xref: /linux/arch/x86/kernel/cpu/resctrl/monitor.c (revision 5a4332062e9e71de8e78dc1b389d21e0dd44848b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Resource Director Technology(RDT)
4  * - Monitoring code
5  *
6  * Copyright (C) 2017 Intel Corporation
7  *
8  * Author:
9  *    Vikas Shivappa <vikas.shivappa@intel.com>
10  *
11  * This replaces the cqm.c based on perf but we reuse a lot of
12  * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13  *
14  * More information about RDT be found in the Intel (R) x86 Architecture
15  * Software Developer Manual June 2016, volume 3, section 17.17.
16  */
17 
18 #define pr_fmt(fmt)	"resctrl: " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/module.h>
22 #include <linux/sizes.h>
23 #include <linux/slab.h>
24 
25 #include <asm/cpu_device_id.h>
26 #include <asm/resctrl.h>
27 
28 #include "internal.h"
29 #include "trace.h"
30 
31 /**
32  * struct rmid_entry - dirty tracking for all RMID.
33  * @closid:	The CLOSID for this entry.
34  * @rmid:	The RMID for this entry.
35  * @busy:	The number of domains with cached data using this RMID.
36  * @list:	Member of the rmid_free_lru list when busy == 0.
37  *
38  * Depending on the architecture the correct monitor is accessed using
39  * both @closid and @rmid, or @rmid only.
40  *
41  * Take the rdtgroup_mutex when accessing.
42  */
43 struct rmid_entry {
44 	u32				closid;
45 	u32				rmid;
46 	int				busy;
47 	struct list_head		list;
48 };
49 
50 /*
51  * @rmid_free_lru - A least recently used list of free RMIDs
52  *     These RMIDs are guaranteed to have an occupancy less than the
53  *     threshold occupancy
54  */
55 static LIST_HEAD(rmid_free_lru);
56 
57 /*
58  * @closid_num_dirty_rmid    The number of dirty RMID each CLOSID has.
59  *     Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
60  *     Indexed by CLOSID. Protected by rdtgroup_mutex.
61  */
62 static u32 *closid_num_dirty_rmid;
63 
64 /*
65  * @rmid_limbo_count - count of currently unused but (potentially)
66  *     dirty RMIDs.
67  *     This counts RMIDs that no one is currently using but that
68  *     may have a occupancy value > resctrl_rmid_realloc_threshold. User can
69  *     change the threshold occupancy value.
70  */
71 static unsigned int rmid_limbo_count;
72 
73 /*
74  * @rmid_entry - The entry in the limbo and free lists.
75  */
76 static struct rmid_entry	*rmid_ptrs;
77 
78 /*
79  * Global boolean for rdt_monitor which is true if any
80  * resource monitoring is enabled.
81  */
82 bool rdt_mon_capable;
83 
84 /*
85  * Global to indicate which monitoring events are enabled.
86  */
87 unsigned int rdt_mon_features;
88 
89 /*
90  * This is the threshold cache occupancy in bytes at which we will consider an
91  * RMID available for re-allocation.
92  */
93 unsigned int resctrl_rmid_realloc_threshold;
94 
95 /*
96  * This is the maximum value for the reallocation threshold, in bytes.
97  */
98 unsigned int resctrl_rmid_realloc_limit;
99 
100 #define CF(cf)	((unsigned long)(1048576 * (cf) + 0.5))
101 
102 static int snc_nodes_per_l3_cache = 1;
103 
104 /*
105  * The correction factor table is documented in Documentation/arch/x86/resctrl.rst.
106  * If rmid > rmid threshold, MBM total and local values should be multiplied
107  * by the correction factor.
108  *
109  * The original table is modified for better code:
110  *
111  * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
112  *    for the case.
113  * 2. MBM total and local correction table indexed by core counter which is
114  *    equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
115  * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
116  *    to calculate corrected value by shifting:
117  *    corrected_value = (original_value * correction_factor) >> 20
118  */
119 static const struct mbm_correction_factor_table {
120 	u32 rmidthreshold;
121 	u64 cf;
122 } mbm_cf_table[] __initconst = {
123 	{7,	CF(1.000000)},
124 	{15,	CF(1.000000)},
125 	{15,	CF(0.969650)},
126 	{31,	CF(1.000000)},
127 	{31,	CF(1.066667)},
128 	{31,	CF(0.969650)},
129 	{47,	CF(1.142857)},
130 	{63,	CF(1.000000)},
131 	{63,	CF(1.185115)},
132 	{63,	CF(1.066553)},
133 	{79,	CF(1.454545)},
134 	{95,	CF(1.000000)},
135 	{95,	CF(1.230769)},
136 	{95,	CF(1.142857)},
137 	{95,	CF(1.066667)},
138 	{127,	CF(1.000000)},
139 	{127,	CF(1.254863)},
140 	{127,	CF(1.185255)},
141 	{151,	CF(1.000000)},
142 	{127,	CF(1.066667)},
143 	{167,	CF(1.000000)},
144 	{159,	CF(1.454334)},
145 	{183,	CF(1.000000)},
146 	{127,	CF(0.969744)},
147 	{191,	CF(1.280246)},
148 	{191,	CF(1.230921)},
149 	{215,	CF(1.000000)},
150 	{191,	CF(1.143118)},
151 };
152 
153 static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
154 static u64 mbm_cf __read_mostly;
155 
156 static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
157 {
158 	/* Correct MBM value. */
159 	if (rmid > mbm_cf_rmidthreshold)
160 		val = (val * mbm_cf) >> 20;
161 
162 	return val;
163 }
164 
165 /*
166  * x86 and arm64 differ in their handling of monitoring.
