xref: /linux/arch/x86/kernel/cpu/resctrl/monitor.c (revision 8a922b7728a93d837954315c98b84f6b78de0c4f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Resource Director Technology(RDT)
4  * - Monitoring code
5  *
6  * Copyright (C) 2017 Intel Corporation
7  *
8  * Author:
9  *    Vikas Shivappa <vikas.shivappa@intel.com>
10  *
11  * This replaces the cqm.c based on perf but we reuse a lot of
12  * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13  *
14  * More information about RDT be found in the Intel (R) x86 Architecture
15  * Software Developer Manual June 2016, volume 3, section 17.17.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/sizes.h>
20 #include <linux/slab.h>
21 
22 #include <asm/cpu_device_id.h>
23 #include <asm/resctrl.h>
24 
25 #include "internal.h"
26 
27 struct rmid_entry {
28 	u32				rmid;
29 	int				busy;
30 	struct list_head		list;
31 };
32 
33 /**
34  * @rmid_free_lru    A least recently used list of free RMIDs
35  *     These RMIDs are guaranteed to have an occupancy less than the
36  *     threshold occupancy
37  */
38 static LIST_HEAD(rmid_free_lru);
39 
40 /**
41  * @rmid_limbo_count     count of currently unused but (potentially)
42  *     dirty RMIDs.
43  *     This counts RMIDs that no one is currently using but that
44  *     may have a occupancy value > resctrl_rmid_realloc_threshold. User can
45  *     change the threshold occupancy value.
46  */
47 static unsigned int rmid_limbo_count;
48 
49 /**
50  * @rmid_entry - The entry in the limbo and free lists.
51  */
52 static struct rmid_entry	*rmid_ptrs;
53 
54 /*
55  * Global boolean for rdt_monitor which is true if any
56  * resource monitoring is enabled.
57  */
58 bool rdt_mon_capable;
59 
60 /*
61  * Global to indicate which monitoring events are enabled.
62  */
63 unsigned int rdt_mon_features;
64 
65 /*
66  * This is the threshold cache occupancy in bytes at which we will consider an
67  * RMID available for re-allocation.
68  */
69 unsigned int resctrl_rmid_realloc_threshold;
70 
71 /*
72  * This is the maximum value for the reallocation threshold, in bytes.
73  */
74 unsigned int resctrl_rmid_realloc_limit;
75 
76 #define CF(cf)	((unsigned long)(1048576 * (cf) + 0.5))
77 
78 /*
79  * The correction factor table is documented in Documentation/x86/resctrl.rst.
80  * If rmid > rmid threshold, MBM total and local values should be multiplied
81  * by the correction factor.
82  *
83  * The original table is modified for better code:
84  *
85  * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
86  *    for the case.
87  * 2. MBM total and local correction table indexed by core counter which is
88  *    equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
89  * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
90  *    to calculate corrected value by shifting:
91  *    corrected_value = (original_value * correction_factor) >> 20
92  */
93 static const struct mbm_correction_factor_table {
94 	u32 rmidthreshold;
95 	u64 cf;
96 } mbm_cf_table[] __initconst = {
97 	{7,	CF(1.000000)},
98 	{15,	CF(1.000000)},
99 	{15,	CF(0.969650)},
100 	{31,	CF(1.000000)},
101 	{31,	CF(1.066667)},
102 	{31,	CF(0.969650)},
103 	{47,	CF(1.142857)},
104 	{63,	CF(1.000000)},
105 	{63,	CF(1.185115)},
106 	{63,	CF(1.066553)},
107 	{79,	CF(1.454545)},
108 	{95,	CF(1.000000)},
109 	{95,	CF(1.230769)},
110 	{95,	CF(1.142857)},
111 	{95,	CF(1.066667)},
112 	{127,	CF(1.000000)},
113 	{127,	CF(1.254863)},
114 	{127,	CF(1.185255)},
115 	{151,	CF(1.000000)},
116 	{127,	CF(1.066667)},
117 	{167,	CF(1.000000)},
118 	{159,	CF(1.454334)},
119 	{183,	CF(1.000000)},
120 	{127,	CF(0.969744)},
121 	{191,	CF(1.280246)},
122 	{191,	CF(1.230921)},
123 	{215,	CF(1.000000)},
124 	{191,	CF(1.143118)},
125 };
126 
127 static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
128 static u64 mbm_cf __read_mostly;
129 
130 static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
131 {
132 	/* Correct MBM value. */
133 	if (rmid > mbm_cf_rmidthreshold)
134 		val = (val * mbm_cf) >> 20;
135 
136 	return val;
137 }
138 
139 static inline struct rmid_entry *__rmid_entry(u32 rmid)
140 {
141 	struct rmid_entry *entry;
142 
143 	entry = &rmid_ptrs[rmid];
144 	WARN_ON(entry->rmid != rmid);
145 
146 	return entry;
147 }
148 
149 static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val)
150 {
151 	u64 msr_val;
152 
153 	/*
154 	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
155 	 * with a valid event code for supported resource type and the bits
156 	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
157 	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
158 	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
159 	 * are error bits.
