xref: /linux/arch/x86/kernel/cpu/resctrl/pseudo_lock.c (revision 4ab0279857bb0b1c7a1ed61186527e33db693b6e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Resource Director Technology (RDT)
4  *
5  * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6  *
7  * Copyright (C) 2018 Intel Corporation
8  *
9  * Author: Reinette Chatre <reinette.chatre@intel.com>
10  */
11 
12 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
13 
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/debugfs.h>
17 #include <linux/kthread.h>
18 #include <linux/mman.h>
19 #include <linux/perf_event.h>
20 #include <linux/pm_qos.h>
21 #include <linux/slab.h>
22 #include <linux/uaccess.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/resctrl.h>
27 #include <asm/perf_event.h>
28 
29 #include "../../events/perf_event.h" /* For X86_CONFIG() */
30 #include "internal.h"
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 /*
36  * The bits needed to disable hardware prefetching varies based on the
37  * platform. During initialization we will discover which bits to use.
38  */
39 static u64 prefetch_disable_bits;
40 
41 /*
42  * Major number assigned to and shared by all devices exposing
43  * pseudo-locked regions.
44  */
45 static unsigned int pseudo_lock_major;
46 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
47 
48 static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode)
49 {
50 	const struct rdtgroup *rdtgrp;
51 
52 	rdtgrp = dev_get_drvdata(dev);
53 	if (mode)
54 		*mode = 0600;
55 	guard(mutex)(&rdtgroup_mutex);
56 	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdt_kn_name(rdtgrp->kn));
57 }
58 
59 static const struct class pseudo_lock_class = {
60 	.name = "pseudo_lock",
61 	.devnode = pseudo_lock_devnode,
62 };
63 
64 /**
65  * get_prefetch_disable_bits - prefetch disable bits of supported platforms
66  * @void: It takes no parameters.
67  *
68  * Capture the list of platforms that have been validated to support
69  * pseudo-locking. This includes testing to ensure pseudo-locked regions
70  * with low cache miss rates can be created under variety of load conditions
71  * as well as that these pseudo-locked regions can maintain their low cache
72  * miss rates under variety of load conditions for significant lengths of time.
73  *
74  * After a platform has been validated to support pseudo-locking its
75  * hardware prefetch disable bits are included here as they are documented
76  * in the SDM.
77  *
78  * When adding a platform here also add support for its cache events to
79  * measure_cycles_perf_fn()
80  *
81  * Return:
82  * If platform is supported, the bits to disable hardware prefetchers, 0
83  * if platform is not supported.
84  */
85 static u64 get_prefetch_disable_bits(void)
86 {
87 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
88 	    boot_cpu_data.x86 != 6)
89 		return 0;
90 
91 	switch (boot_cpu_data.x86_vfm) {
92 	case INTEL_BROADWELL_X:
93 		/*
94 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
95 		 * as:
96 		 * 0    L2 Hardware Prefetcher Disable (R/W)
97 		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
98 		 * 2    DCU Hardware Prefetcher Disable (R/W)
99 		 * 3    DCU IP Prefetcher Disable (R/W)
100 		 * 63:4 Reserved
101 		 */
102 		return 0xF;
103 	case INTEL_ATOM_GOLDMONT:
104 	case INTEL_ATOM_GOLDMONT_PLUS:
105 		/*
106 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
107 		 * as:
108 		 * 0     L2 Hardware Prefetcher Disable (R/W)
109 		 * 1     Reserved
110 		 * 2     DCU Hardware Prefetcher Disable (R/W)
111 		 * 63:3  Reserved
112 		 */
113 		return 0x5;
114 	}
115 
116 	return 0;
117 }
118 
119 /**
120  * pseudo_lock_minor_get - Obtain available minor number
121  * @minor: Pointer to where new minor number will be stored
122  *
123  * A bitmask is used to track available minor numbers. Here the next free
124  * minor number is marked as unavailable and returned.
125  *
126  * Return: 0 on success, <0 on failure.
127  */
128 static int pseudo_lock_minor_get(unsigned int *minor)
129 {
130 	unsigned long first_bit;
131 
132 	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
133 
134 	if (first_bit == MINORBITS)
135 		return -ENOSPC;
136 
137 	__clear_bit(first_bit, &pseudo_lock_minor_avail);
138 	*minor = first_bit;
139 
140 	return 0;
141 }
142 
143 /**
144  * pseudo_lock_minor_release - Return minor number to available
145  * @minor: The minor number made available
146  */
147 static void pseudo_lock_minor_release(unsigned int minor)
148 {
149 	__set_bit(minor, &pseudo_lock_minor_avail);
150 }
151 
152 /**
153  * region_find_by_minor - Locate a pseudo-lock region by inode minor number
154  * @minor: The minor number of the device representing pseudo-locked region
155  *
156  * When the character device is accessed we need to determine which
157  * pseudo-locked region it belongs to. This is done by matching the minor
158  * number of the device to the pseudo-locked region it belongs.
159  *
160  * Minor numbers are assigned at the time a pseudo-locked region is associated
161  * with a cache instance.
162  *
163  * Return: On success return pointer to resource group owning the pseudo-locked
164  *         region, NULL on failure.
165  */
166 static struct rdtgroup *region_find_by_minor(unsigned int minor)
167 {
168 	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
169 
170 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
171 		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
172 			rdtgrp_match = rdtgrp;
173 			break;
174 		}
175 	}
176 	return rdtgrp_match;
177 }
178 
179 /**
180  * struct pseudo_lock_pm_req - A power management QoS request list entry
181  * @list:	Entry within the @pm_reqs list for a pseudo-locked region
182  * @req:	PM QoS request
183  */
184 struct pseudo_lock_pm_req {
185 	struct list_head list;
186 	struct dev_pm_qos_request req;
187 };
188 
189 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
190 {
191 	struct pseudo_lock_pm_req *pm_req, *next;
192 
193 	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
194 		dev_pm_qos_remove_request(&pm_req->req);
195 		list_del(&pm_req->list);
196 		kfree(pm_req);
197 	}
198 }
199 
200 /**
201  * pseudo_lock_cstates_constrain - Restrict cores from entering C6
202  * @plr: Pseudo-locked region
203  *
204  * To prevent the cache from being affected by power management entering
205  * C6 has to be avoided. This is accomplished by requesting a latency
206  * requirement lower than lowest C6 exit latency of all supported
207  * platforms as found in the cpuidle state tables in the intel_idle driver.
208  * At this time it is possible to do so with a single latency requirement
209  * for all supported platforms.