167  * x86's RMID are independent numbers, there is only one source of traffic
168  * with an RMID value of '1'.
169  * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
170  * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
171  * value is no longer unique.
172  * To account for this, resctrl uses an index. On x86 this is just the RMID,
173  * on arm64 it encodes the CLOSID and RMID. This gives a unique number.
174  *
175  * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
176  * must accept an attempt to read every index.
177  */
178 static inline struct rmid_entry *__rmid_entry(u32 idx)
179 {
180 	struct rmid_entry *entry;
181 	u32 closid, rmid;
182 
183 	entry = &rmid_ptrs[idx];
184 	resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);
185 
186 	WARN_ON_ONCE(entry->closid != closid);
187 	WARN_ON_ONCE(entry->rmid != rmid);
188 
189 	return entry;
190 }
191 
192 /*
193  * When Sub-NUMA Cluster (SNC) mode is not enabled (as indicated by
194  * "snc_nodes_per_l3_cache == 1") no translation of the RMID value is
195  * needed. The physical RMID is the same as the logical RMID.
196  *
197  * On a platform with SNC mode enabled, Linux enables RMID sharing mode
198  * via MSR 0xCA0 (see the "RMID Sharing Mode" section in the "Intel
199  * Resource Director Technology Architecture Specification" for a full
200  * description of RMID sharing mode).
201  *
202  * In RMID sharing mode there are fewer "logical RMID" values available
203  * to accumulate data ("physical RMIDs" are divided evenly between SNC
204  * nodes that share an L3 cache). Linux creates an rdt_mon_domain for
205  * each SNC node.
206  *
207  * The value loaded into IA32_PQR_ASSOC is the "logical RMID".
208  *
209  * Data is collected independently on each SNC node and can be retrieved
210  * using the "physical RMID" value computed by this function and loaded
211  * into IA32_QM_EVTSEL. @cpu can be any CPU in the SNC node.
212  *
213  * The scope of the IA32_QM_EVTSEL and IA32_QM_CTR MSRs is at the L3
214  * cache.  So a "physical RMID" may be read from any CPU that shares
215  * the L3 cache with the desired SNC node, not just from a CPU in
216  * the specific SNC node.
217  */
218 static int logical_rmid_to_physical_rmid(int cpu, int lrmid)
219 {
220 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
221 
222 	if (snc_nodes_per_l3_cache == 1)
223 		return lrmid;
224 
225 	return lrmid + (cpu_to_node(cpu) % snc_nodes_per_l3_cache) * r->num_rmid;
226 }
227 
228 static int __rmid_read_phys(u32 prmid, enum resctrl_event_id eventid, u64 *val)
229 {
230 	u64 msr_val;
231 
232 	/*
233 	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
234 	 * with a valid event code for supported resource type and the bits
235 	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
236 	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
237 	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
238 	 * are error bits.
239 	 */
240 	wrmsr(MSR_IA32_QM_EVTSEL, eventid, prmid);
241 	rdmsrl(MSR_IA32_QM_CTR, msr_val);
242 
243 	if (msr_val & RMID_VAL_ERROR)
244 		return -EIO;
245 	if (msr_val & RMID_VAL_UNAVAIL)
246 		return -EINVAL;
247 
248 	*val = msr_val;
249 	return 0;
250 }
251 
252 static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_mon_domain *hw_dom,
253 						 u32 rmid,
254 						 enum resctrl_event_id eventid)
255 {
256 	switch (eventid) {
257 	case QOS_L3_OCCUP_EVENT_ID:
258 		return NULL;
259 	case QOS_L3_MBM_TOTAL_EVENT_ID:
260 		return &hw_dom->arch_mbm_total[rmid];
261 	case QOS_L3_MBM_LOCAL_EVENT_ID:
262 		return &hw_dom->arch_mbm_local[rmid];
263 	}
264 
265 	/* Never expect to get here */
266 	WARN_ON_ONCE(1);
267 
268 	return NULL;
269 }
270 
271 void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_mon_domain *d,
272 			     u32 unused, u32 rmid,
273 			     enum resctrl_event_id eventid)
274 {
275 	struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
276 	int cpu = cpumask_any(&d->hdr.cpu_mask);
277 	struct arch_mbm_state *am;
278 	u32 prmid;
279 
280 	am = get_arch_mbm_state(hw_dom, rmid, eventid);
281 	if (am) {
282 		memset(am, 0, sizeof(*am));
283 
284 		prmid = logical_rmid_to_physical_rmid(cpu, rmid);
285 		/* Record any initial, non-zero count value. */
286 		__rmid_read_phys(prmid, eventid, &am->prev_msr);
287 	}
288 }
289 
290 /*
291  * Assumes that hardware counters are also reset and thus that there is
292  * no need to record initial non-zero counts.
