1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_RESCTRL_INTERNAL_H 3 #define _ASM_X86_RESCTRL_INTERNAL_H 4 5 #include <linux/resctrl.h> 6 #include <linux/sched.h> 7 #include <linux/kernfs.h> 8 #include <linux/fs_context.h> 9 #include <linux/jump_label.h> 10 #include <linux/tick.h> 11 12 #include <asm/resctrl.h> 13 14 #define L3_QOS_CDP_ENABLE 0x01ULL 15 16 #define L2_QOS_CDP_ENABLE 0x01ULL 17 18 #define CQM_LIMBOCHECK_INTERVAL 1000 19 20 #define MBM_CNTR_WIDTH_BASE 24 21 #define MBM_OVERFLOW_INTERVAL 1000 22 #define MAX_MBA_BW 100u 23 #define MBA_IS_LINEAR 0x4 24 #define MBM_CNTR_WIDTH_OFFSET_AMD 20 25 26 #define RMID_VAL_ERROR BIT_ULL(63) 27 #define RMID_VAL_UNAVAIL BIT_ULL(62) 28 /* 29 * With the above fields in use 62 bits remain in MSR_IA32_QM_CTR for 30 * data to be returned. The counter width is discovered from the hardware 31 * as an offset from MBM_CNTR_WIDTH_BASE. 32 */ 33 #define MBM_CNTR_WIDTH_OFFSET_MAX (62 - MBM_CNTR_WIDTH_BASE) 34 35 /* Reads to Local DRAM Memory */ 36 #define READS_TO_LOCAL_MEM BIT(0) 37 38 /* Reads to Remote DRAM Memory */ 39 #define READS_TO_REMOTE_MEM BIT(1) 40 41 /* Non-Temporal Writes to Local Memory */ 42 #define NON_TEMP_WRITE_TO_LOCAL_MEM BIT(2) 43 44 /* Non-Temporal Writes to Remote Memory */ 45 #define NON_TEMP_WRITE_TO_REMOTE_MEM BIT(3) 46 47 /* Reads to Local Memory the system identifies as "Slow Memory" */ 48 #define READS_TO_LOCAL_S_MEM BIT(4) 49 50 /* Reads to Remote Memory the system identifies as "Slow Memory" */ 51 #define READS_TO_REMOTE_S_MEM BIT(5) 52 53 /* Dirty Victims to All Types of Memory */ 54 #define DIRTY_VICTIMS_TO_ALL_MEM BIT(6) 55 56 /* Max event bits supported */ 57 #define MAX_EVT_CONFIG_BITS GENMASK(6, 0) 58 59 /** 60 * cpumask_any_housekeeping() - Choose any CPU in @mask, preferring those that 61 * aren't marked nohz_full 62 * @mask: The mask to pick a CPU from. 63 * @exclude_cpu:The CPU to avoid picking. 64 * 65 * Returns a CPU from @mask, but not @exclude_cpu. If there are housekeeping 66 * CPUs that don't use nohz_full, these are preferred. Pass 67 * RESCTRL_PICK_ANY_CPU to avoid excluding any CPUs. 68 * 69 * When a CPU is excluded, returns >= nr_cpu_ids if no CPUs are available. 70 */ 71 static inline unsigned int 72 cpumask_any_housekeeping(const struct cpumask *mask, int exclude_cpu) 73 { 74 unsigned int cpu, hk_cpu; 75 76 if (exclude_cpu == RESCTRL_PICK_ANY_CPU) 77 cpu = cpumask_any(mask); 78 else 79 cpu = cpumask_any_but(mask, exclude_cpu); 80 81 /* Only continue if tick_nohz_full_mask has been initialized. */ 82 if (!tick_nohz_full_enabled()) 83 return cpu; 84 85 /* If the CPU picked isn't marked nohz_full nothing more needs doing. */ 86 if (cpu < nr_cpu_ids && !tick_nohz_full_cpu(cpu)) 87 return cpu; 88 89 /* Try to find a CPU that isn't nohz_full to use in preference */ 90 hk_cpu = cpumask_nth_andnot(0, mask, tick_nohz_full_mask); 91 if (hk_cpu == exclude_cpu) 92 hk_cpu = cpumask_nth_andnot(1, mask, tick_nohz_full_mask); 93 94 if (hk_cpu < nr_cpu_ids) 95 cpu = hk_cpu; 96 97 return cpu; 98 } 99 100 struct rdt_fs_context { 101 struct kernfs_fs_context kfc; 102 bool enable_cdpl2; 103 bool enable_cdpl3; 104 bool enable_mba_mbps; 105 bool enable_debug; 106 }; 107 108 static inline struct rdt_fs_context *rdt_fc2context(struct fs_context *fc) 