
969 	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
970 						      NULL, NULL, NULL);
971 	if (IS_ERR(miss_event))
972 		goto out;
973 
974 	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
975 						     NULL, NULL, NULL);
976 	if (IS_ERR(hit_event))
977 		goto out_miss;
978 
979 	local_irq_disable();
980 	/*
981 	 * Check any possible error state of events used by performing
982 	 * one local read.
983 	 */
984 	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
985 		local_irq_enable();
986 		goto out_hit;
987 	}
988 	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
989 		local_irq_enable();
990 		goto out_hit;
991 	}
992 
993 	/*
994 	 * Disable hardware prefetchers.
995 	 */
996 	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
997 	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
998 
999 	/* Initialize rest of local variables */
1000 	/*
1001 	 * Performance event has been validated right before this with
1002 	 * interrupts disabled - it is thus safe to read the counter index.
1003 	 */
1004 	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
1005 	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
1006 	line_size = READ_ONCE(plr->line_size);
1007 	mem_r = READ_ONCE(plr->kmem);
1008 	size = READ_ONCE(plr->size);
1009 
1010 	/*
1011 	 * Read counter variables twice - first to load the instructions
1012 	 * used in L1 cache, second to capture accurate value that does not
1013 	 * include cache misses incurred because of instruction loads.
1014 	 */
1015 	rdpmcl(hit_pmcnum, hits_before);
1016 	rdpmcl(miss_pmcnum, miss_before);
1017 	/*
1018 	 * From SDM: Performing back-to-back fast reads are not guaranteed
1019 	 * to be monotonic.
1020 	 * Use LFENCE to ensure all previous instructions are retired
1021 	 * before proceeding.
1022 	 */
1023 	rmb();
1024 	rdpmcl(hit_pmcnum, hits_before);
1025 	rdpmcl(miss_pmcnum, miss_before);
1026 	/*
1027 	 * Use LFENCE to ensure all previous instructions are retired
1028 	 * before proceeding.
1029 	 */
1030 	rmb();
1031 	for (i = 0; i < size; i += line_size) {
1032 		/*
1033 		 * Add a barrier to prevent speculative execution of this
1034 		 * loop reading beyond the end of the buffer.
1035 		 */
1036 		rmb();
1037 		asm volatile("mov (%0,%1,1), %%eax\n\t"
1038 			     :
1039 			     : "r" (mem_r), "r" (i)
1040 			     : "%eax", "memory");
1041 	}
1042 	/*
1043 	 * Use LFENCE to ensure all previous instructions are retired
1044 	 * before proceeding.
1045 	 */
1046 	rmb();
1047 	rdpmcl(hit_pmcnum, hits_after);
1048 	rdpmcl(miss_pmcnum, miss_after);
1049 	/*
1050 	 * Use LFENCE to ensure all previous instructions are retired
1051 	 * before proceeding.
1052 	 */
1053 	rmb();
1054 	/* Re-enable hardware prefetchers */
1055 	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1056 	local_irq_enable();
1057 out_hit:
1058 	perf_event_release_kernel(hit_event);
1059 out_miss:
1060 	perf_event_release_kernel(miss_event);
1061 out:
1062 	/*
1063 	 * All counts will be zero on failure.
1064 	 */
1065 	counts->miss_before = miss_before;
1066 	counts->hits_before = hits_before;
1067 	counts->miss_after  = miss_after;
1068 	counts->hits_after  = hits_after;
1069 	return 0;
1070 }
1071 
1072 static int measure_l2_residency(void *_plr)
1073 {
1074 	struct pseudo_lock_region *plr = _plr;
1075 	struct residency_counts counts = {0};
1076 
1077 	/*
1078 	 * Non-architectural event for the Goldmont Microarchitecture
1079 	 * from Intel x86 Architecture Software Developer Manual (SDM):
1080 	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1081 	 * Umask values:
1082 	 *     L2_HIT   02H
1083 	 *     L2_MISS  10H
1084 	 */
1085 	switch (boot_cpu_data.x86_vfm) {
1086 	case INTEL_ATOM_GOLDMONT:
1087 	case INTEL_ATOM_GOLDMONT_PLUS:
1088 		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1089 						   .umask = 0x10);
1090 		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1091 						  .umask = 0x2);
1092 		break;
1093 	default:
1094 		goto out;
1095 	}
1096 
1097 	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1098 	/*
1099 	 * If a failure prevented the measurements from succeeding
1100 	 * tracepoints will still be written and all counts will be zero.