293  */
294 void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d)
295 {
296 	struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
297 
298 	if (is_mbm_total_enabled())
299 		memset(hw_dom->arch_mbm_total, 0,
300 		       sizeof(*hw_dom->arch_mbm_total) * r->num_rmid);
301 
302 	if (is_mbm_local_enabled())
303 		memset(hw_dom->arch_mbm_local, 0,
304 		       sizeof(*hw_dom->arch_mbm_local) * r->num_rmid);
305 }
306 
307 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
308 {
309 	u64 shift = 64 - width, chunks;
310 
311 	chunks = (cur_msr << shift) - (prev_msr << shift);
312 	return chunks >> shift;
313 }
314 
315 int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_mon_domain *d,
316 			   u32 unused, u32 rmid, enum resctrl_event_id eventid,
317 			   u64 *val, void *ignored)
318 {
319 	struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
320 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
321 	int cpu = cpumask_any(&d->hdr.cpu_mask);
322 	struct arch_mbm_state *am;
323 	u64 msr_val, chunks;
324 	u32 prmid;
325 	int ret;
326 
327 	resctrl_arch_rmid_read_context_check();
328 
329 	prmid = logical_rmid_to_physical_rmid(cpu, rmid);
330 	ret = __rmid_read_phys(prmid, eventid, &msr_val);
331 	if (ret)
332 		return ret;
333 
334 	am = get_arch_mbm_state(hw_dom, rmid, eventid);
335 	if (am) {
336 		am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
337 						 hw_res->mbm_width);
338 		chunks = get_corrected_mbm_count(rmid, am->chunks);
339 		am->prev_msr = msr_val;
340 	} else {
341 		chunks = msr_val;
342 	}
343 
344 	*val = chunks * hw_res->mon_scale;
345 
346 	return 0;
347 }
348 
349 static void limbo_release_entry(struct rmid_entry *entry)
350 {
351 	lockdep_assert_held(&rdtgroup_mutex);
352 
353 	rmid_limbo_count--;
354 	list_add_tail(&entry->list, &rmid_free_lru);
355 
356 	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
357 		closid_num_dirty_rmid[entry->closid]--;
358 }
359 
360 /*
361  * Check the RMIDs that are marked as busy for this domain. If the
362  * reported LLC occupancy is below the threshold clear the busy bit and
363  * decrement the count. If the busy count gets to zero on an RMID, we
364  * free the RMID
365  */
366 void __check_limbo(struct rdt_mon_domain *d, bool force_free)
367 {
368 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
369 	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
370 	struct rmid_entry *entry;
371 	u32 idx, cur_idx = 1;
372 	void *arch_mon_ctx;
373 	bool rmid_dirty;
374 	u64 val = 0;
375 
376 	arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
377 	if (IS_ERR(arch_mon_ctx)) {
378 		pr_warn_ratelimited("Failed to allocate monitor context: %ld",
379 				    PTR_ERR(arch_mon_ctx));
380 		return;
381 	}
382 
383 	/*
384 	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
385 	 * are marked as busy for occupancy < threshold. If the occupancy
386 	 * is less than the threshold decrement the busy counter of the
387 	 * RMID and move it to the free list when the counter reaches 0.
388 	 */
389 	for (;;) {
390 		idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
391 		if (idx >= idx_limit)
392 			break;
393 
394 		entry = __rmid_entry(idx);
395 		if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
396 					   QOS_L3_OCCUP_EVENT_ID, &val,
397 					   arch_mon_ctx)) {
398 			rmid_dirty = true;
399 		} else {
400 			rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
401 
402 			/*
403 			 * x86's CLOSID and RMID are independent numbers, so the entry's
404 			 * CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the
405 			 * RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't
406 			 * used to select the configuration. It is thus necessary to track both
407 			 * CLOSID and RMID because there may be dependencies between them
408 			 * on some architectures.
409 			 */
410 			trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val);
411 		}
412 
413 		if (force_free || !rmid_dirty) {
414 			clear_bit(idx, d->rmid_busy_llc);
415 			if (!--entry->busy)
416 				limbo_release_entry(entry);
417 		}
418 		cur_idx = idx + 1;
419 	}
420 
421 	resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
422 }
423 
424 bool has_busy_rmid(struct rdt_mon_domain *d)
425 {
426 	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
427 
428 	return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
429 }
430 
431 static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
432 {
433 	struct rmid_entry *itr;
434 	u32 itr_idx, cmp_idx;
435 
436 	if (list_empty(&rmid_free_lru))
437 		return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);
438 
439 	list_for_each_entry(itr, &rmid_free_lru, list) {
440 		/*
441 		 * Get the index of this free RMID, and the index it would need
442 		 * to be if it were used with this CLOSID.
443 		 * If the CLOSID is irrelevant on this architecture, the two
444 		 * index values are always the same on every entry and thus the
445 		 * very first entry will be returned.
446 		 */
447 		itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
448 		cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);
449 
450 		if (itr_idx == cmp_idx)
451 			return itr;
452 	}
453 
454 	return ERR_PTR(-ENOSPC);
455 }
456 
457 /**
458  * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
459  *                                  RMID are clean, or the CLOSID that has
460  *                                  the most clean RMID.
461  *
462  * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
463  * may not be able to allocate clean RMID. To avoid this the allocator will
464  * choose the CLOSID with the most clean RMID.
465  *
466  * When the CLOSID and RMID are independent numbers, the first free CLOSID will
467  * be returned.