160 	 */
161 	wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
162 	rdmsrl(MSR_IA32_QM_CTR, msr_val);
163 
164 	if (msr_val & RMID_VAL_ERROR)
165 		return -EIO;
166 	if (msr_val & RMID_VAL_UNAVAIL)
167 		return -EINVAL;
168 
169 	*val = msr_val;
170 	return 0;
171 }
172 
173 static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom,
174 						 u32 rmid,
175 						 enum resctrl_event_id eventid)
176 {
177 	switch (eventid) {
178 	case QOS_L3_OCCUP_EVENT_ID:
179 		return NULL;
180 	case QOS_L3_MBM_TOTAL_EVENT_ID:
181 		return &hw_dom->arch_mbm_total[rmid];
182 	case QOS_L3_MBM_LOCAL_EVENT_ID:
183 		return &hw_dom->arch_mbm_local[rmid];
184 	}
185 
186 	/* Never expect to get here */
187 	WARN_ON_ONCE(1);
188 
189 	return NULL;
190 }
191 
192 void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d,
193 			     u32 rmid, enum resctrl_event_id eventid)
194 {
195 	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
196 	struct arch_mbm_state *am;
197 
198 	am = get_arch_mbm_state(hw_dom, rmid, eventid);
199 	if (am) {
200 		memset(am, 0, sizeof(*am));
201 
202 		/* Record any initial, non-zero count value. */
203 		__rmid_read(rmid, eventid, &am->prev_msr);
204 	}
205 }
206 
207 /*
208  * Assumes that hardware counters are also reset and thus that there is
209  * no need to record initial non-zero counts.
210  */
211 void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_domain *d)
212 {
213 	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
214 
215 	if (is_mbm_total_enabled())
216 		memset(hw_dom->arch_mbm_total, 0,
217 		       sizeof(*hw_dom->arch_mbm_total) * r->num_rmid);
218 
219 	if (is_mbm_local_enabled())
220 		memset(hw_dom->arch_mbm_local, 0,
221 		       sizeof(*hw_dom->arch_mbm_local) * r->num_rmid);
222 }
223 
224 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
225 {
226 	u64 shift = 64 - width, chunks;
227 
228 	chunks = (cur_msr << shift) - (prev_msr << shift);
229 	return chunks >> shift;
230 }
231 
232 int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d,
233 			   u32 rmid, enum resctrl_event_id eventid, u64 *val)
234 {
235 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
236 	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
237 	struct arch_mbm_state *am;
238 	u64 msr_val, chunks;
239 	int ret;
240 
241 	if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask))
242 		return -EINVAL;
243 
244 	ret = __rmid_read(rmid, eventid, &msr_val);
245 	if (ret)
246 		return ret;
247 
248 	am = get_arch_mbm_state(hw_dom, rmid, eventid);
249 	if (am) {
250 		am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
251 						 hw_res->mbm_width);
252 		chunks = get_corrected_mbm_count(rmid, am->chunks);
253 		am->prev_msr = msr_val;
254 	} else {
255 		chunks = msr_val;
256 	}
257 
258 	*val = chunks * hw_res->mon_scale;
259 
260 	return 0;
261 }
262 
263 /*
264  * Check the RMIDs that are marked as busy for this domain. If the
265  * reported LLC occupancy is below the threshold clear the busy bit and
266  * decrement the count. If the busy count gets to zero on an RMID, we
267  * free the RMID
268  */
269 void __check_limbo(struct rdt_domain *d, bool force_free)
270 {
271 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
272 	struct rmid_entry *entry;
273 	u32 crmid = 1, nrmid;
274 	bool rmid_dirty;
275 	u64 val = 0;
276 
277 	/*
278 	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
279 	 * are marked as busy for occupancy < threshold. If the occupancy
280 	 * is less than the threshold decrement the busy counter of the
281 	 * RMID and move it to the free list when the counter reaches 0.