210  *
211  * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
212  * the ACPI latencies need to be considered while keeping in mind that C2
213  * may be set to map to deeper sleep states. In this case the latency
214  * requirement needs to prevent entering C2 also.
215  *
216  * Return: 0 on success, <0 on failure
217  */
218 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
219 {
220 	struct pseudo_lock_pm_req *pm_req;
221 	int cpu;
222 	int ret;
223 
224 	for_each_cpu(cpu, &plr->d->hdr.cpu_mask) {
225 		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
226 		if (!pm_req) {
227 			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
228 			ret = -ENOMEM;
229 			goto out_err;
230 		}
231 		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
232 					     &pm_req->req,
233 					     DEV_PM_QOS_RESUME_LATENCY,
234 					     30);
235 		if (ret < 0) {
236 			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
237 					    cpu);
238 			kfree(pm_req);
239 			ret = -1;
240 			goto out_err;
241 		}
242 		list_add(&pm_req->list, &plr->pm_reqs);
243 	}
244 
245 	return 0;
246 
247 out_err:
248 	pseudo_lock_cstates_relax(plr);
249 	return ret;
250 }
251 
252 /**
253  * pseudo_lock_region_clear - Reset pseudo-lock region data
254  * @plr: pseudo-lock region
255  *
256  * All content of the pseudo-locked region is reset - any memory allocated
257  * freed.
258  *
259  * Return: void
260  */
261 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
262 {
263 	plr->size = 0;
264 	plr->line_size = 0;
265 	kfree(plr->kmem);
266 	plr->kmem = NULL;
267 	plr->s = NULL;
268 	if (plr->d)
269 		plr->d->plr = NULL;
270 	plr->d = NULL;
271 	plr->cbm = 0;
272 	plr->debugfs_dir = NULL;
273 }
274 
275 /**
276  * pseudo_lock_region_init - Initialize pseudo-lock region information
277  * @plr: pseudo-lock region
278  *
279  * Called after user provided a schemata to be pseudo-locked. From the
280  * schemata the &struct pseudo_lock_region is on entry already initialized
281  * with the resource, domain, and capacity bitmask. Here the information
282  * required for pseudo-locking is deduced from this data and &struct
283  * pseudo_lock_region initialized further. This information includes:
284  * - size in bytes of the region to be pseudo-locked
285  * - cache line size to know the stride with which data needs to be accessed
286  *   to be pseudo-locked
287  * - a cpu associated with the cache instance on which the pseudo-locking
288  *   flow can be executed
289  *
290  * Return: 0 on success, <0 on failure. Descriptive error will be written
291  * to last_cmd_status buffer.
292  */
293 static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
294 {
295 	enum resctrl_scope scope = plr->s->res->ctrl_scope;
296 	struct cacheinfo *ci;
297 	int ret;
298 
299 	if (WARN_ON_ONCE(scope != RESCTRL_L2_CACHE && scope != RESCTRL_L3_CACHE))
300 		return -ENODEV;
301 
302 	/* Pick the first cpu we find that is associated with the cache. */
303 	plr->cpu = cpumask_first(&plr->d->hdr.cpu_mask);
304 
305 	if (!cpu_online(plr->cpu)) {
306 		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
307 				    plr->cpu);
308 		ret = -ENODEV;
309 		goto out_region;
310 	}
311 
312 	ci = get_cpu_cacheinfo_level(plr->cpu, scope);
313 	if (ci) {
314 		plr->line_size = ci->coherency_line_size;
315 		plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
316 		return 0;
317 	}
318 
319 	ret = -1;
320 	rdt_last_cmd_puts("Unable to determine cache line size\n");
321 out_region:
322 	pseudo_lock_region_clear(plr);
323 	return ret;
324 }
325 
326 /**
327  * pseudo_lock_init - Initialize a pseudo-lock region
328  * @rdtgrp: resource group to which new pseudo-locked region will belong
329  *
330  * A pseudo-locked region is associated with a resource group. When this
331  * association is created the pseudo-locked region is initialized. The
332  * details of the pseudo-locked region are not known at this time so only
333  * allocation is done and association established.
334  *
335  * Return: 0 on success, <0 on failure
336  */
337 static int pseudo_lock_init(struct rdtgroup *rdtgrp)
338 {
339 	struct pseudo_lock_region *plr;
340 
341 	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
342 	if (!plr)
343 		return -ENOMEM;
344 
345 	init_waitqueue_head(&plr->lock_thread_wq);
346 	INIT_LIST_HEAD(&plr->pm_reqs);
347 	rdtgrp->plr = plr;
348 	return 0;
349 }
350 
351 /**
352  * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
353  * @plr: pseudo-lock region
354  *
355  * Initialize the details required to set up the pseudo-locked region and
356  * allocate the contiguous memory that will be pseudo-locked to the cache.
357  *
358  * Return: 0 on success, <0 on failure.  Descriptive error will be written
359  * to last_cmd_status buffer.
360  */
361 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
362 {
363 	int ret;
364 
365 	ret = pseudo_lock_region_init(plr);
366 	if (ret < 0)
367 		return ret;
368 
369 	/*
370 	 * We do not yet support contiguous regions larger than
371 	 * KMALLOC_MAX_SIZE.
372 	 */
373 	if (plr->size > KMALLOC_MAX_SIZE) {
374 		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
375 		ret = -E2BIG;
376 		goto out_region;
377 	}
378 
379 	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
380 	if (!plr->kmem) {
381 		rdt_last_cmd_puts("Unable to allocate memory\n");
382 		ret = -ENOMEM;
383 		goto out_region;
384 	}
385 
386 	ret = 0;
387 	goto out;
388 out_region:
389 	pseudo_lock_region_clear(plr);
390 out:
391 	return ret;
392 }
393 
394 /**
395  * pseudo_lock_free - Free a pseudo-locked region
396  * @rdtgrp: resource group to which pseudo-locked region belonged
397  *
398  * The pseudo-locked region's resources have already been released, or not
399  * yet created at this point. Now it can be freed and disassociated from the
400  * resource group.
401  *
402  * Return: void
403  */
404 static void pseudo_lock_free(struct rdtgroup *rdtgrp)
405 {
406 	pseudo_lock_region_clear(rdtgrp->plr);
407 	kfree(rdtgrp->plr);
408 	rdtgrp->plr = NULL;
409 }
410 
411 /**
412  * pseudo_lock_fn - Load kernel memory into cache
413  * @_rdtgrp: resource group to which pseudo-lock region belongs
414  *
415  * This is the core pseudo-locking flow.
416  *
417  * First we ensure that the kernel memory cannot be found in the cache.