468  */
469 int resctrl_find_cleanest_closid(void)
470 {
471 	u32 cleanest_closid = ~0;
472 	int i = 0;
473 
474 	lockdep_assert_held(&rdtgroup_mutex);
475 
476 	if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
477 		return -EIO;
478 
479 	for (i = 0; i < closids_supported(); i++) {
480 		int num_dirty;
481 
482 		if (closid_allocated(i))
483 			continue;
484 
485 		num_dirty = closid_num_dirty_rmid[i];
486 		if (num_dirty == 0)
487 			return i;
488 
489 		if (cleanest_closid == ~0)
490 			cleanest_closid = i;
491 
492 		if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
493 			cleanest_closid = i;
494 	}
495 
496 	if (cleanest_closid == ~0)
497 		return -ENOSPC;
498 
499 	return cleanest_closid;
500 }
501 
502 /*
503  * For MPAM the RMID value is not unique, and has to be considered with
504  * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
505  * allows all domains to be managed by a single free list.
506  * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
507  */
508 int alloc_rmid(u32 closid)
509 {
510 	struct rmid_entry *entry;
511 
512 	lockdep_assert_held(&rdtgroup_mutex);
513 
514 	entry = resctrl_find_free_rmid(closid);
515 	if (IS_ERR(entry))
516 		return PTR_ERR(entry);
517 
518 	list_del(&entry->list);
519 	return entry->rmid;
520 }
521 
522 static void add_rmid_to_limbo(struct rmid_entry *entry)
523 {
524 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
525 	struct rdt_mon_domain *d;
526 	u32 idx;
527 
528 	lockdep_assert_held(&rdtgroup_mutex);
529 
530 	/* Walking r->domains, ensure it can't race with cpuhp */
531 	lockdep_assert_cpus_held();
532 
533 	idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);
534 
535 	entry->busy = 0;
536 	list_for_each_entry(d, &r->mon_domains, hdr.list) {
537 		/*
538 		 * For the first limbo RMID in the domain,
539 		 * setup up the limbo worker.
540 		 */
541 		if (!has_busy_rmid(d))
542 			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
543 						RESCTRL_PICK_ANY_CPU);
544 		set_bit(idx, d->rmid_busy_llc);
545 		entry->busy++;
546 	}
547 
548 	rmid_limbo_count++;
549 	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
550 		closid_num_dirty_rmid[entry->closid]++;
551 }
552 
553 void free_rmid(u32 closid, u32 rmid)
554 {
555 	u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
556 	struct rmid_entry *entry;
557 
558 	lockdep_assert_held(&rdtgroup_mutex);
559 
560 	/*
561 	 * Do not allow the default rmid to be free'd. Comparing by index
562 	 * allows architectures that ignore the closid parameter to avoid an
563 	 * unnecessary check.
564 	 */
565 	if (!resctrl_arch_mon_capable() ||
566 	    idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
567 						RESCTRL_RESERVED_RMID))
568 		return;
569 
570 	entry = __rmid_entry(idx);
571 
572 	if (is_llc_occupancy_enabled())
573 		add_rmid_to_limbo(entry);
574 	else
575 		list_add_tail(&entry->list, &rmid_free_lru);
576 }
577 
578 static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid,
579 				       u32 rmid, enum resctrl_event_id evtid)
580 {
581 	u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
582 
583 	switch (evtid) {
584 	case QOS_L3_MBM_TOTAL_EVENT_ID:
585 		return &d->mbm_total[idx];
586 	case QOS_L3_MBM_LOCAL_EVENT_ID:
587 		return &d->mbm_local[idx];
588 	default:
589 		return NULL;
590 	}
591 }
592 
593 static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr)
594 {
595 	int cpu = smp_processor_id();
596 	struct rdt_mon_domain *d;
597 	struct mbm_state *m;
598 	int err, ret;
599 	u64 tval = 0;
600 
601 	if (rr->first) {
602 		resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
603 		m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
604 		if (m)
605 			memset(m, 0, sizeof(struct mbm_state));
606 		return 0;
607 	}
608 
609 	if (rr->d) {
610 		/* Reading a single domain, must be on a CPU in that domain. */
611 		if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask))
612 			return -EINVAL;
613 		rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid,
614 						 rr->evtid, &tval, rr->arch_mon_ctx);
615 		if (rr->err)
616 			return rr->err;
617 
618 		rr->val += tval;
619 
620 		return 0;
621 	}
622 
623 	/* Summing domains that share a cache, must be on a CPU for that cache. */
624 	if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map))
625 		return -EINVAL;
626 
627 	/*
628 	 * Legacy files must report the sum of an event across all
629 	 * domains that share the same L3 cache instance.
630 	 * Report success if a read from any domain succeeds, -EINVAL
631 	 * (translated to "Unavailable" for user space) if reading from
632 	 * all domains fail for any reason.
633 	 */
634 	ret = -EINVAL;
635 	list_for_each_entry(d, &rr->r->mon_domains, hdr.list) {
636 		if (d->ci->id != rr->ci->id)
637 			continue;
638 		err = resctrl_arch_rmid_read(rr->r, d, closid, rmid,
639 					     rr->evtid, &tval, rr->arch_mon_ctx);
640 		if (!err) {
641 			rr->val += tval;
642 			ret = 0;
643 		}
644 	}
645 
646 	if (ret)
647 		rr->err = ret;
648 
649 	return ret;
650 }
651 
652 /*
653  * mbm_bw_count() - Update bw count from values previously read by
654  *		    __mon_event_count().