282 	 */
283 	for (;;) {
284 		nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
285 		if (nrmid >= r->num_rmid)
286 			break;
287 
288 		entry = __rmid_entry(nrmid);
289 
290 		if (resctrl_arch_rmid_read(r, d, entry->rmid,
291 					   QOS_L3_OCCUP_EVENT_ID, &val)) {
292 			rmid_dirty = true;
293 		} else {
294 			rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
295 		}
296 
297 		if (force_free || !rmid_dirty) {
298 			clear_bit(entry->rmid, d->rmid_busy_llc);
299 			if (!--entry->busy) {
300 				rmid_limbo_count--;
301 				list_add_tail(&entry->list, &rmid_free_lru);
302 			}
303 		}
304 		crmid = nrmid + 1;
305 	}
306 }
307 
308 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
309 {
310 	return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
311 }
312 
313 /*
314  * As of now the RMIDs allocation is global.
315  * However we keep track of which packages the RMIDs
316  * are used to optimize the limbo list management.
317  */
318 int alloc_rmid(void)
319 {
320 	struct rmid_entry *entry;
321 
322 	lockdep_assert_held(&rdtgroup_mutex);
323 
324 	if (list_empty(&rmid_free_lru))
325 		return rmid_limbo_count ? -EBUSY : -ENOSPC;
326 
327 	entry = list_first_entry(&rmid_free_lru,
328 				 struct rmid_entry, list);
329 	list_del(&entry->list);
330 
331 	return entry->rmid;
332 }
333 
334 static void add_rmid_to_limbo(struct rmid_entry *entry)
335 {
336 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
337 	struct rdt_domain *d;
338 	int cpu, err;
339 	u64 val = 0;
340 
341 	entry->busy = 0;
342 	cpu = get_cpu();
343 	list_for_each_entry(d, &r->domains, list) {
344 		if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
345 			err = resctrl_arch_rmid_read(r, d, entry->rmid,
346 						     QOS_L3_OCCUP_EVENT_ID,
347 						     &val);
348 			if (err || val <= resctrl_rmid_realloc_threshold)
349 				continue;
350 		}
351 
352 		/*
353 		 * For the first limbo RMID in the domain,
354 		 * setup up the limbo worker.
355 		 */
356 		if (!has_busy_rmid(r, d))
357 			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
358 		set_bit(entry->rmid, d->rmid_busy_llc);
359 		entry->busy++;
360 	}
361 	put_cpu();
362 
363 	if (entry->busy)
364 		rmid_limbo_count++;
365 	else
366 		list_add_tail(&entry->list, &rmid_free_lru);
367 }
368 
369 void free_rmid(u32 rmid)
370 {
371 	struct rmid_entry *entry;
372 
373 	if (!rmid)
374 		return;
375 
376 	lockdep_assert_held(&rdtgroup_mutex);
377 
378 	entry = __rmid_entry(rmid);
379 
380 	if (is_llc_occupancy_enabled())
381 		add_rmid_to_limbo(entry);
382 	else
383 		list_add_tail(&entry->list, &rmid_free_lru);
384 }
385 
386 static int __mon_event_count(u32 rmid, struct rmid_read *rr)
387 {
388 	struct mbm_state *m;
389 	u64 tval = 0;
390 
391 	if (rr->first)
392 		resctrl_arch_reset_rmid(rr->r, rr->d, rmid, rr->evtid);
393 
394 	rr->err = resctrl_arch_rmid_read(rr->r, rr->d, rmid, rr->evtid, &tval);
395 	if (rr->err)
396 		return rr->err;
397 
398 	switch (rr->evtid) {
399 	case QOS_L3_OCCUP_EVENT_ID:
400 		rr->val += tval;
401 		return 0;
402 	case QOS_L3_MBM_TOTAL_EVENT_ID:
403 		m = &rr->d->mbm_total[rmid];
404 		break;
405 	case QOS_L3_MBM_LOCAL_EVENT_ID:
406 		m = &rr->d->mbm_local[rmid];
407 		break;
408 	default:
409 		/*
410 		 * Code would never reach here because an invalid
411 		 * event id would fail in resctrl_arch_rmid_read().
412 		 */
413 		return -EINVAL;
414 	}
415 
416 	if (rr->first) {
417 		memset(m, 0, sizeof(struct mbm_state));
418 		return 0;
419 	}
420 
421 	rr->val += tval;
422 
423 	return 0;
424 }
425 
426 /*
427  * mbm_bw_count() - Update bw count from values previously read by
428  *		    __mon_event_count().