418  * Then, while taking care that there will be as little interference as
419  * possible, the memory to be loaded is accessed while core is running
420  * with class of service set to the bitmask of the pseudo-locked region.
421  * After this is complete no future CAT allocations will be allowed to
422  * overlap with this bitmask.
423  *
424  * Local register variables are utilized to ensure that the memory region
425  * to be locked is the only memory access made during the critical locking
426  * loop.
427  *
428  * Return: 0. Waiter on waitqueue will be woken on completion.
429  */
430 static int pseudo_lock_fn(void *_rdtgrp)
431 {
432 	struct rdtgroup *rdtgrp = _rdtgrp;
433 	struct pseudo_lock_region *plr = rdtgrp->plr;
434 	u32 rmid_p, closid_p;
435 	unsigned long i;
436 	u64 saved_msr;
437 #ifdef CONFIG_KASAN
438 	/*
439 	 * The registers used for local register variables are also used
440 	 * when KASAN is active. When KASAN is active we use a regular
441 	 * variable to ensure we always use a valid pointer, but the cost
442 	 * is that this variable will enter the cache through evicting the
443 	 * memory we are trying to lock into the cache. Thus expect lower
444 	 * pseudo-locking success rate when KASAN is active.
445 	 */
446 	unsigned int line_size;
447 	unsigned int size;
448 	void *mem_r;
449 #else
450 	register unsigned int line_size asm("esi");
451 	register unsigned int size asm("edi");
452 	register void *mem_r asm(_ASM_BX);
453 #endif /* CONFIG_KASAN */
454 
455 	/*
456 	 * Make sure none of the allocated memory is cached. If it is we
457 	 * will get a cache hit in below loop from outside of pseudo-locked
458 	 * region.
459 	 * wbinvd (as opposed to clflush/clflushopt) is required to
460 	 * increase likelihood that allocated cache portion will be filled
461 	 * with associated memory.
462 	 */
463 	wbinvd();
464 
465 	/*
466 	 * Always called with interrupts enabled. By disabling interrupts
467 	 * ensure that we will not be preempted during this critical section.
468 	 */
469 	local_irq_disable();
470 
471 	/*
472 	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
473 	 * clobbering local register variables or affecting cache accesses.
474 	 *
475 	 * Disable the hardware prefetcher so that when the end of the memory
476 	 * being pseudo-locked is reached the hardware will not read beyond
477 	 * the buffer and evict pseudo-locked memory read earlier from the
478 	 * cache.
479 	 */
480 	saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL);
481 	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
482 	closid_p = this_cpu_read(pqr_state.cur_closid);
483 	rmid_p = this_cpu_read(pqr_state.cur_rmid);
484 	mem_r = plr->kmem;
485 	size = plr->size;
486 	line_size = plr->line_size;
487 	/*
488 	 * Critical section begin: start by writing the closid associated
489 	 * with the capacity bitmask of the cache region being
490 	 * pseudo-locked followed by reading of kernel memory to load it
491 	 * into the cache.
492 	 */
493 	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
494 	/*
495 	 * Cache was flushed earlier. Now access kernel memory to read it
496 	 * into cache region associated with just activated plr->closid.
497 	 * Loop over data twice:
498 	 * - In first loop the cache region is shared with the page walker
499 	 *   as it populates the paging structure caches (including TLB).
500 	 * - In the second loop the paging structure caches are used and
501 	 *   cache region is populated with the memory being referenced.
502 	 */
503 	for (i = 0; i < size; i += PAGE_SIZE) {
504 		/*
505 		 * Add a barrier to prevent speculative execution of this
506 		 * loop reading beyond the end of the buffer.
507 		 */
508 		rmb();
509 		asm volatile("mov (%0,%1,1), %%eax\n\t"
510 			:
511 			: "r" (mem_r), "r" (i)
512 			: "%eax", "memory");
513 	}
514 	for (i = 0; i < size; i += line_size) {
515 		/*
516 		 * Add a barrier to prevent speculative execution of this
517 		 * loop reading beyond the end of the buffer.
518 		 */
519 		rmb();
520 		asm volatile("mov (%0,%1,1), %%eax\n\t"
521 			:
522 			: "r" (mem_r), "r" (i)
523 			: "%eax", "memory");
524 	}
525 	/*
526 	 * Critical section end: restore closid with capacity bitmask that
527 	 * does not overlap with pseudo-locked region.
528 	 */
529 	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p);
530 
531 	/* Re-enable the hardware prefetcher(s) */
532 	wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr);
533 	local_irq_enable();
534 
535 	plr->thread_done = 1;
536 	wake_up_interruptible(&plr->lock_thread_wq);
537 	return 0;
538 }
539 
540 /**
541  * rdtgroup_monitor_in_progress - Test if monitoring in progress
542  * @rdtgrp: resource group being queried
543  *
544  * Return: 1 if monitor groups have been created for this resource
545  * group, 0 otherwise.
546  */
547 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
548 {
549 	return !list_empty(&rdtgrp->mon.crdtgrp_list);
550 }
551 
552 /**
553  * rdtgroup_locksetup_user_restrict - Restrict user access to group
554  * @rdtgrp: resource group needing access restricted
555  *
556  * A resource group used for cache pseudo-locking cannot have cpus or tasks
557  * assigned to it. This is communicated to the user by restricting access
558  * to all the files that can be used to make such changes.
559  *
560  * Permissions restored with rdtgroup_locksetup_user_restore()
561  *
562  * Return: 0 on success, <0 on failure. If a failure occurs during the
563  * restriction of access an attempt will be made to restore permissions but
564  * the state of the mode of these files will be uncertain when a failure
565  * occurs.
566  */
567 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
568 {
569 	int ret;
570 
571 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
572 	if (ret)
573 		return ret;
574 
575 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
576 	if (ret)
577 		goto err_tasks;
578 
579 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
580 	if (ret)
581 		goto err_cpus;
582 
583 	if (resctrl_arch_mon_capable()) {
584 		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
585 		if (ret)
586 			goto err_cpus_list;
587 	}
588 
589 	ret = 0;
590 	goto out;
591 
592 err_cpus_list:
593 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
594 err_cpus:
595 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
596 err_tasks:
597 	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
598 out:
599 	return ret;
600 }
601 
602 /**
603  * rdtgroup_locksetup_user_restore - Restore user access to group
604  * @rdtgrp: resource group needing access restored
605  *
606  * Restore all file access previously removed using
607  * rdtgroup_locksetup_user_restrict()
608  *
609  * Return: 0 on success, <0 on failure.  If a failure occurs during the
610  * restoration of access an attempt will be made to restrict permissions
611  * again but the state of the mode of these files will be uncertain when
612  * a failure occurs.