1101 	 */
1102 	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1103 			     counts.miss_after - counts.miss_before);
1104 out:
1105 	plr->thread_done = 1;
1106 	wake_up_interruptible(&plr->lock_thread_wq);
1107 	return 0;
1108 }
1109 
1110 static int measure_l3_residency(void *_plr)
1111 {
1112 	struct pseudo_lock_region *plr = _plr;
1113 	struct residency_counts counts = {0};
1114 
1115 	/*
1116 	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1117 	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1118 	 * this platform the following events are used instead:
1119 	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1120 	 *       REFERENCE 4FH
1121 	 *       MISS      41H
1122 	 */
1123 
1124 	switch (boot_cpu_data.x86_vfm) {
1125 	case INTEL_BROADWELL_X:
1126 		/* On BDW the hit event counts references, not hits */
1127 		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1128 						  .umask = 0x4f);
1129 		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1130 						   .umask = 0x41);
1131 		break;
1132 	default:
1133 		goto out;
1134 	}
1135 
1136 	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1137 	/*
1138 	 * If a failure prevented the measurements from succeeding
1139 	 * tracepoints will still be written and all counts will be zero.
1140 	 */
1141 
1142 	counts.miss_after -= counts.miss_before;
1143 	if (boot_cpu_data.x86_vfm == INTEL_BROADWELL_X) {
1144 		/*
1145 		 * On BDW references and misses are counted, need to adjust.
1146 		 * Sometimes the "hits" counter is a bit more than the
1147 		 * references, for example, x references but x + 1 hits.
1148 		 * To not report invalid hit values in this case we treat
1149 		 * that as misses equal to references.
1150 		 */
1151 		/* First compute the number of cache references measured */
1152 		counts.hits_after -= counts.hits_before;
1153 		/* Next convert references to cache hits */
1154 		counts.hits_after -= min(counts.miss_after, counts.hits_after);
1155 	} else {
1156 		counts.hits_after -= counts.hits_before;
1157 	}
1158 
1159 	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1160 out:
1161 	plr->thread_done = 1;
1162 	wake_up_interruptible(&plr->lock_thread_wq);
1163 	return 0;
1164 }
1165 
1166 /**
1167  * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1168  * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1169  * @sel: Selector of which measurement to perform on a pseudo-locked region.
1170  *
1171  * The measurement of latency to access a pseudo-locked region should be
1172  * done from a cpu that is associated with that pseudo-locked region.
1173  * Determine which cpu is associated with this region and start a thread on
1174  * that cpu to perform the measurement, wait for that thread to complete.
1175  *
1176  * Return: 0 on success, <0 on failure
1177  */
1178 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1179 {
1180 	struct pseudo_lock_region *plr = rdtgrp->plr;
1181 	struct task_struct *thread;
1182 	unsigned int cpu;
1183 	int ret = -1;
1184 
1185 	cpus_read_lock();
1186 	mutex_lock(&rdtgroup_mutex);
1187 
1188 	if (rdtgrp->flags & RDT_DELETED) {
1189 		ret = -ENODEV;
1190 		goto out;
1191 	}
1192 
1193 	if (!plr->d) {
1194 		ret = -ENODEV;
1195 		goto out;
1196 	}
1197 
1198 	plr->thread_done = 0;
1199 	cpu = cpumask_first(&plr->d->hdr.cpu_mask);
1200 	if (!cpu_online(cpu)) {
1201 		ret = -ENODEV;
1202 		goto out;
1203 	}
1204 
1205 	plr->cpu = cpu;
1206 
1207 	if (sel == 1)
1208 		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1209 						cpu_to_node(cpu),
1210 						"pseudo_lock_measure/%u",
1211 						cpu);
1212 	else if (sel == 2)
1213 		thread = kthread_create_on_node(measure_l2_residency, plr,
1214 						cpu_to_node(cpu),
1215 						"pseudo_lock_measure/%u",
1216 						cpu);
1217 	else if (sel == 3)