429  * @rmid:	The rmid used to identify the cached mbm_state.
430  * @rr:		The struct rmid_read populated by __mon_event_count().
431  *
432  * Supporting function to calculate the memory bandwidth
433  * and delta bandwidth in MBps. The chunks value previously read by
434  * __mon_event_count() is compared with the chunks value from the previous
435  * invocation. This must be called once per second to maintain values in MBps.
436  */
437 static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
438 {
439 	struct mbm_state *m = &rr->d->mbm_local[rmid];
440 	u64 cur_bw, bytes, cur_bytes;
441 
442 	cur_bytes = rr->val;
443 	bytes = cur_bytes - m->prev_bw_bytes;
444 	m->prev_bw_bytes = cur_bytes;
445 
446 	cur_bw = bytes / SZ_1M;
447 
448 	if (m->delta_comp)
449 		m->delta_bw = abs(cur_bw - m->prev_bw);
450 	m->delta_comp = false;
451 	m->prev_bw = cur_bw;
452 }
453 
454 /*
455  * This is called via IPI to read the CQM/MBM counters
456  * on a domain.
457  */
458 void mon_event_count(void *info)
459 {
460 	struct rdtgroup *rdtgrp, *entry;
461 	struct rmid_read *rr = info;
462 	struct list_head *head;
463 	int ret;
464 
465 	rdtgrp = rr->rgrp;
466 
467 	ret = __mon_event_count(rdtgrp->mon.rmid, rr);
468 
469 	/*
470 	 * For Ctrl groups read data from child monitor groups and
471 	 * add them together. Count events which are read successfully.
472 	 * Discard the rmid_read's reporting errors.
473 	 */
474 	head = &rdtgrp->mon.crdtgrp_list;
475 
476 	if (rdtgrp->type == RDTCTRL_GROUP) {
477 		list_for_each_entry(entry, head, mon.crdtgrp_list) {
478 			if (__mon_event_count(entry->mon.rmid, rr) == 0)
479 				ret = 0;
480 		}
481 	}
482 
483 	/*
484 	 * __mon_event_count() calls for newly created monitor groups may
485 	 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
486 	 * Discard error if any of the monitor event reads succeeded.
487 	 */
488 	if (ret == 0)
489 		rr->err = 0;
490 }
491 
492 /*
493  * Feedback loop for MBA software controller (mba_sc)
494  *
495  * mba_sc is a feedback loop where we periodically read MBM counters and
496  * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
497  * that:
498  *
499  *   current bandwidth(cur_bw) < user specified bandwidth(user_bw)
500  *
501  * This uses the MBM counters to measure the bandwidth and MBA throttle
502  * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
503  * fact that resctrl rdtgroups have both monitoring and control.
504  *
505  * The frequency of the checks is 1s and we just tag along the MBM overflow
506  * timer. Having 1s interval makes the calculation of bandwidth simpler.
507  *
508  * Although MBA's goal is to restrict the bandwidth to a maximum, there may
509  * be a need to increase the bandwidth to avoid unnecessarily restricting
510  * the L2 <-> L3 traffic.
511  *
512  * Since MBA controls the L2 external bandwidth where as MBM measures the
513  * L3 external bandwidth the following sequence could lead to such a
514  * situation.
515  *
516  * Consider an rdtgroup which had high L3 <-> memory traffic in initial
517  * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
518  * after some time rdtgroup has mostly L2 <-> L3 traffic.
519  *
520  * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
521  * throttle MSRs already have low percentage values.  To avoid
522  * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
523  */
524 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
525 {
526 	u32 closid, rmid, cur_msr_val, new_msr_val;
527 	struct mbm_state *pmbm_data, *cmbm_data;
528 	u32 cur_bw, delta_bw, user_bw;
529 	struct rdt_resource *r_mba;
530 	struct rdt_domain *dom_mba;
531 	struct list_head *head;
532 	struct rdtgroup *entry;
533 
534 	if (!is_mbm_local_enabled())
535 		return;
536 
537 	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
538 
539 	closid = rgrp->closid;
540 	rmid = rgrp->mon.rmid;
541 	pmbm_data = &dom_mbm->mbm_local[rmid];
542 
543 	dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
544 	if (!dom_mba) {
545 		pr_warn_once("Failure to get domain for MBA update\n");
546 		return;
547 	}
548 
549 	cur_bw = pmbm_data->prev_bw;
550 	user_bw = dom_mba->mbps_val[closid];
551 	delta_bw = pmbm_data->delta_bw;
552 
553 	/* MBA resource doesn't support CDP */
554 	cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
555 
556 	/*
557 	 * For Ctrl groups read data from child monitor groups.