109 { 110 struct kernfs_fs_context *kfc = fc->fs_private; 111 112 return container_of(kfc, struct rdt_fs_context, kfc); 113 } 114 115 /** 116 * struct mon_evt - Entry in the event list of a resource 117 * @evtid: event id 118 * @name: name of the event 119 * @configurable: true if the event is configurable 120 * @list: entry in &rdt_resource->evt_list 121 */ 122 struct mon_evt { 123 enum resctrl_event_id evtid; 124 char *name; 125 bool configurable; 126 struct list_head list; 127 }; 128 129 /** 130 * union mon_data_bits - Monitoring details for each event file 131 * @priv: Used to store monitoring event data in @u 132 * as kernfs private data 133 * @rid: Resource id associated with the event file 134 * @evtid: Event id associated with the event file 135 * @domid: The domain to which the event file belongs 136 * @u: Name of the bit fields struct 137 */ 138 union mon_data_bits { 139 void *priv; 140 struct { 141 unsigned int rid : 10; 142 enum resctrl_event_id evtid : 8; 143 unsigned int domid : 14; 144 } u; 145 }; 146 147 struct rmid_read { 148 struct rdtgroup *rgrp; 149 struct rdt_resource *r; 150 struct rdt_domain *d; 151 enum resctrl_event_id evtid; 152 bool first; 153 int err; 154 u64 val; 155 void *arch_mon_ctx; 156 }; 157 158 extern unsigned int rdt_mon_features; 159 extern struct list_head resctrl_schema_all; 160 extern bool resctrl_mounted; 161 162 enum rdt_group_type { 163 RDTCTRL_GROUP = 0, 164 RDTMON_GROUP, 165 RDT_NUM_GROUP, 166 }; 167 168 /** 169 * enum rdtgrp_mode - Mode of a RDT resource group 170 * @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations 171 * @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed 172 * @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking 173 * @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations 174 * allowed AND the allocations are Cache Pseudo-Locked 175 * @RDT_NUM_MODES: Total number of modes 176 * 177 * The mode of a resource group enables control over the allowed overlap 178 * between allocations associated with different resource groups (classes 179 * of service). User is able to modify the mode of a resource group by 180 * writing to the "mode" resctrl file associated with the resource group. 181 * 182 * The "shareable", "exclusive", and "pseudo-locksetup" modes are set by 183 * writing the appropriate text to the "mode" file. A resource group enters 184 * "pseudo-locked" mode after the schemata is written while the resource 185 * group is in "pseudo-locksetup" mode. 186 */ 187 enum rdtgrp_mode { 188 RDT_MODE_SHAREABLE = 0, 189 RDT_MODE_EXCLUSIVE, 190 RDT_MODE_PSEUDO_LOCKSETUP, 191 RDT_MODE_PSEUDO_LOCKED, 192 193 /* Must be last */ 194 RDT_NUM_MODES, 195 }; 196 197 /** 198 * struct mongroup - store mon group's data in resctrl fs. 199 * @mon_data_kn: kernfs node for the mon_data directory 200 * @parent: parent rdtgrp 201 * @crdtgrp_list: child rdtgroup node list 202 * @rmid: rmid for this rdtgroup 203 */ 204 struct mongroup { 205 struct kernfs_node *mon_data_kn; 206 struct rdtgroup *parent; 207 struct list_head crdtgrp_list; 208 u32 rmid; 209 }; 210 211 /** 212 * struct pseudo_lock_region - pseudo-lock region information 213 * @s: Resctrl schema for the resource to which this 214 * pseudo-locked region belongs 215 * @d: RDT domain to which this