613  */
614 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
615 {
616 	int ret;
617 
618 	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
619 	if (ret)
620 		return ret;
621 
622 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
623 	if (ret)
624 		goto err_tasks;
625 
626 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
627 	if (ret)
628 		goto err_cpus;
629 
630 	if (resctrl_arch_mon_capable()) {
631 		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
632 		if (ret)
633 			goto err_cpus_list;
634 	}
635 
636 	ret = 0;
637 	goto out;
638 
639 err_cpus_list:
640 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
641 err_cpus:
642 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
643 err_tasks:
644 	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
645 out:
646 	return ret;
647 }
648 
649 /**
650  * rdtgroup_locksetup_enter - Resource group enters locksetup mode
651  * @rdtgrp: resource group requested to enter locksetup mode
652  *
653  * A resource group enters locksetup mode to reflect that it would be used
654  * to represent a pseudo-locked region and is in the process of being set
655  * up to do so. A resource group used for a pseudo-locked region would
656  * lose the closid associated with it so we cannot allow it to have any
657  * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
658  * future. Monitoring of a pseudo-locked region is not allowed either.
659  *
660  * The above and more restrictions on a pseudo-locked region are checked
661  * for and enforced before the resource group enters the locksetup mode.
662  *
663  * Returns: 0 if the resource group successfully entered locksetup mode, <0
664  * on failure. On failure the last_cmd_status buffer is updated with text to
665  * communicate details of failure to the user.
666  */
667 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
668 {
669 	int ret;
670 
671 	/*
672 	 * The default resource group can neither be removed nor lose the
673 	 * default closid associated with it.
674 	 */
675 	if (rdtgrp == &rdtgroup_default) {
676 		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
677 		return -EINVAL;
678 	}
679 
680 	/*
681 	 * Cache Pseudo-locking not supported when CDP is enabled.
682 	 *
683 	 * Some things to consider if you would like to enable this
684 	 * support (using L3 CDP as example):
685 	 * - When CDP is enabled two separate resources are exposed,
686 	 *   L3DATA and L3CODE, but they are actually on the same cache.
687 	 *   The implication for pseudo-locking is that if a
688 	 *   pseudo-locked region is created on a domain of one
689 	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
690 	 *   be created on that same domain of the other resource
691 	 *   (eg. L3DATA). This is because the creation of a
692 	 *   pseudo-locked region involves a call to wbinvd that will
693 	 *   affect all cache allocations on particular domain.
694 	 * - Considering the previous, it may be possible to only
695 	 *   expose one of the CDP resources to pseudo-locking and
696 	 *   hide the other. For example, we could consider to only
697 	 *   expose L3DATA and since the L3 cache is unified it is
698 	 *   still possible to place instructions there are execute it.
699 	 * - If only one region is exposed to pseudo-locking we should
700 	 *   still keep in mind that availability of a portion of cache
701 	 *   for pseudo-locking should take into account both resources.
702 	 *   Similarly, if a pseudo-locked region is created in one
703 	 *   resource, the portion of cache used by it should be made
704 	 *   unavailable to all future allocations from both resources.
705 	 */
706 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
707 	    resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
708 		rdt_last_cmd_puts("CDP enabled\n");
709 		return -EINVAL;
710 	}
711 
712 	/*
713 	 * Not knowing the bits to disable prefetching implies that this
714 	 * platform does not support Cache Pseudo-Locking.
715 	 */
716 	prefetch_disable_bits = get_prefetch_disable_bits();
717 	if (prefetch_disable_bits == 0) {
718 		rdt_last_cmd_puts("Pseudo-locking not supported\n");
719 		return -EINVAL;
720 	}
721 
722 	if (rdtgroup_monitor_in_progress(rdtgrp)) {
723 		rdt_last_cmd_puts("Monitoring in progress\n");
724 		return -EINVAL;
725 	}
726 
727 	if (rdtgroup_tasks_assigned(rdtgrp)) {
728 		rdt_last_cmd_puts("Tasks assigned to resource group\n");
729 		return -EINVAL;
730 	}
731 
732 	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
733 		rdt_last_cmd_puts("CPUs assigned to resource group\n");
734 		return -EINVAL;
735 	}
736 
737 	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
738 		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
739 		return -EIO;
740 	}
741 
742 	ret = pseudo_lock_init(rdtgrp);
743 	if (ret) {
744 		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
745 		goto out_release;
746 	}
747 
748 	/*
749 	 * If this system is capable of monitoring a rmid would have been
750 	 * allocated when the control group was created. This is not needed
751 	 * anymore when this group would be used for pseudo-locking. This
752 	 * is safe to call on platforms not capable of monitoring.
753 	 */
754 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
755 
756 	ret = 0;
757 	goto out;
758 
759 out_release:
760 	rdtgroup_locksetup_user_restore(rdtgrp);
761 out:
762 	return ret;
763 }
764 
765 /**
766  * rdtgroup_locksetup_exit - resource group exist locksetup mode
767  * @rdtgrp: resource group
768  *
769  * When a resource group exits locksetup mode the earlier restrictions are
770  * lifted.
771  *
772  * Return: 0 on success, <0 on failure
773  */
774 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
775 {
776 	int ret;
777 
778 	if (resctrl_arch_mon_capable()) {
779 		ret = alloc_rmid(rdtgrp->closid);
780 		if (ret < 0) {
781 			rdt_last_cmd_puts("Out of RMIDs\n");
782 			return ret;
783 		}
784 		rdtgrp->mon.rmid = ret;
785 	}
786 
787 	ret = rdtgroup_locksetup_user_restore(rdtgrp);
788 	if (ret) {
789 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
790 		return ret;
791 	}
792 
793 	pseudo_lock_free(rdtgrp);
794 	return 0;
795 }
796 
797 /**
798  * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
799  * @d: RDT domain
800  * @cbm: CBM to test
801  *
802  * @d represents a cache instance and @cbm a capacity bitmask that is
803  * considered for it. Determine if @cbm overlaps with any existing
804  * pseudo-locked region on @d.
805  *
806  * @cbm is unsigned long, even if only 32 bits are used, to make the
807  * bitmap functions work correctly.
808  *
809  * Return: true if @cbm overlaps with pseudo-locked region on @d, false
810  * otherwise.
811  */
812 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm)
813 {
814 	unsigned int cbm_len;
815 	unsigned long cbm_b;
816 
817 	if (d->plr) {
818 		cbm_len = d->plr->s->res->cache.cbm_len;
819 		cbm_b = d->plr->cbm;
820 		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
821 			return true;
822 	}
823 	return false;
824 }
825 
826 /**
827  * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
828  * @d: RDT domain under test
829  *
830  * The setup of a pseudo-locked region affects all cache instances within
831  * the hierarchy of the region. It is thus essential to know if any
832  * pseudo-locked regions exist within a cache hierarchy to prevent any
833  * attempts to create new pseudo-locked regions in the same hierarchy.