655  * @closid:	The closid used to identify the cached mbm_state.
656  * @rmid:	The rmid used to identify the cached mbm_state.
657  * @rr:		The struct rmid_read populated by __mon_event_count().
658  *
659  * Supporting function to calculate the memory bandwidth
660  * and delta bandwidth in MBps. The chunks value previously read by
661  * __mon_event_count() is compared with the chunks value from the previous
662  * invocation. This must be called once per second to maintain values in MBps.
663  */
664 static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr)
665 {
666 	u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
667 	struct mbm_state *m = &rr->d->mbm_local[idx];
668 	u64 cur_bw, bytes, cur_bytes;
669 
670 	cur_bytes = rr->val;
671 	bytes = cur_bytes - m->prev_bw_bytes;
672 	m->prev_bw_bytes = cur_bytes;
673 
674 	cur_bw = bytes / SZ_1M;
675 
676 	m->prev_bw = cur_bw;
677 }
678 
679 /*
680  * This is scheduled by mon_event_read() to read the CQM/MBM counters
681  * on a domain.
682  */
683 void mon_event_count(void *info)
684 {
685 	struct rdtgroup *rdtgrp, *entry;
686 	struct rmid_read *rr = info;
687 	struct list_head *head;
688 	int ret;
689 
690 	rdtgrp = rr->rgrp;
691 
692 	ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr);
693 
694 	/*
695 	 * For Ctrl groups read data from child monitor groups and
696 	 * add them together. Count events which are read successfully.
697 	 * Discard the rmid_read's reporting errors.
698 	 */
699 	head = &rdtgrp->mon.crdtgrp_list;
700 
701 	if (rdtgrp->type == RDTCTRL_GROUP) {
702 		list_for_each_entry(entry, head, mon.crdtgrp_list) {
703 			if (__mon_event_count(entry->closid, entry->mon.rmid,
704 					      rr) == 0)
705 				ret = 0;
706 		}
707 	}
708 
709 	/*
710 	 * __mon_event_count() calls for newly created monitor groups may
711 	 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
712 	 * Discard error if any of the monitor event reads succeeded.
713 	 */
714 	if (ret == 0)
715 		rr->err = 0;
716 }
717 
718 /*
719  * Feedback loop for MBA software controller (mba_sc)
720  *
721  * mba_sc is a feedback loop where we periodically read MBM counters and
722  * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
723  * that:
724  *
725  *   current bandwidth(cur_bw) < user specified bandwidth(user_bw)
726  *
727  * This uses the MBM counters to measure the bandwidth and MBA throttle
728  * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
729  * fact that resctrl rdtgroups have both monitoring and control.
730  *
731  * The frequency of the checks is 1s and we just tag along the MBM overflow
732  * timer. Having 1s interval makes the calculation of bandwidth simpler.
733  *
734  * Although MBA's goal is to restrict the bandwidth to a maximum, there may
735  * be a need to increase the bandwidth to avoid unnecessarily restricting
736  * the L2 <-> L3 traffic.
737  *
738  * Since MBA controls the L2 external bandwidth where as MBM measures the
739  * L3 external bandwidth the following sequence could lead to such a
740  * situation.
741  *
742  * Consider an rdtgroup which had high L3 <-> memory traffic in initial
743  * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
744  * after some time rdtgroup has mostly L2 <-> L3 traffic.
745  *
746  * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
747  * throttle MSRs already have low percentage values.  To avoid
748  * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
749  */
750 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm)
751 {
752 	u32 closid, rmid, cur_msr_val, new_msr_val;
753 	struct mbm_state *pmbm_data, *cmbm_data;
754 	struct rdt_ctrl_domain *dom_mba;
755 	struct rdt_resource *r_mba;
756 	u32 cur_bw, user_bw, idx;
757 	struct list_head *head;
758 	struct rdtgroup *entry;
759 
760 	if (!is_mbm_local_enabled())
761 		return;
762 
763 	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
764 
765 	closid = rgrp->closid;
766 	rmid = rgrp->mon.rmid;
767 	idx = resctrl_arch_rmid_idx_encode(closid, rmid);
768 	pmbm_data = &dom_mbm->mbm_local[idx];
769 
770 	dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba);
771 	if (!dom_mba) {
772 		pr_warn_once("Failure to get domain for MBA update\n");
773 		return;
774 	}
775 
776 	cur_bw = pmbm_data->prev_bw;
777 	user_bw = dom_mba->mbps_val[closid];
778 
779 	/* MBA resource doesn't support CDP */
780 	cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
781 
782 	/*
783 	 * For Ctrl groups read data from child monitor groups.
784 	 */
785 	head = &rgrp->mon.crdtgrp_list;
786 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
787 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
788 		cur_bw += cmbm_data->prev_bw;
789 	}
790 
791 	/*
792 	 * Scale up/down the bandwidth linearly for the ctrl group.  The
793 	 * bandwidth step is the bandwidth granularity specified by the
794 	 * hardware.
795 	 * Always increase throttling if current bandwidth is above the
796 	 * target set by user.
797 	 * But avoid thrashing up and down on every poll by checking
798 	 * whether a decrease in throttling is likely to push the group
799 	 * back over target. E.g. if currently throttling to 30% of bandwidth
800 	 * on a system with 10% granularity steps, check whether moving to
801 	 * 40% would go past the limit by multiplying current bandwidth by
802 	 * "(30 + 10) / 30".