pseudo-locked region 216 * belongs 217 * @cbm: bitmask of the pseudo-locked region 218 * @lock_thread_wq: waitqueue used to wait on the pseudo-locking thread 219 * completion 220 * @thread_done: variable used by waitqueue to test if pseudo-locking 221 * thread completed 222 * @cpu: core associated with the cache on which the setup code 223 * will be run 224 * @line_size: size of the cache lines 225 * @size: size of pseudo-locked region in bytes 226 * @kmem: the kernel memory associated with pseudo-locked region 227 * @minor: minor number of character device associated with this 228 * region 229 * @debugfs_dir: pointer to this region's directory in the debugfs 230 * filesystem 231 * @pm_reqs: Power management QoS requests related to this region 232 */ 233 struct pseudo_lock_region { 234 struct resctrl_schema *s; 235 struct rdt_domain *d; 236 u32 cbm; 237 wait_queue_head_t lock_thread_wq; 238 int thread_done; 239 int cpu; 240 unsigned int line_size; 241 unsigned int size; 242 void *kmem; 243 unsigned int minor; 244 struct dentry *debugfs_dir; 245 struct list_head pm_reqs; 246 }; 247 248 /** 249 * struct rdtgroup - store rdtgroup's data in resctrl file system. 250 * @kn: kernfs node 251 * @rdtgroup_list: linked list for all rdtgroups 252 * @closid: closid for this rdtgroup 253 * @cpu_mask: CPUs assigned to this rdtgroup 254 * @flags: status bits 255 * @waitcount: how many cpus expect to find this 256 * group when they acquire rdtgroup_mutex 257 * @type: indicates type of this rdtgroup - either 258 * monitor only or ctrl_mon group 259 * @mon: mongroup related data 260 * @mode: mode of resource group 261 * @plr: pseudo-locked region 262 */ 263 struct rdtgroup { 264 struct kernfs_node *kn; 265 struct list_head rdtgroup_list; 266 u32 closid; 267 struct cpumask cpu_mask; 268 int flags; 269 atomic_t waitcount; 270 enum rdt_group_type type; 271 struct mongroup mon; 272 enum rdtgrp_mode mode; 273 struct pseudo_lock_region *plr; 274 }; 275 276 /* rdtgroup.flags */ 277 #define RDT_DELETED 1 278 279 /* rftype.flags */ 280 #define RFTYPE_FLAGS_CPUS_LIST 1 281 282 /* 283 * Define the file type flags for base and info directories. 284 */ 285 #define RFTYPE_INFO BIT(0) 286 #define RFTYPE_BASE BIT(1) 287 #define RFTYPE_CTRL BIT(4) 288 #define RFTYPE_MON BIT(5) 289 #define RFTYPE_TOP BIT(6) 290 #define RFTYPE_RES_CACHE BIT(8) 291 #define RFTYPE_RES_MB BIT(9) 292 #define RFTYPE_DEBUG BIT(10) 293 #define RFTYPE_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL) 294 #define RFTYPE_MON_INFO (RFTYPE_INFO | RFTYPE_MON) 295 #define RFTYPE_TOP_INFO (RFTYPE_INFO | RFTYPE_TOP) 296 #define RFTYPE_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL) 297 #define RFTYPE_MON_BASE (RFTYPE_BASE | RFTYPE_MON) 298 299 /* List of all resource groups */ 300 extern struct list_head rdt_all_groups; 301 302 extern int max_name_width, max_data_width; 303 304 int __init rdtgroup_init(void); 305 void __exit rdtgroup_exit(void); 306 307 /** 308 * struct rftype - describe each file in the resctrl file system 309 * @name: File name 310 * @mode: Access mode 311 * @kf_ops: File operations 312 * @flags: File specific RFTYPE_FLAGS_* flags 313 * @fflags: File specific RFTYPE_* flags 314 * @seq_show: Show content of the file 315 * @write: Write to the file 316 */ 317 struct rftype { 318 char *name; 319 umode_t mode; 320 const struct kernfs_ops *kf_ops; 321 unsigned long flags; 322 unsigned long fflags; 323 324 int (*seq_show)(struct kernfs_open_file *of, 325 struct seq_file *sf, void *v); 326 /* 327 * write() is the generic write callback which maps directly to 328 * kernfs write operation and overrides all other operations. 