834  *
835  * Return: true if a pseudo-locked region exists in the hierarchy of @d or
836  *         if it is not possible to test due to memory allocation issue,
837  *         false otherwise.
838  */
839 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d)
840 {
841 	struct rdt_ctrl_domain *d_i;
842 	cpumask_var_t cpu_with_psl;
843 	struct rdt_resource *r;
844 	bool ret = false;
845 
846 	/* Walking r->domains, ensure it can't race with cpuhp */
847 	lockdep_assert_cpus_held();
848 
849 	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
850 		return true;
851 
852 	/*
853 	 * First determine which cpus have pseudo-locked regions
854 	 * associated with them.
855 	 */
856 	for_each_alloc_capable_rdt_resource(r) {
857 		list_for_each_entry(d_i, &r->ctrl_domains, hdr.list) {
858 			if (d_i->plr)
859 				cpumask_or(cpu_with_psl, cpu_with_psl,
860 					   &d_i->hdr.cpu_mask);
861 		}
862 	}
863 
864 	/*
865 	 * Next test if new pseudo-locked region would intersect with
866 	 * existing region.
867 	 */
868 	if (cpumask_intersects(&d->hdr.cpu_mask, cpu_with_psl))
869 		ret = true;
870 
871 	free_cpumask_var(cpu_with_psl);
872 	return ret;
873 }
874 
875 /**
876  * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
877  * @_plr: pseudo-lock region to measure
878  *
879  * There is no deterministic way to test if a memory region is cached. One
880  * way is to measure how long it takes to read the memory, the speed of
881  * access is a good way to learn how close to the cpu the data was. Even
882  * more, if the prefetcher is disabled and the memory is read at a stride
883  * of half the cache line, then a cache miss will be easy to spot since the
884  * read of the first half would be significantly slower than the read of
885  * the second half.
886  *
887  * Return: 0. Waiter on waitqueue will be woken on completion.
888  */
889 static int measure_cycles_lat_fn(void *_plr)
890 {
891 	struct pseudo_lock_region *plr = _plr;
892 	u32 saved_low, saved_high;
893 	unsigned long i;
894 	u64 start, end;
895 	void *mem_r;
896 
897 	local_irq_disable();
898 	/*
899 	 * Disable hardware prefetchers.
900 	 */
901 	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
902 	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
903 	mem_r = READ_ONCE(plr->kmem);
904 	/*
905 	 * Dummy execute of the time measurement to load the needed
906 	 * instructions into the L1 instruction cache.
907 	 */
908 	start = rdtsc_ordered();
909 	for (i = 0; i < plr->size; i += 32) {
910 		start = rdtsc_ordered();
911 		asm volatile("mov (%0,%1,1), %%eax\n\t"
912 			     :
913 			     : "r" (mem_r), "r" (i)
914 			     : "%eax", "memory");
915 		end = rdtsc_ordered();
916 		trace_pseudo_lock_mem_latency((u32)(end - start));
917 	}
918 	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
919 	local_irq_enable();
920 	plr->thread_done = 1;
921 	wake_up_interruptible(&plr->lock_thread_wq);
922 	return 0;
923 }
924 
925 /*
926  * Create a perf_event_attr for the hit and miss perf events that will
927  * be used during the performance measurement. A perf_event maintains
928  * a pointer to its perf_event_attr so a unique attribute structure is
929  * created for each perf_event.
930  *
931  * The actual configuration of the event is set right before use in order
932  * to use the X86_CONFIG macro.
933  */
934 static struct perf_event_attr perf_miss_attr = {
935 	.type		= PERF_TYPE_RAW,
936 	.size		= sizeof(struct perf_event_attr),
937 	.pinned		= 1,
938 	.disabled	= 0,
939 	.exclude_user	= 1,
940 };
941 
942 static struct perf_event_attr perf_hit_attr = {
943 	.type		= PERF_TYPE_RAW,
944 	.size		= sizeof(struct perf_event_attr),
945 	.pinned		= 1,
946 	.disabled	= 0,
947 	.exclude_user	= 1,
948 };
949 
950 struct residency_counts {
951 	u64 miss_before, hits_before;
952 	u64 miss_after,  hits_after;
953 };
954 
955 static int measure_residency_fn(struct perf_event_attr *miss_attr,
956 				struct perf_event_attr *hit_attr,
957 				struct pseudo_lock_region *plr,
958 				struct residency_counts *counts)
959 {
960 	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
961 	struct perf_event *miss_event, *hit_event;
962 	int hit_pmcnum, miss_pmcnum;
963 	u32 saved_low, saved_high;
964 	unsigned int line_size;
965 	unsigned int size;
966 	unsigned long i;
967 	void *mem_r;
968 	u64 tmp;
969 
970 	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
971 						      NULL, NULL, NULL);
972 	if (IS_ERR(miss_event))
973 		goto out;
974 
975 	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
976 						     NULL, NULL, NULL);
977 	if (IS_ERR(hit_event))
978 		goto out_miss;
979 
980 	local_irq_disable();
981 	/*
982 	 * Check any possible error state of events used by performing
983 	 * one local read.
984 	 */
985 	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
986 		local_irq_enable();
987 		goto out_hit;
988 	}
989 	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
990 		local_irq_enable();
991 		goto out_hit;
992 	}
993 
994 	/*
995 	 * Disable hardware prefetchers.
996 	 */
997 	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
998 	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
999 
1000 	/* Initialize rest of local variables */
1001 	/*
1002 	 * Performance event has been validated right before this with
1003 	 * interrupts disabled - it is thus safe to read the counter index.
1004 	 */
1005 	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
1006 	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
1007 	line_size = READ_ONCE(plr->line_size);
1008 	mem_r = READ_ONCE(plr->kmem);
1009 	size = READ_ONCE(plr->size);
1010 
1011 	/*
1012 	 * Read counter variables twice - first to load the instructions
1013 	 * used in L1 cache, second to capture accurate value that does not
1014 	 * include cache misses incurred because of instruction loads.
1015 	 */
1016 	rdpmcl(hit_pmcnum, hits_before);
1017 	rdpmcl(miss_pmcnum, miss_before);
1018 	/*
1019 	 * From SDM: Performing back-to-back fast reads are not guaranteed
1020 	 * to be monotonic.