1218 		thread = kthread_create_on_node(measure_l3_residency, plr,
1219 						cpu_to_node(cpu),
1220 						"pseudo_lock_measure/%u",
1221 						cpu);
1222 	else
1223 		goto out;
1224 
1225 	if (IS_ERR(thread)) {
1226 		ret = PTR_ERR(thread);
1227 		goto out;
1228 	}
1229 	kthread_bind(thread, cpu);
1230 	wake_up_process(thread);
1231 
1232 	ret = wait_event_interruptible(plr->lock_thread_wq,
1233 				       plr->thread_done == 1);
1234 	if (ret < 0)
1235 		goto out;
1236 
1237 	ret = 0;
1238 
1239 out:
1240 	mutex_unlock(&rdtgroup_mutex);
1241 	cpus_read_unlock();
1242 	return ret;
1243 }
1244 
1245 static ssize_t pseudo_lock_measure_trigger(struct file *file,
1246 					   const char __user *user_buf,
1247 					   size_t count, loff_t *ppos)
1248 {
1249 	struct rdtgroup *rdtgrp = file->private_data;
1250 	size_t buf_size;
1251 	char buf[32];
1252 	int ret;
1253 	int sel;
1254 
1255 	buf_size = min(count, (sizeof(buf) - 1));
1256 	if (copy_from_user(buf, user_buf, buf_size))
1257 		return -EFAULT;
1258 
1259 	buf[buf_size] = '\0';
1260 	ret = kstrtoint(buf, 10, &sel);
1261 	if (ret == 0) {
1262 		if (sel != 1 && sel != 2 && sel != 3)
1263 			return -EINVAL;
1264 		ret = debugfs_file_get(file->f_path.dentry);
1265 		if (ret)
1266 			return ret;
1267 		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1268 		if (ret == 0)
1269 			ret = count;
1270 		debugfs_file_put(file->f_path.dentry);
1271 	}
1272 
1273 	return ret;
1274 }
1275 
1276 static const struct file_operations pseudo_measure_fops = {
1277 	.write = pseudo_lock_measure_trigger,
1278 	.open = simple_open,
1279 	.llseek = default_llseek,
1280 };
1281 
1282 /**
1283  * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1284  * @rdtgrp: resource group to which pseudo-lock region belongs
1285  *
1286  * Called when a resource group in the pseudo-locksetup mode receives a
1287  * valid schemata that should be pseudo-locked. Since the resource group is
1288  * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1289  * allocated and initialized with the essential information. If a failure
1290  * occurs the resource group remains in the pseudo-locksetup mode with the
1291  * &struct pseudo_lock_region associated with it, but cleared from all
1292  * information and ready for the user to re-attempt pseudo-locking by
1293  * writing the schemata again.
1294  *
1295  * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1296  * on failure. Descriptive error will be written to last_cmd_status buffer.
1297  */
1298 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1299 {
1300 	struct pseudo_lock_region *plr = rdtgrp->plr;
1301 	struct task_struct *thread;
1302 	unsigned int new_minor;
1303 	struct device *dev;
1304 	int ret;
1305 
1306 	ret = pseudo_lock_region_alloc(plr);
1307 	if (ret < 0)
1308 		return ret;
1309 
1310 	ret = pseudo_lock_cstates_constrain(plr);
1311 	if (ret < 0) {
1312 		ret = -EINVAL;
1313 		goto out_region;
1314 	}
1315 
1316 	plr->thread_done = 0;
1317 
1318 	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1319 					cpu_to_node(plr->cpu),
1320 					"pseudo_lock/%u", plr->cpu);
1321 	if (IS_ERR(thread)) {
1322 		ret = PTR_ERR(thread);
1323 		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1324 		goto out_cstates;
1325 	}
1326 
1327 	kthread_bind(thread, plr->cpu);
1328 	wake_up_process(thread);
1329 
1330 	ret = wait_event_interruptible(plr->lock_thread_wq,
1331 				       plr->thread_done == 1);
1332 	if (ret < 0) {
1333 		/*
1334 		 * If the thread does not get on the CPU for whatever
1335 		 * reason and the process which sets up the region is
1336 		 * interrupted then this will leave the thread in runnable
1337 		 * state and once it gets on the CPU it will dereference
1338 		 * the cleared, but not freed, plr struct resulting in an
1339 		 * empty pseudo-locking loop.