803 	 */
804 	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
805 		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
806 	} else if (cur_msr_val < MAX_MBA_BW &&
807 		   (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
808 		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
809 	} else {
810 		return;
811 	}
812 
813 	resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
814 }
815 
816 static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d,
817 		       u32 closid, u32 rmid)
818 {
819 	struct rmid_read rr = {0};
820 
821 	rr.r = r;
822 	rr.d = d;
823 
824 	/*
825 	 * This is protected from concurrent reads from user
826 	 * as both the user and we hold the global mutex.
827 	 */
828 	if (is_mbm_total_enabled()) {
829 		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
830 		rr.val = 0;
831 		rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
832 		if (IS_ERR(rr.arch_mon_ctx)) {
833 			pr_warn_ratelimited("Failed to allocate monitor context: %ld",
834 					    PTR_ERR(rr.arch_mon_ctx));
835 			return;
836 		}
837 
838 		__mon_event_count(closid, rmid, &rr);
839 
840 		resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
841 	}
842 	if (is_mbm_local_enabled()) {
843 		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
844 		rr.val = 0;
845 		rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
846 		if (IS_ERR(rr.arch_mon_ctx)) {
847 			pr_warn_ratelimited("Failed to allocate monitor context: %ld",
848 					    PTR_ERR(rr.arch_mon_ctx));
849 			return;
850 		}
851 
852 		__mon_event_count(closid, rmid, &rr);
853 
854 		/*
855 		 * Call the MBA software controller only for the
856 		 * control groups and when user has enabled
857 		 * the software controller explicitly.
858 		 */
859 		if (is_mba_sc(NULL))
860 			mbm_bw_count(closid, rmid, &rr);
861 
862 		resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
863 	}
864 }
865 
866 /*
867  * Handler to scan the limbo list and move the RMIDs
868  * to free list whose occupancy < threshold_occupancy.
869  */
870 void cqm_handle_limbo(struct work_struct *work)
871 {
872 	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
873 	struct rdt_mon_domain *d;
874 
875 	cpus_read_lock();
876 	mutex_lock(&rdtgroup_mutex);
877 
878 	d = container_of(work, struct rdt_mon_domain, cqm_limbo.work);
879 
880 	__check_limbo(d, false);
881 
882 	if (has_busy_rmid(d)) {
883 		d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
884 							   RESCTRL_PICK_ANY_CPU);
885 		schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
886 					 delay);
887 	}
888 
889 	mutex_unlock(&rdtgroup_mutex);
890 	cpus_read_unlock();
891 }
892 
893 /**
894  * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
895  *                             domain.
896  * @dom:           The domain the limbo handler should run for.
897  * @delay_ms:      How far in the future the handler should run.
898  * @exclude_cpu:   Which CPU the handler should not run on,
899  *		   RESCTRL_PICK_ANY_CPU to pick any CPU.
900  */
901 void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
902 			     int exclude_cpu)
903 {
904 	unsigned long delay = msecs_to_jiffies(delay_ms);
905 	int cpu;
906 
907 	cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
908 	dom->cqm_work_cpu = cpu;
909 
910 	if (cpu < nr_cpu_ids)
911 		schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
912 }
913 
914 void mbm_handle_overflow(struct work_struct *work)
915 {
916 	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
917 	struct rdtgroup *prgrp, *crgrp;
918 	struct rdt_mon_domain *d;
919 	struct list_head *head;
920 	struct rdt_resource *r;
921 
922 	cpus_read_lock();
923 	mutex_lock(&rdtgroup_mutex);
924 
925 	/*
926 	 * If the filesystem has been unmounted this work no longer needs to
927 	 * run.
928 	 */
929 	if (!resctrl_mounted || !resctrl_arch_mon_capable())
930 		goto out_unlock;
931 
932 	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
933 	d = container_of(work, struct rdt_mon_domain, mbm_over.work);
934 
935 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
936 		mbm_update(r, d, prgrp->closid, prgrp->mon.rmid);
937 
938 		head = &prgrp->mon.crdtgrp_list;
939 		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
940 			mbm_update(r, d, crgrp->closid, crgrp->mon.rmid);
941 
942 		if (is_mba_sc(NULL))
943 			update_mba_bw(prgrp, d);
944 	}
945 
946 	/*
947 	 * Re-check for housekeeping CPUs. This allows the overflow handler to
948 	 * move off a nohz_full CPU quickly.
949 	 */
950 	d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
951 						   RESCTRL_PICK_ANY_CPU);
952 	schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);
953 
954 out_unlock:
955 	mutex_unlock(&rdtgroup_mutex);
956 	cpus_read_unlock();
957 }
958 
959 /**
960  * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
961  *                                domain.
962  * @dom:           The domain the overflow handler should run for.
963  * @delay_ms:      How far in the future the handler should run.
964  * @exclude_cpu:   Which CPU the handler should not run on,
965  *		   RESCTRL_PICK_ANY_CPU to pick any CPU.
966  */
967 void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
968 				int exclude_cpu)
969 {
970 	unsigned long delay = msecs_to_jiffies(delay_ms);
971 	int cpu;
972 
973 	/*
974 	 * When a domain comes online there is no guarantee the filesystem is
975 	 * mounted. If not, there is no need to catch counter overflow.