329 * Maximum write size is determined by ->max_write_len. 330 */ 331 ssize_t (*write)(struct kernfs_open_file *of, 332 char *buf, size_t nbytes, loff_t off); 333 }; 334 335 /** 336 * struct mbm_state - status for each MBM counter in each domain 337 * @prev_bw_bytes: Previous bytes value read for bandwidth calculation 338 * @prev_bw: The most recent bandwidth in MBps 339 */ 340 struct mbm_state { 341 u64 prev_bw_bytes; 342 u32 prev_bw; 343 }; 344 345 /** 346 * struct arch_mbm_state - values used to compute resctrl_arch_rmid_read()s 347 * return value. 348 * @chunks: Total data moved (multiply by rdt_group.mon_scale to get bytes) 349 * @prev_msr: Value of IA32_QM_CTR last time it was read for the RMID used to 350 * find this struct. 351 */ 352 struct arch_mbm_state { 353 u64 chunks; 354 u64 prev_msr; 355 }; 356 357 /** 358 * struct rdt_hw_domain - Arch private attributes of a set of CPUs that share 359 * a resource 360 * @d_resctrl: Properties exposed to the resctrl file system 361 * @ctrl_val: array of cache or mem ctrl values (indexed by CLOSID) 362 * @arch_mbm_total: arch private state for MBM total bandwidth 363 * @arch_mbm_local: arch private state for MBM local bandwidth 364 * 365 * Members of this structure are accessed via helpers that provide abstraction. 366 */ 367 struct rdt_hw_domain { 368 struct rdt_domain d_resctrl; 369 u32 *ctrl_val; 370 struct arch_mbm_state *arch_mbm_total; 371 struct arch_mbm_state *arch_mbm_local; 372 }; 373 374 static inline struct rdt_hw_domain *resctrl_to_arch_dom(struct rdt_domain *r) 375 { 376 return container_of(r, struct rdt_hw_domain, d_resctrl); 377 } 378 379 /** 380 * struct msr_param - set a range of MSRs from a domain 381 * @res: The resource to use 382 * @dom: The domain to update 383 * @low: Beginning index from base MSR 384 * @high: End index 385 */ 386 struct msr_param { 387 struct rdt_resource *res; 388 struct rdt_domain *dom; 389 u32 low; 390 u32 high; 391 }; 392 393 static inline bool is_llc_occupancy_enabled(void) 394 { 395 return (rdt_mon_features & (1 << QOS_L3_OCCUP_EVENT_ID)); 396 } 397 398 static inline bool is_mbm_total_enabled(void) 399 { 400 return (rdt_mon_features & (1 << QOS_L3_MBM_TOTAL_EVENT_ID)); 401 } 402 403 static inline bool is_mbm_local_enabled(void) 404 { 405 return (rdt_mon_features & (1 << QOS_L3_MBM_LOCAL_EVENT_ID)); 406 } 407 408 static inline bool is_mbm_enabled(void) 409 { 410 return (is_mbm_total_enabled() || is_mbm_local_enabled()); 411 } 412 413 static inline bool is_mbm_event(int e) 414 { 415 return (e >= QOS_L3_MBM_TOTAL_EVENT_ID && 416 e <= QOS_L3_MBM_LOCAL_EVENT_ID); 417 } 418 419 struct rdt_parse_data { 420 struct rdtgroup *rdtgrp; 421 char *buf; 422 }; 423 424 /** 425 * struct rdt_hw_resource - arch private attributes of a resctrl resource 426 * @r_resctrl: Attributes of the resource used directly by resctrl. 