1340 		 */
1341 		rdt_last_cmd_puts("Locking thread interrupted\n");
1342 		goto out_cstates;
1343 	}
1344 
1345 	ret = pseudo_lock_minor_get(&new_minor);
1346 	if (ret < 0) {
1347 		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1348 		goto out_cstates;
1349 	}
1350 
1351 	/*
1352 	 * Unlock access but do not release the reference. The
1353 	 * pseudo-locked region will still be here on return.
1354 	 *
1355 	 * The mutex has to be released temporarily to avoid a potential
1356 	 * deadlock with the mm->mmap_lock which is obtained in the
1357 	 * device_create() and debugfs_create_dir() callpath below as well as
1358 	 * before the mmap() callback is called.
1359 	 */
1360 	mutex_unlock(&rdtgroup_mutex);
1361 
1362 	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1363 		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1364 						      debugfs_resctrl);
1365 		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1366 			debugfs_create_file("pseudo_lock_measure", 0200,
1367 					    plr->debugfs_dir, rdtgrp,
1368 					    &pseudo_measure_fops);
1369 	}
1370 
1371 	dev = device_create(&pseudo_lock_class, NULL,
1372 			    MKDEV(pseudo_lock_major, new_minor),
1373 			    rdtgrp, "%s", rdtgrp->kn->name);
1374 
1375 	mutex_lock(&rdtgroup_mutex);
1376 
1377 	if (IS_ERR(dev)) {
1378 		ret = PTR_ERR(dev);
1379 		rdt_last_cmd_printf("Failed to create character device: %d\n",
1380 				    ret);
1381 		goto out_debugfs;
1382 	}
1383 
1384 	/* We released the mutex - check if group was removed while we did so */
1385 	if (rdtgrp->flags & RDT_DELETED) {
1386 		ret = -ENODEV;
1387 		goto out_device;
1388 	}
1389 
1390 	plr->minor = new_minor;
1391 
1392 	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1393 	closid_free(rdtgrp->closid);
1394 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1395 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1396 
1397 	ret = 0;
1398 	goto out;
1399 
1400 out_device:
1401 	device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1402 out_debugfs:
1403 	debugfs_remove_recursive(plr->debugfs_dir);
1404 	pseudo_lock_minor_release(new_minor);
1405 out_cstates:
1406 	pseudo_lock_cstates_relax(plr);
1407 out_region:
1408 	pseudo_lock_region_clear(plr);
1409 out:
1410 	return ret;
1411 }
1412 
1413 /**
1414  * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1415  * @rdtgrp: resource group to which the pseudo-locked region belongs
1416  *
1417  * The removal of a pseudo-locked region can be initiated when the resource
1418  * group is removed from user space via a "rmdir" from userspace or the
1419  * unmount of the resctrl filesystem. On removal the resource group does
1420  * not go back to pseudo-locksetup mode before it is removed, instead it is
1421  * removed directly. There is thus asymmetry with the creation where the
1422  * &struct pseudo_lock_region is removed here while it was not created in
1423  * rdtgroup_pseudo_lock_create().
1424  *
1425  * Return: void
1426  */
1427 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1428 {
1429 	struct pseudo_lock_region *plr = rdtgrp->plr;
1430 
1431 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1432 		/*
1433 		 * Default group cannot be a pseudo-locked region so we can
1434 		 * free closid here.