976 	 */
977 	if (!resctrl_mounted || !resctrl_arch_mon_capable())
978 		return;
979 	cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
980 	dom->mbm_work_cpu = cpu;
981 
982 	if (cpu < nr_cpu_ids)
983 		schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
984 }
985 
986 static int dom_data_init(struct rdt_resource *r)
987 {
988 	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
989 	u32 num_closid = resctrl_arch_get_num_closid(r);
990 	struct rmid_entry *entry = NULL;
991 	int err = 0, i;
992 	u32 idx;
993 
994 	mutex_lock(&rdtgroup_mutex);
995 	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
996 		u32 *tmp;
997 
998 		/*
999 		 * If the architecture hasn't provided a sanitised value here,
1000 		 * this may result in larger arrays than necessary. Resctrl will
1001 		 * use a smaller system wide value based on the resources in
1002 		 * use.
1003 		 */
1004 		tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
1005 		if (!tmp) {
1006 			err = -ENOMEM;
1007 			goto out_unlock;
1008 		}
1009 
1010 		closid_num_dirty_rmid = tmp;
1011 	}
1012 
1013 	rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
1014 	if (!rmid_ptrs) {
1015 		if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
1016 			kfree(closid_num_dirty_rmid);
1017 			closid_num_dirty_rmid = NULL;
1018 		}
1019 		err = -ENOMEM;
1020 		goto out_unlock;
1021 	}
1022 
1023 	for (i = 0; i < idx_limit; i++) {
1024 		entry = &rmid_ptrs[i];
1025 		INIT_LIST_HEAD(&entry->list);
1026 
1027 		resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
1028 		list_add_tail(&entry->list, &rmid_free_lru);
1029 	}
1030 
1031 	/*
1032 	 * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
1033 	 * are always allocated. These are used for the rdtgroup_default
1034 	 * control group, which will be setup later in rdtgroup_init().
1035 	 */
1036 	idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
1037 					   RESCTRL_RESERVED_RMID);
1038 	entry = __rmid_entry(idx);
1039 	list_del(&entry->list);
1040 
1041 out_unlock:
1042 	mutex_unlock(&rdtgroup_mutex);
1043 
1044 	return err;
1045 }
1046 
1047 static void __exit dom_data_exit(void)
1048 {
1049 	mutex_lock(&rdtgroup_mutex);
1050 
1051 	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
1052 		kfree(closid_num_dirty_rmid);
1053 		closid_num_dirty_rmid = NULL;
1054 	}
1055 
1056 	kfree(rmid_ptrs);
1057 	rmid_ptrs = NULL;
1058 
1059 	mutex_unlock(&rdtgroup_mutex);
1060 }
1061 
1062 static struct mon_evt llc_occupancy_event = {
1063 	.name		= "llc_occupancy",
1064 	.evtid		= QOS_L3_OCCUP_EVENT_ID,
1065 };
1066 
1067 static struct mon_evt mbm_total_event = {
1068 	.name		= "mbm_total_bytes",
1069 	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
1070 };
1071 
1072 static struct mon_evt mbm_local_event = {
1073 	.name		= "mbm_local_bytes",
1074 	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
1075 };
1076 
1077 /*
1078  * Initialize the event list for the resource.
1079  *
1080  * Note that MBM events are also part of RDT_RESOURCE_L3 resource
1081  * because as per the SDM the total and local memory bandwidth
1082  * are enumerated as part of L3 monitoring.
1083  */
1084 static void l3_mon_evt_init(struct rdt_resource *r)
1085 {
1086 	INIT_LIST_HEAD(&r->evt_list);
1087 
1088 	if (is_llc_occupancy_enabled())
1089 		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
1090 	if (is_mbm_total_enabled())
1091 		list_add_tail(&mbm_total_event.list, &r->evt_list);
1092 	if (is_mbm_local_enabled())
1093 		list_add_tail(&mbm_local_event.list, &r->evt_list);
1094 }
1095 
1096 /*
1097  * The power-on reset value of MSR_RMID_SNC_CONFIG is 0x1
1098  * which indicates that RMIDs are configured in legacy mode.
1099  * This mode is incompatible with Linux resctrl semantics
1100  * as RMIDs are partitioned between SNC nodes, which requires
1101  * a user to know which RMID is allocated to a task.
1102  * Clearing bit 0 reconfigures the RMID counters for use
1103  * in RMID sharing mode. This mode is better for Linux.
1104  * The RMID space is divided between all SNC nodes with the
1105  * RMIDs renumbered to start from zero in each node when
1106  * counting operations from tasks. Code to read the counters
1107  * must adjust RMID counter numbers based on SNC node. See
1108  * logical_rmid_to_physical_rmid() for code that does this.
1109  */
1110 void arch_mon_domain_online(struct rdt_resource *r, struct rdt_mon_domain *d)
1111 {
1112 	if (snc_nodes_per_l3_cache > 1)
1113 		msr_clear_bit(MSR_RMID_SNC_CONFIG, 0);
1114 }
1115 
1116 /* CPU models that support MSR_RMID_SNC_CONFIG */
1117 static const struct x86_cpu_id snc_cpu_ids[] __initconst = {
1118 	X86_MATCH_VFM(INTEL_ICELAKE_X, 0),
1119 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, 0),
1120 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, 0),
1121 	X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, 0),
1122 	X86_MATCH_VFM(INTEL_ATOM_CRESTMONT_X, 0),
1123 	{}
1124 };
1125 
1126 /*
1127  * There isn't a simple hardware bit that indicates whether a CPU is running
1128  * in Sub-NUMA Cluster (SNC) mode. Infer the state by comparing the
1129  * number of CPUs sharing the L3 cache with CPU0 to the number of CPUs in
1130  * the same NUMA node as CPU0.