1021 	 * Use LFENCE to ensure all previous instructions are retired
1022 	 * before proceeding.
1023 	 */
1024 	rmb();
1025 	rdpmcl(hit_pmcnum, hits_before);
1026 	rdpmcl(miss_pmcnum, miss_before);
1027 	/*
1028 	 * Use LFENCE to ensure all previous instructions are retired
1029 	 * before proceeding.
1030 	 */
1031 	rmb();
1032 	for (i = 0; i < size; i += line_size) {
1033 		/*
1034 		 * Add a barrier to prevent speculative execution of this
1035 		 * loop reading beyond the end of the buffer.
1036 		 */
1037 		rmb();
1038 		asm volatile("mov (%0,%1,1), %%eax\n\t"
1039 			     :
1040 			     : "r" (mem_r), "r" (i)
1041 			     : "%eax", "memory");
1042 	}
1043 	/*
1044 	 * Use LFENCE to ensure all previous instructions are retired
1045 	 * before proceeding.
1046 	 */
1047 	rmb();
1048 	rdpmcl(hit_pmcnum, hits_after);
1049 	rdpmcl(miss_pmcnum, miss_after);
1050 	/*
1051 	 * Use LFENCE to ensure all previous instructions are retired
1052 	 * before proceeding.
1053 	 */
1054 	rmb();
1055 	/* Re-enable hardware prefetchers */
1056 	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1057 	local_irq_enable();
1058 out_hit:
1059 	perf_event_release_kernel(hit_event);
1060 out_miss:
1061 	perf_event_release_kernel(miss_event);
1062 out:
1063 	/*
1064 	 * All counts will be zero on failure.
1065 	 */
1066 	counts->miss_before = miss_before;
1067 	counts->hits_before = hits_before;
1068 	counts->miss_after  = miss_after;
1069 	counts->hits_after  = hits_after;
1070 	return 0;
1071 }
1072 
1073 static int measure_l2_residency(void *_plr)
1074 {
1075 	struct pseudo_lock_region *plr = _plr;
1076 	struct residency_counts counts = {0};
1077 
1078 	/*
1079 	 * Non-architectural event for the Goldmont Microarchitecture
1080 	 * from Intel x86 Architecture Software Developer Manual (SDM):
1081 	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1082 	 * Umask values:
1083 	 *     L2_HIT   02H
1084 	 *     L2_MISS  10H
1085 	 */
1086 	switch (boot_cpu_data.x86_vfm) {
1087 	case INTEL_ATOM_GOLDMONT:
1088 	case INTEL_ATOM_GOLDMONT_PLUS:
1089 		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1090 						   .umask = 0x10);
1091 		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1092 						  .umask = 0x2);
1093 		break;
1094 	default:
1095 		goto out;
1096 	}
1097 
1098 	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1099 	/*
1100 	 * If a failure prevented the measurements from succeeding
1101 	 * tracepoints will still be written and all counts will be zero.
1102 	 */
1103 	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1104 			     counts.miss_after - counts.miss_before);
1105 out:
1106 	plr->thread_done = 1;
1107 	wake_up_interruptible(&plr->lock_thread_wq);
1108 	return 0;
1109 }
1110 
1111 static int measure_l3_residency(void *_plr)
1112 {
1113 	struct pseudo_lock_region *plr = _plr;
1114 	struct residency_counts counts = {0};
1115 
1116 	/*
1117 	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1118 	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1119 	 * this platform the following events are used instead:
1120 	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1121 	 *       REFERENCE 4FH
1122 	 *       MISS      41H
1123 	 */
1124 
1125 	switch (boot_cpu_data.x86_vfm) {
1126 	case INTEL_BROADWELL_X:
1127 		/* On BDW the hit event counts references, not hits */
1128 		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1129 						  .umask = 0x4f);
1130 		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1131 						   .umask = 0x41);
1132 		break;
1133 	default:
1134 		goto out;
1135 	}
1136 
1137 	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1138 	/*
1139 	 * If a failure prevented the measurements from succeeding
1140 	 * tracepoints will still be written and all counts will be zero.
1141 	 */
1142 
1143 	counts.miss_after -= counts.miss_before;
1144 	if (boot_cpu_data.x86_vfm == INTEL_BROADWELL_X) {
1145 		/*
1146 		 * On BDW references and misses are counted, need to adjust.
1147 		 * Sometimes the "hits" counter is a bit more than the
1148 		 * references, for example, x references but x + 1 hits.
1149 		 * To not report invalid hit values in this case we treat
1150 		 * that as misses equal to references.
1151 		 */
1152 		/* First compute the number of cache references measured */
1153 		counts.hits_after -= counts.hits_before;
1154 		/* Next convert references to cache hits */
1155 		counts.hits_after -= min(counts.miss_after, counts.hits_after);
1156 	} else {
1157 		counts.hits_after -= counts.hits_before;
1158 	}
1159 
1160 	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1161 out:
1162 	plr->thread_done = 1;
1163 	wake_up_interruptible(&plr->lock_thread_wq);
1164 	return 0;
1165 }
1166 
1167 /**
1168  * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1169  * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1170  * @sel: Selector of which measurement to perform on a pseudo-locked region.
1171  *
1172  * The measurement of latency to access a pseudo-locked region should be
1173  * done from a cpu that is associated with that pseudo-locked region.
1174  * Determine which cpu is associated with this region and start a thread on
1175  * that cpu to perform the measurement, wait for that thread to complete.