1435 		 */
1436 		closid_free(rdtgrp->closid);
1437 		goto free;
1438 	}
1439 
1440 	pseudo_lock_cstates_relax(plr);
1441 	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1442 	device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1443 	pseudo_lock_minor_release(plr->minor);
1444 
1445 free:
1446 	pseudo_lock_free(rdtgrp);
1447 }
1448 
1449 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1450 {
1451 	struct rdtgroup *rdtgrp;
1452 
1453 	mutex_lock(&rdtgroup_mutex);
1454 
1455 	rdtgrp = region_find_by_minor(iminor(inode));
1456 	if (!rdtgrp) {
1457 		mutex_unlock(&rdtgroup_mutex);
1458 		return -ENODEV;
1459 	}
1460 
1461 	filp->private_data = rdtgrp;
1462 	atomic_inc(&rdtgrp->waitcount);
1463 	/* Perform a non-seekable open - llseek is not supported */
1464 	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1465 
1466 	mutex_unlock(&rdtgroup_mutex);
1467 
1468 	return 0;
1469 }
1470 
1471 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1472 {
1473 	struct rdtgroup *rdtgrp;
1474 
1475 	mutex_lock(&rdtgroup_mutex);
1476 	rdtgrp = filp->private_data;
1477 	WARN_ON(!rdtgrp);
1478 	if (!rdtgrp) {
1479 		mutex_unlock(&rdtgroup_mutex);
1480 		return -ENODEV;
1481 	}
1482 	filp->private_data = NULL;
1483 	atomic_dec(&rdtgrp->waitcount);
1484 	mutex_unlock(&rdtgroup_mutex);
1485 	return 0;
1486 }
1487 
1488 static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1489 {
1490 	/* Not supported */
1491 	return -EINVAL;
1492 }
1493 
1494 static const struct vm_operations_struct pseudo_mmap_ops = {
1495 	.mremap = pseudo_lock_dev_mremap,
1496 };
1497 
1498 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1499 {
1500 	unsigned long vsize = vma->vm_end - vma->vm_start;
1501 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1502 	struct pseudo_lock_region *plr;
1503 	struct rdtgroup *rdtgrp;
1504 	unsigned long physical;
1505 	unsigned long psize;
1506 
1507 	mutex_lock(&rdtgroup_mutex);
1508 
1509 	rdtgrp = filp->private_data;
1510 	WARN_ON(!rdtgrp);
1511 	if (!rdtgrp) {
1512 		mutex_unlock(&rdtgroup_mutex);
1513 		return -ENODEV;
1514 	}
1515 
1516 	plr = rdtgrp->plr;
1517 
1518 	if (!plr->d) {
1519 		mutex_unlock(&rdtgroup_mutex);
1520 		return -ENODEV;
1521 	}
1522 
1523 	/*
1524 	 * Task is required to run with affinity to the cpus associated
1525 	 * with the pseudo-locked region. If this is not the case the task
1526 	 * may be scheduled elsewhere and invalidate entries in the
1527 	 * pseudo-locked region.
1528 	 */
1529 	if (!cpumask_subset(current->cpus_ptr, &plr->d->hdr.cpu_mask)) {
1530 		mutex_unlock(&rdtgroup_mutex);
1531 		return -EINVAL;
1532 	}
1533 
1534 	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1535 	psize = plr->size - off;
1536 
1537 	if (off > plr->size) {
1538 		mutex_unlock(&rdtgroup_mutex);
1539 		return -ENOSPC;
1540 	}
1541 
1542 	/*
1543 	 * Ensure changes are carried directly to the memory being mapped,
1544 	 * do not allow copy-on-write mapping.
1545 	 */
1546 	if (!(vma->vm_flags & VM_SHARED)) {
1547 		mutex_unlock(&rdtgroup_mutex);
1548 		return -EINVAL;
1549 	}
1550 
1551 	if (vsize > psize) {
1552 		mutex_unlock(&rdtgroup_mutex);
1553 		return -ENOSPC;
1554 	}
1555 
1556 	memset(plr->kmem + off, 0, vsize);
1557 
1558 	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1559 			    vsize, vma->vm_page_prot)) {
1560 		mutex_unlock(&rdtgroup_mutex);
1561 		return -EAGAIN;
1562 	}
1563 	vma->vm_ops = &pseudo_mmap_ops;
1564 	mutex_unlock(&rdtgroup_mutex);
1565 	return 0;
1566 }
1567 
1568 static const struct file_operations pseudo_lock_dev_fops = {
1569 	.owner =	THIS_MODULE,
1570 	.read =		NULL,
1571 	.write =	NULL,
1572 	.open =		pseudo_lock_dev_open,
1573 	.release =	pseudo_lock_dev_release,
1574 	.mmap =		pseudo_lock_dev_mmap,
1575 };
1576 
1577 int rdt_pseudo_lock_init(void)
1578 {
1579 	int ret;
1580 
1581 	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1582 	if (ret < 0)
1583 		return ret;
1584 
1585 	pseudo_lock_major = ret;
1586 
1587 	ret = class_register(&pseudo_lock_class);
1588 	if (ret) {
1589 		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1590 		return ret;
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 void rdt_pseudo_lock_release(void)
1597 {
1598 	class_unregister(&pseudo_lock_class);
1599 	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1600 	pseudo_lock_major = 0;
1601 }
1602