1131  * It is not possible to accurately determine SNC state if the system is
1132  * booted with a maxcpus=N parameter. That distorts the ratio of SNC nodes
1133  * to L3 caches. It will be OK if system is booted with hyperthreading
1134  * disabled (since this doesn't affect the ratio).
1135  */
1136 static __init int snc_get_config(void)
1137 {
1138 	struct cacheinfo *ci = get_cpu_cacheinfo_level(0, RESCTRL_L3_CACHE);
1139 	const cpumask_t *node0_cpumask;
1140 	int cpus_per_node, cpus_per_l3;
1141 	int ret;
1142 
1143 	if (!x86_match_cpu(snc_cpu_ids) || !ci)
1144 		return 1;
1145 
1146 	cpus_read_lock();
1147 	if (num_online_cpus() != num_present_cpus())
1148 		pr_warn("Some CPUs offline, SNC detection may be incorrect\n");
1149 	cpus_read_unlock();
1150 
1151 	node0_cpumask = cpumask_of_node(cpu_to_node(0));
1152 
1153 	cpus_per_node = cpumask_weight(node0_cpumask);
1154 	cpus_per_l3 = cpumask_weight(&ci->shared_cpu_map);
1155 
1156 	if (!cpus_per_node || !cpus_per_l3)
1157 		return 1;
1158 
1159 	ret = cpus_per_l3 / cpus_per_node;
1160 
1161 	/* sanity check: Only valid results are 1, 2, 3, 4 */
1162 	switch (ret) {
1163 	case 1:
1164 		break;
1165 	case 2 ... 4:
1166 		pr_info("Sub-NUMA Cluster mode detected with %d nodes per L3 cache\n", ret);
1167 		rdt_resources_all[RDT_RESOURCE_L3].r_resctrl.mon_scope = RESCTRL_L3_NODE;
1168 		break;
1169 	default:
1170 		pr_warn("Ignore improbable SNC node count %d\n", ret);
1171 		ret = 1;
1172 		break;
1173 	}
1174 
1175 	return ret;
1176 }
1177 
1178 int __init rdt_get_mon_l3_config(struct rdt_resource *r)
1179 {
1180 	unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
1181 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1182 	unsigned int threshold;
1183 	int ret;
1184 
1185 	snc_nodes_per_l3_cache = snc_get_config();
1186 
1187 	resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
1188 	hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale / snc_nodes_per_l3_cache;
1189 	r->num_rmid = (boot_cpu_data.x86_cache_max_rmid + 1) / snc_nodes_per_l3_cache;
1190 	hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
1191 
1192 	if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
1193 		hw_res->mbm_width += mbm_offset;
1194 	else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
1195 		pr_warn("Ignoring impossible MBM counter offset\n");
1196 
1197 	/*
1198 	 * A reasonable upper limit on the max threshold is the number
1199 	 * of lines tagged per RMID if all RMIDs have the same number of
1200 	 * lines tagged in the LLC.
1201 	 *
1202 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1203 	 */
1204 	threshold = resctrl_rmid_realloc_limit / r->num_rmid;
1205 
1206 	/*
1207 	 * Because num_rmid may not be a power of two, round the value
1208 	 * to the nearest multiple of hw_res->mon_scale so it matches a
1209 	 * value the hardware will measure. mon_scale may not be a power of 2.
1210 	 */
1211 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);
1212 
1213 	ret = dom_data_init(r);
1214 	if (ret)
1215 		return ret;
1216 
1217 	if (rdt_cpu_has(X86_FEATURE_BMEC)) {
1218 		u32 eax, ebx, ecx, edx;
1219 
1220 		/* Detect list of bandwidth sources that can be tracked */
1221 		cpuid_count(0x80000020, 3, &eax, &ebx, &ecx, &edx);
1222 		hw_res->mbm_cfg_mask = ecx & MAX_EVT_CONFIG_BITS;
1223 
1224 		if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) {
1225 			mbm_total_event.configurable = true;
1226 			mbm_config_rftype_init("mbm_total_bytes_config");
1227 		}
1228 		if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) {
1229 			mbm_local_event.configurable = true;
1230 			mbm_config_rftype_init("mbm_local_bytes_config");
1231 		}
1232 	}
1233 
1234 	l3_mon_evt_init(r);
1235 
1236 	r->mon_capable = true;
1237 
1238 	return 0;
1239 }
1240 
1241 void __exit rdt_put_mon_l3_config(void)
1242 {
1243 	dom_data_exit();
1244 }
1245 
1246 void __init intel_rdt_mbm_apply_quirk(void)
1247 {
1248 	int cf_index;
1249 
1250 	cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
1251 	if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
1252 		pr_info("No MBM correction factor available\n");
1253 		return;
1254 	}
1255 
1256 	mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
1257 	mbm_cf = mbm_cf_table[cf_index].cf;
1258 }
1259