1176  *
1177  * Return: 0 on success, <0 on failure
1178  */
1179 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1180 {
1181 	struct pseudo_lock_region *plr = rdtgrp->plr;
1182 	struct task_struct *thread;
1183 	unsigned int cpu;
1184 	int ret = -1;
1185 
1186 	cpus_read_lock();
1187 	mutex_lock(&rdtgroup_mutex);
1188 
1189 	if (rdtgrp->flags & RDT_DELETED) {
1190 		ret = -ENODEV;
1191 		goto out;
1192 	}
1193 
1194 	if (!plr->d) {
1195 		ret = -ENODEV;
1196 		goto out;
1197 	}
1198 
1199 	plr->thread_done = 0;
1200 	cpu = cpumask_first(&plr->d->hdr.cpu_mask);
1201 	if (!cpu_online(cpu)) {
1202 		ret = -ENODEV;
1203 		goto out;
1204 	}
1205 
1206 	plr->cpu = cpu;
1207 
1208 	if (sel == 1)
1209 		thread = kthread_run_on_cpu(measure_cycles_lat_fn, plr,
1210 					    cpu, "pseudo_lock_measure/%u");
1211 	else if (sel == 2)
1212 		thread = kthread_run_on_cpu(measure_l2_residency, plr,
1213 					    cpu, "pseudo_lock_measure/%u");
1214 	else if (sel == 3)
1215 		thread = kthread_run_on_cpu(measure_l3_residency, plr,
1216 					    cpu, "pseudo_lock_measure/%u");
1217 	else
1218 		goto out;
1219 
1220 	if (IS_ERR(thread)) {
1221 		ret = PTR_ERR(thread);
1222 		goto out;
1223 	}
1224 
1225 	ret = wait_event_interruptible(plr->lock_thread_wq,
1226 				       plr->thread_done == 1);
1227 	if (ret < 0)
1228 		goto out;
1229 
1230 	ret = 0;
1231 
1232 out:
1233 	mutex_unlock(&rdtgroup_mutex);
1234 	cpus_read_unlock();
1235 	return ret;
1236 }
1237 
1238 static ssize_t pseudo_lock_measure_trigger(struct file *file,
1239 					   const char __user *user_buf,
1240 					   size_t count, loff_t *ppos)
1241 {
1242 	struct rdtgroup *rdtgrp = file->private_data;
1243 	size_t buf_size;
1244 	char buf[32];
1245 	int ret;
1246 	int sel;
1247 
1248 	buf_size = min(count, (sizeof(buf) - 1));
1249 	if (copy_from_user(buf, user_buf, buf_size))
1250 		return -EFAULT;
1251 
1252 	buf[buf_size] = '\0';
1253 	ret = kstrtoint(buf, 10, &sel);
1254 	if (ret == 0) {
1255 		if (sel != 1 && sel != 2 && sel != 3)
1256 			return -EINVAL;
1257 		ret = debugfs_file_get(file->f_path.dentry);
1258 		if (ret)
1259 			return ret;
1260 		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1261 		if (ret == 0)
1262 			ret = count;
1263 		debugfs_file_put(file->f_path.dentry);
1264 	}
1265 
1266 	return ret;
1267 }
1268 
1269 static const struct file_operations pseudo_measure_fops = {
1270 	.write = pseudo_lock_measure_trigger,
1271 	.open = simple_open,
1272 	.llseek = default_llseek,
1273 };
1274 
1275 /**
1276  * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1277  * @rdtgrp: resource group to which pseudo-lock region belongs
1278  *
1279  * Called when a resource group in the pseudo-locksetup mode receives a
1280  * valid schemata that should be pseudo-locked. Since the resource group is
1281  * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1282  * allocated and initialized with the essential information. If a failure
1283  * occurs the resource group remains in the pseudo-locksetup mode with the
1284  * &struct pseudo_lock_region associated with it, but cleared from all
1285  * information and ready for the user to re-attempt pseudo-locking by
1286  * writing the schemata again.
1287  *
1288  * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1289  * on failure. Descriptive error will be written to last_cmd_status buffer.
1290  */
1291 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1292 {
1293 	struct pseudo_lock_region *plr = rdtgrp->plr;
1294 	struct task_struct *thread;
1295 	unsigned int new_minor;
1296 	struct device *dev;
1297 	char *kn_name __free(kfree) = NULL;
1298 	int ret;
1299 
1300 	ret = pseudo_lock_region_alloc(plr);
1301 	if (ret < 0)
1302 		return ret;
1303 
1304 	ret = pseudo_lock_cstates_constrain(plr);
1305 	if (ret < 0) {
1306 		ret = -EINVAL;
1307 		goto out_region;
1308 	}
1309 	kn_name = kstrdup(rdt_kn_name(rdtgrp->kn), GFP_KERNEL);
1310 	if (!kn_name) {
1311 		ret = -ENOMEM;
1312 		goto out_cstates;
1313 	}
1314 
1315 	plr->thread_done = 0;
1316 
1317 	thread = kthread_run_on_cpu(pseudo_lock_fn, rdtgrp,
1318 				    plr->cpu, "pseudo_lock/%u");
1319 	if (IS_ERR(thread)) {
1320 		ret = PTR_ERR(thread);
1321 		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1322 		goto out_cstates;
1323 	}
1324 
1325 	ret = wait_event_interruptible(plr->lock_thread_wq,
1326 				       plr->thread_done == 1);
1327 	if (ret < 0) {
1328 		/*
1329 		 * If the thread does not get on the CPU for whatever
1330 		 * reason and the process which sets up the region is
1331 		 * interrupted then this will leave the thread in runnable
1332 		 * state and once it gets on the CPU it will dereference
1333 		 * the cleared, but not freed, plr struct resulting in an
1334 		 * empty pseudo-locking loop.
1335 		 */
1336 		rdt_last_cmd_puts("Locking thread interrupted\n");
1337 		goto out_cstates;
1338 	}
1339 
1340 	ret = pseudo_lock_minor_get(&new_minor);
1341 	if (ret < 0) {
1342 		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1343 		goto out_cstates;
1344 	}
1345 
1346 	/*
1347 	 * Unlock access but do not release the reference. The
1348 	 * pseudo-locked region will still be here on return.
1349 	 *
1350 	 * The mutex has to be released temporarily to avoid a potential
1351 	 * deadlock with the mm->mmap_lock which is obtained in the
1352 	 * device_create() and debugfs_create_dir() callpath below as well as
1353 	 * before the mmap() callback is called.
1354 	 */
1355 	mutex_unlock(&rdtgroup_mutex);
1356 
1357 	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1358 		plr->debugfs_dir = debugfs_create_dir(kn_name, debugfs_resctrl);
1359 		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1360 			debugfs_create_file("pseudo_lock_measure", 0200,
1361 					    plr->debugfs_dir, rdtgrp,
1362 					    &pseudo_measure_fops);
1363 	}
1364 
1365 	dev = device_create(&pseudo_lock_class, NULL,
1366 			    MKDEV(pseudo_lock_major, new_minor),
1367 			    rdtgrp, "%s", kn_name);
1368 
1369 	mutex_lock(&rdtgroup_mutex);
1370 
1371 	if (IS_ERR(dev)) {
1372 		ret = PTR_ERR(dev);
1373 		rdt_last_cmd_printf("Failed to create character device: %d\n",
1374 				    ret);
1375 		goto out_debugfs;
1376 	}
1377 
1378 	/* We released the mutex - check if group was removed while we did so */
1379 	if (rdtgrp->flags & RDT_DELETED) {
1380 		ret = -ENODEV;
1381 		goto out_device;
1382 	}
1383 
1384 	plr->minor = new_minor;
1385 
1386 	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1387 	closid_free(rdtgrp->closid);
1388 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1389 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1390 
1391 	ret = 0;
1392 	goto out;
1393 
1394 out_device:
1395 	device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1396 out_debugfs:
1397 	debugfs_remove_recursive(plr->debugfs_dir);
1398 	pseudo_lock_minor_release(new_minor);
1399 out_cstates:
1400 	pseudo_lock_cstates_relax(plr);
1401 out_region:
1402 	pseudo_lock_region_clear(plr);
1403 out:
1404 	return ret;
1405 }
1406 
1407 /**
1408  * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1409  * @rdtgrp: resource group to which the pseudo-locked region belongs
1410  *
1411  * The removal of a pseudo-locked region can be initiated when the resource
1412  * group is removed from user space via a "rmdir" from userspace or the
1413  * unmount of the resctrl filesystem. On removal the resource group does
1414  * not go back to pseudo-locksetup mode before it is removed, instead it is
1415  * removed directly. There is thus asymmetry with the creation where the
1416  * &struct pseudo_lock_region is removed here while it was not created in
1417  * rdtgroup_pseudo_lock_create().