558 	 */
559 	head = &rgrp->mon.crdtgrp_list;
560 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
561 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
562 		cur_bw += cmbm_data->prev_bw;
563 		delta_bw += cmbm_data->delta_bw;
564 	}
565 
566 	/*
567 	 * Scale up/down the bandwidth linearly for the ctrl group.  The
568 	 * bandwidth step is the bandwidth granularity specified by the
569 	 * hardware.
570 	 *
571 	 * The delta_bw is used when increasing the bandwidth so that we
572 	 * dont alternately increase and decrease the control values
573 	 * continuously.
574 	 *
575 	 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
576 	 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
577 	 * switching between 90 and 110 continuously if we only check
578 	 * cur_bw < user_bw.
579 	 */
580 	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
581 		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
582 	} else if (cur_msr_val < MAX_MBA_BW &&
583 		   (user_bw > (cur_bw + delta_bw))) {
584 		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
585 	} else {
586 		return;
587 	}
588 
589 	resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
590 
591 	/*
592 	 * Delta values are updated dynamically package wise for each
593 	 * rdtgrp every time the throttle MSR changes value.
594 	 *
595 	 * This is because (1)the increase in bandwidth is not perfectly
596 	 * linear and only "approximately" linear even when the hardware
597 	 * says it is linear.(2)Also since MBA is a core specific
598 	 * mechanism, the delta values vary based on number of cores used
599 	 * by the rdtgrp.
600 	 */
601 	pmbm_data->delta_comp = true;
602 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
603 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
604 		cmbm_data->delta_comp = true;
605 	}
606 }
607 
608 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid)
609 {
610 	struct rmid_read rr;
611 
612 	rr.first = false;
613 	rr.r = r;
614 	rr.d = d;
615 
616 	/*
617 	 * This is protected from concurrent reads from user
618 	 * as both the user and we hold the global mutex.
619 	 */
620 	if (is_mbm_total_enabled()) {
621 		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
622 		rr.val = 0;
623 		__mon_event_count(rmid, &rr);
624 	}
625 	if (is_mbm_local_enabled()) {
626 		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
627 		rr.val = 0;
628 		__mon_event_count(rmid, &rr);
629 
630 		/*
631 		 * Call the MBA software controller only for the
632 		 * control groups and when user has enabled
633 		 * the software controller explicitly.
634 		 */
635 		if (is_mba_sc(NULL))
636 			mbm_bw_count(rmid, &rr);
637 	}
638 }
639 
640 /*
641  * Handler to scan the limbo list and move the RMIDs
642  * to free list whose occupancy < threshold_occupancy.
643  */
644 void cqm_handle_limbo(struct work_struct *work)
645 {
646 	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
647 	int cpu = smp_processor_id();
648 	struct rdt_resource *r;
649 	struct rdt_domain *d;
650 
651 	mutex_lock(&rdtgroup_mutex);
652 
653 	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
654 	d = container_of(work, struct rdt_domain, cqm_limbo.work);
655 
656 	__check_limbo(d, false);
657 
658 	if (has_busy_rmid(r, d))
659 		schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
660 
661 	mutex_unlock(&rdtgroup_mutex);
662 }
663 
664 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
665 {
666 	unsigned long delay = msecs_to_jiffies(delay_ms);
667 	int cpu;
668 
669 	cpu = cpumask_any(&dom->cpu_mask);
670 	dom->cqm_work_cpu = cpu;
671 
672 	schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
673 }
674 
675 void mbm_handle_overflow(struct work_struct *work)
676 {
677 	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
678 	struct rdtgroup *prgrp, *crgrp;
679 	int cpu = smp_processor_id();
680 	struct list_head *head;
681 	struct rdt_resource *r;
682 	struct rdt_domain *d;
683 
684 	mutex_lock(&rdtgroup_mutex);
685 
686 	if (!static_branch_likely(&rdt_mon_enable_key))
687 		goto out_unlock;
688 
689 	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
690 	d = container_of(work, struct rdt_domain, mbm_over.work);
691 
692 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
693 		mbm_update(r, d, prgrp->mon.rmid);
694 
695 		head = &prgrp->mon.crdtgrp_list;
696 		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
697 			mbm_update(r, d, crgrp->mon.rmid);
698 
699 		if (is_mba_sc(NULL))
700 			update_mba_bw(prgrp, d);
701 	}
702 
703 	schedule_delayed_work_on(cpu, &d->mbm_over, delay);
704 
705 out_unlock:
706 	mutex_unlock(&rdtgroup_mutex);
707 }
708 
709 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
710 {
711 	unsigned long delay = msecs_to_jiffies(delay_ms);
712 	int cpu;
713 
714 	if (!static_branch_likely(&rdt_mon_enable_key))
715 		return;
716 	cpu = cpumask_any(&dom->cpu_mask);
717 	dom->mbm_work_cpu = cpu;
718 	schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
719 }
720 
721 static int dom_data_init(struct rdt_resource *r)
722 {
723 	struct rmid_entry *entry = NULL;
724 	int i, nr_rmids;
725 
726 	nr_rmids = r->num_rmid;
727 	rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
728 	if (!rmid_ptrs)
729 		return -ENOMEM;
730 
731 	for (i = 0; i < nr_rmids; i++) {
732 		entry = &rmid_ptrs[i];
733 		INIT_LIST_HEAD(&entry->list);
734 
735 		entry->rmid = i;
736 		list_add_tail(&entry->list, &rmid_free_lru);
737 	}
738 
739 	/*
740 	 * RMID 0 is special and is always allocated. It's used for all
741 	 * tasks that are not monitored.