427 * @num_closid: Maximum number of closid this hardware can support, 428 * regardless of CDP. This is exposed via 429 * resctrl_arch_get_num_closid() to avoid confusion 430 * with struct resctrl_schema's property of the same name, 431 * which has been corrected for features like CDP. 432 * @msr_base: Base MSR address for CBMs 433 * @msr_update: Function pointer to update QOS MSRs 434 * @mon_scale: cqm counter * mon_scale = occupancy in bytes 435 * @mbm_width: Monitor width, to detect and correct for overflow. 436 * @mbm_cfg_mask: Bandwidth sources that can be tracked when Bandwidth 437 * Monitoring Event Configuration (BMEC) is supported. 438 * @cdp_enabled: CDP state of this resource 439 * 440 * Members of this structure are either private to the architecture 441 * e.g. mbm_width, or accessed via helpers that provide abstraction. e.g. 442 * msr_update and msr_base. 443 */ 444 struct rdt_hw_resource { 445 struct rdt_resource r_resctrl; 446 u32 num_closid; 447 unsigned int msr_base; 448 void (*msr_update)(struct msr_param *m); 449 unsigned int mon_scale; 450 unsigned int mbm_width; 451 unsigned int mbm_cfg_mask; 452 bool cdp_enabled; 453 }; 454 455 static inline struct rdt_hw_resource *resctrl_to_arch_res(struct rdt_resource *r) 456 { 457 return container_of(r, struct rdt_hw_resource, r_resctrl); 458 } 459 460 int parse_cbm(struct rdt_parse_data *data, struct resctrl_schema *s, 461 struct rdt_domain *d); 462 int parse_bw(struct rdt_parse_data *data, struct resctrl_schema *s, 463 struct rdt_domain *d); 464 465 extern struct mutex rdtgroup_mutex; 466 467 extern struct rdt_hw_resource rdt_resources_all[]; 468 extern struct rdtgroup rdtgroup_default; 469 extern struct dentry *debugfs_resctrl; 470 471 enum resctrl_res_level { 472 RDT_RESOURCE_L3, 473 RDT_RESOURCE_L2, 474 RDT_RESOURCE_MBA, 475 RDT_RESOURCE_SMBA, 476 477 /* Must be the last */ 478 RDT_NUM_RESOURCES, 479 }; 480 481 static inline struct rdt_resource *resctrl_inc(struct rdt_resource *res) 482 { 483 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(res); 484 485 hw_res++; 486 return &hw_res->r_resctrl; 487 } 488 489 static inline bool resctrl_arch_get_cdp_enabled(enum resctrl_res_level l) 490 { 491 return rdt_resources_all[l].cdp_enabled; 492 } 493 494 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable); 495 496 /* 497 * To return the common struct rdt_resource, which is contained in struct 498 * rdt_hw_resource, walk the resctrl member of struct rdt_hw_resource. 499 */ 500 #define for_each_rdt_resource(r) \ 501 for (r = &rdt_resources_all[0].r_resctrl; \ 502 r <= &rdt_resources_all[RDT_NUM_RESOURCES - 1].r_resctrl; \ 503 r = resctrl_inc(r)) 504 505 #define for_each_capable_rdt_resource(r) \ 506 for_each_rdt_resource(r) \ 507 if (r->alloc_capable || r->mon_capable) 508 509 #define for_each_alloc_capable_rdt_resource(r) \ 510 for_each_rdt_resource(r) \ 511 if (r->alloc_capable) 512 513 #define for_each_mon_capable_rdt_resource(r) \ 514 for_each_rdt_resource(r) \ 515 if (r->mon_capable) 516 517 /* CPUID.(EAX=10H, ECX=ResID=1).EAX */ 518 union cpuid_0x10_1_eax { 519 struct { 520 unsigned int cbm_len:5; 521 } split; 522 unsigned int full; 523 }; 524 525 /* CPUID.(EAX=10H, ECX=ResID=3).EAX */ 526 union cpuid_0x10_3_eax { 527 struct { 528 unsigned int max_delay:12; 529 } split; 530 unsigned int full; 531 }; 532 533 /* CPUID.