1418  *
1419  * Return: void
1420  */
1421 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1422 {
1423 	struct pseudo_lock_region *plr = rdtgrp->plr;
1424 
1425 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1426 		/*
1427 		 * Default group cannot be a pseudo-locked region so we can
1428 		 * free closid here.
1429 		 */
1430 		closid_free(rdtgrp->closid);
1431 		goto free;
1432 	}
1433 
1434 	pseudo_lock_cstates_relax(plr);
1435 	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1436 	device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1437 	pseudo_lock_minor_release(plr->minor);
1438 
1439 free:
1440 	pseudo_lock_free(rdtgrp);
1441 }
1442 
1443 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1444 {
1445 	struct rdtgroup *rdtgrp;
1446 
1447 	mutex_lock(&rdtgroup_mutex);
1448 
1449 	rdtgrp = region_find_by_minor(iminor(inode));
1450 	if (!rdtgrp) {
1451 		mutex_unlock(&rdtgroup_mutex);
1452 		return -ENODEV;
1453 	}
1454 
1455 	filp->private_data = rdtgrp;
1456 	atomic_inc(&rdtgrp->waitcount);
1457 	/* Perform a non-seekable open - llseek is not supported */
1458 	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1459 
1460 	mutex_unlock(&rdtgroup_mutex);
1461 
1462 	return 0;
1463 }
1464 
1465 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1466 {
1467 	struct rdtgroup *rdtgrp;
1468 
1469 	mutex_lock(&rdtgroup_mutex);
1470 	rdtgrp = filp->private_data;
1471 	WARN_ON(!rdtgrp);
1472 	if (!rdtgrp) {
1473 		mutex_unlock(&rdtgroup_mutex);
1474 		return -ENODEV;
1475 	}
1476 	filp->private_data = NULL;
1477 	atomic_dec(&rdtgrp->waitcount);
1478 	mutex_unlock(&rdtgroup_mutex);
1479 	return 0;
1480 }
1481 
1482 static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1483 {
1484 	/* Not supported */
1485 	return -EINVAL;
1486 }
1487 
1488 static const struct vm_operations_struct pseudo_mmap_ops = {
1489 	.mremap = pseudo_lock_dev_mremap,
1490 };
1491 
1492 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1493 {
1494 	unsigned long vsize = vma->vm_end - vma->vm_start;
1495 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1496 	struct pseudo_lock_region *plr;
1497 	struct rdtgroup *rdtgrp;
1498 	unsigned long physical;
1499 	unsigned long psize;
1500 
1501 	mutex_lock(&rdtgroup_mutex);
1502 
1503 	rdtgrp = filp->private_data;
1504 	WARN_ON(!rdtgrp);
1505 	if (!rdtgrp) {
1506 		mutex_unlock(&rdtgroup_mutex);
1507 		return -ENODEV;
1508 	}
1509 
1510 	plr = rdtgrp->plr;
1511 
1512 	if (!plr->d) {
1513 		mutex_unlock(&rdtgroup_mutex);
1514 		return -ENODEV;
1515 	}
1516 
1517 	/*
1518 	 * Task is required to run with affinity to the cpus associated
1519 	 * with the pseudo-locked region. If this is not the case the task
1520 	 * may be scheduled elsewhere and invalidate entries in the
1521 	 * pseudo-locked region.
1522 	 */
1523 	if (!cpumask_subset(current->cpus_ptr, &plr->d->hdr.cpu_mask)) {
1524 		mutex_unlock(&rdtgroup_mutex);
1525 		return -EINVAL;
1526 	}
1527 
1528 	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1529 	psize = plr->size - off;
1530 
1531 	if (off > plr->size) {
1532 		mutex_unlock(&rdtgroup_mutex);
1533 		return -ENOSPC;
1534 	}
1535 
1536 	/*
1537 	 * Ensure changes are carried directly to the memory being mapped,
1538 	 * do not allow copy-on-write mapping.
1539 	 */
1540 	if (!(vma->vm_flags & VM_SHARED)) {
1541 		mutex_unlock(&rdtgroup_mutex);
1542 		return -EINVAL;
1543 	}
1544 
1545 	if (vsize > psize) {
1546 		mutex_unlock(&rdtgroup_mutex);
1547 		return -ENOSPC;
1548 	}
1549 
1550 	memset(plr->kmem + off, 0, vsize);
1551 
1552 	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1553 			    vsize, vma->vm_page_prot)) {
1554 		mutex_unlock(&rdtgroup_mutex);
1555 		return -EAGAIN;
1556 	}
1557 	vma->vm_ops = &pseudo_mmap_ops;
1558 	mutex_unlock(&rdtgroup_mutex);
1559 	return 0;
1560 }
1561 
1562 static const struct file_operations pseudo_lock_dev_fops = {
1563 	.owner =	THIS_MODULE,
1564 	.read =		NULL,
1565 	.write =	NULL,
1566 	.open =		pseudo_lock_dev_open,
1567 	.release =	pseudo_lock_dev_release,
1568 	.mmap =		pseudo_lock_dev_mmap,
1569 };
1570 
1571 int rdt_pseudo_lock_init(void)
1572 {
1573 	int ret;
1574 
1575 	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1576 	if (ret < 0)
1577 		return ret;
1578 
1579 	pseudo_lock_major = ret;
1580 
1581 	ret = class_register(&pseudo_lock_class);
1582 	if (ret) {
1583 		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1584 		return ret;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 void rdt_pseudo_lock_release(void)
1591 {
1592 	class_unregister(&pseudo_lock_class);
1593 	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1594 	pseudo_lock_major = 0;
1595 }
1596