742 	 */
743 	entry = __rmid_entry(0);
744 	list_del(&entry->list);
745 
746 	return 0;
747 }
748 
749 static struct mon_evt llc_occupancy_event = {
750 	.name		= "llc_occupancy",
751 	.evtid		= QOS_L3_OCCUP_EVENT_ID,
752 };
753 
754 static struct mon_evt mbm_total_event = {
755 	.name		= "mbm_total_bytes",
756 	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
757 };
758 
759 static struct mon_evt mbm_local_event = {
760 	.name		= "mbm_local_bytes",
761 	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
762 };
763 
764 /*
765  * Initialize the event list for the resource.
766  *
767  * Note that MBM events are also part of RDT_RESOURCE_L3 resource
768  * because as per the SDM the total and local memory bandwidth
769  * are enumerated as part of L3 monitoring.
770  */
771 static void l3_mon_evt_init(struct rdt_resource *r)
772 {
773 	INIT_LIST_HEAD(&r->evt_list);
774 
775 	if (is_llc_occupancy_enabled())
776 		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
777 	if (is_mbm_total_enabled())
778 		list_add_tail(&mbm_total_event.list, &r->evt_list);
779 	if (is_mbm_local_enabled())
780 		list_add_tail(&mbm_local_event.list, &r->evt_list);
781 }
782 
783 int __init rdt_get_mon_l3_config(struct rdt_resource *r)
784 {
785 	unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
786 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
787 	unsigned int threshold;
788 	int ret;
789 
790 	resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
791 	hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale;
792 	r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
793 	hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
794 
795 	if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
796 		hw_res->mbm_width += mbm_offset;
797 	else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
798 		pr_warn("Ignoring impossible MBM counter offset\n");
799 
800 	/*
801 	 * A reasonable upper limit on the max threshold is the number
802 	 * of lines tagged per RMID if all RMIDs have the same number of
803 	 * lines tagged in the LLC.
804 	 *
805 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
806 	 */
807 	threshold = resctrl_rmid_realloc_limit / r->num_rmid;
808 
809 	/*
810 	 * Because num_rmid may not be a power of two, round the value
811 	 * to the nearest multiple of hw_res->mon_scale so it matches a
812 	 * value the hardware will measure. mon_scale may not be a power of 2.
813 	 */
814 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);
815 
816 	ret = dom_data_init(r);
817 	if (ret)
818 		return ret;
819 
820 	if (rdt_cpu_has(X86_FEATURE_BMEC)) {
821 		if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) {
822 			mbm_total_event.configurable = true;
823 			mbm_config_rftype_init("mbm_total_bytes_config");
824 		}
825 		if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) {
826 			mbm_local_event.configurable = true;
827 			mbm_config_rftype_init("mbm_local_bytes_config");
828 		}
829 	}
830 
831 	l3_mon_evt_init(r);
832 
833 	r->mon_capable = true;
834 
835 	return 0;
836 }
837 
838 void __init intel_rdt_mbm_apply_quirk(void)
839 {
840 	int cf_index;
841 
842 	cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
843 	if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
844 		pr_info("No MBM correction factor available\n");
845 		return;
846 	}
847 
848 	mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
849 	mbm_cf = mbm_cf_table[cf_index].cf;
850 }
851