(EAX=10H, ECX=ResID).ECX */ 534 union cpuid_0x10_x_ecx { 535 struct { 536 unsigned int reserved:3; 537 unsigned int noncont:1; 538 } split; 539 unsigned int full; 540 }; 541 542 /* CPUID.(EAX=10H, ECX=ResID).EDX */ 543 union cpuid_0x10_x_edx { 544 struct { 545 unsigned int cos_max:16; 546 } split; 547 unsigned int full; 548 }; 549 550 void rdt_last_cmd_clear(void); 551 void rdt_last_cmd_puts(const char *s); 552 __printf(1, 2) 553 void rdt_last_cmd_printf(const char *fmt, ...); 554 555 void rdt_ctrl_update(void *arg); 556 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn); 557 void rdtgroup_kn_unlock(struct kernfs_node *kn); 558 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name); 559 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 560 umode_t mask); 561 struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id, 562 struct list_head **pos); 563 ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of, 564 char *buf, size_t nbytes, loff_t off); 565 int rdtgroup_schemata_show(struct kernfs_open_file *of, 566 struct seq_file *s, void *v); 567 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d, 568 unsigned long cbm, int closid, bool exclusive); 569 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_domain *d, 570 unsigned long cbm); 571 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid); 572 int rdtgroup_tasks_assigned(struct rdtgroup *r); 573 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp); 574 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp); 575 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm); 576 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d); 577 int rdt_pseudo_lock_init(void); 578 void rdt_pseudo_lock_release(void); 579 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp); 580 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp); 581 struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r); 582 int closids_supported(void); 583 void closid_free(int closid); 584 int alloc_rmid(u32 closid); 585 void free_rmid(u32 closid, u32 rmid); 586 int rdt_get_mon_l3_config(struct rdt_resource *r); 587 void __exit rdt_put_mon_l3_config(void); 588 bool __init rdt_cpu_has(int flag); 589 void mon_event_count(void *info); 590 int rdtgroup_mondata_show(struct seq_file *m, void *arg); 591 void mon_event_read(struct rmid_read *rr, struct rdt_resource *r, 592 struct rdt_domain *d, struct rdtgroup *rdtgrp, 593 int evtid, int first); 594 void mbm_setup_overflow_handler(struct rdt_domain *dom, 595 unsigned long delay_ms, 596 int exclude_cpu); 597 void mbm_handle_overflow(struct work_struct *work); 598 void __init intel_rdt_mbm_apply_quirk(void); 599 bool is_mba_sc(struct rdt_resource *r); 600 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms, 601 int exclude_cpu); 602 void cqm_handle_limbo(struct work_struct *work); 603 bool has_busy_rmid(struct rdt_domain *d); 604 void __check_limbo(struct rdt_domain *d, bool force_free); 605 void rdt_domain_reconfigure_cdp(struct rdt_resource *r); 606 void __init thread_throttle_mode_init(void); 607 void __init mbm_config_rftype_init(const char *config); 608 void rdt_staged_configs_clear(void); 609 bool closid_allocated(unsigned int closid); 610 int resctrl_find_cleanest_closid(void); 611 612 #endif /* _ASM_X86_RESCTRL_INTERNAL_H */ 613