1 /* 2 * local apic based NMI watchdog for various CPUs. 3 * 4 * This file also handles reservation of performance counters for coordination 5 * with other users (like oprofile). 6 * 7 * Note that these events normally don't tick when the CPU idles. This means 8 * the frequency varies with CPU load. 9 * 10 * Original code for K7/P6 written by Keith Owens 11 * 12 */ 13 14 #include <linux/percpu.h> 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/bitops.h> 18 #include <linux/smp.h> 19 #include <linux/nmi.h> 20 #include <asm/apic.h> 21 #include <asm/intel_arch_perfmon.h> 22 23 struct nmi_watchdog_ctlblk { 24 unsigned int cccr_msr; 25 unsigned int perfctr_msr; /* the MSR to reset in NMI handler */ 26 unsigned int evntsel_msr; /* the MSR to select the events to handle */ 27 }; 28 29 /* Interface defining a CPU specific perfctr watchdog */ 30 struct wd_ops { 31 int (*reserve)(void); 32 void (*unreserve)(void); 33 int (*setup)(unsigned nmi_hz); 34 void (*rearm)(struct nmi_watchdog_ctlblk *wd, unsigned nmi_hz); 35 void (*stop)(void); 36 unsigned perfctr; 37 unsigned evntsel; 38 u64 checkbit; 39 }; 40 41 static const struct wd_ops *wd_ops; 42 43 /* 44 * this number is calculated from Intel's MSR_P4_CRU_ESCR5 register and it's 45 * offset from MSR_P4_BSU_ESCR0. 46 * 47 * It will be the max for all platforms (for now) 48 */ 49 #define NMI_MAX_COUNTER_BITS 66 50 51 /* 52 * perfctr_nmi_owner tracks the ownership of the perfctr registers: 53 * evtsel_nmi_owner tracks the ownership of the event selection 54 * - different performance counters/ event selection may be reserved for 55 * different subsystems this reservation system just tries to coordinate 56 * things a little 57 */ 58 static DECLARE_BITMAP(perfctr_nmi_owner, NMI_MAX_COUNTER_BITS); 59 static DECLARE_BITMAP(evntsel_nmi_owner, NMI_MAX_COUNTER_BITS); 60 61 static DEFINE_PER_CPU(struct nmi_watchdog_ctlblk, nmi_watchdog_ctlblk); 62 63 /* converts an msr to an appropriate reservation bit */ 64 static inline unsigned int nmi_perfctr_msr_to_bit(unsigned int msr) 65 { 66 /* returns the bit offset of the performance counter register */ 67 switch (boot_cpu_data.x86_vendor) { 68 case X86_VENDOR_AMD: 69 return (msr - MSR_K7_PERFCTR0); 70 case X86_VENDOR_INTEL: 71 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) 72 return (msr - MSR_ARCH_PERFMON_PERFCTR0); 73 74 switch (boot_cpu_data.x86) { 75 case 6: 76 return (msr - MSR_P6_PERFCTR0); 77 case 15: 78 return (msr - MSR_P4_BPU_PERFCTR0); 79 } 80 } 81 return 0; 82 } 83 84 /* 85 * converts an msr to an appropriate reservation bit 86 * returns the bit offset of the event selection register 87 */ 88 static inline unsigned int nmi_evntsel_msr_to_bit(unsigned int msr) 89 { 90 /* returns the bit offset of the event selection register */ 91 switch (boot_cpu_data.x86_vendor) { 92 case X86_VENDOR_AMD: 93 return (msr - MSR_K7_EVNTSEL0); 94 case X86_VENDOR_INTEL: 95 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) 96 return (msr - MSR_ARCH_PERFMON_EVENTSEL0); 97 98 switch (boot_cpu_data.x86) { 99 case 6: 100 return (msr - MSR_P6_EVNTSEL0); 101 case 15: 102 return (msr - MSR_P4_BSU_ESCR0); 103 } 104 } 105 return 0; 106 107 } 108 109 /* checks for a bit availability (hack for oprofile) */ 110 int avail_to_resrv_perfctr_nmi_bit(unsigned int counter) 111 { 112 BUG_ON(counter > NMI_MAX_COUNTER_BITS); 113 114 return (!test_bit(counter, perfctr_nmi_owner)); 115 } 116 117 /* checks the an msr for availability */ 118 int avail_to_resrv_perfctr_nmi(unsigned int msr) 119 { 120 unsigned int counter; 121 122 counter = nmi_perfctr_msr_to_bit(msr); 123 BUG_ON(counter > NMI_MAX_COUNTER_BITS); 124 125 return (!test_bit(counter, perfctr_nmi_owner)); 126 } 127 EXPORT_SYMBOL(avail_to_resrv_perfctr_nmi_bit); 128 129 int reserve_perfctr_nmi(unsigned int msr) 130 { 131 unsigned int counter; 132 133 counter = nmi_perfctr_msr_to_bit(msr); 134 /* register not managed by the allocator? */ 135 if (counter > NMI_MAX_COUNTER_BITS) 136 return 1; 137 138 if (!test_and_set_bit(counter, perfctr_nmi_owner)) 139 return 1; 140 return 0; 141 } 142 EXPORT_SYMBOL(reserve_perfctr_nmi); 143 144 void release_perfctr_nmi(unsigned int msr) 145 { 146 unsigned int counter; 147 148 counter = nmi_perfctr_msr_to_bit(msr); 149 /* register not managed by the allocator? */ 150 if (counter > NMI_MAX_COUNTER_BITS) 151 return; 152 153 clear_bit(counter, perfctr_nmi_owner); 154 } 155 EXPORT_SYMBOL(release_perfctr_nmi); 156 157 int reserve_evntsel_nmi(unsigned int msr) 158 { 159 unsigned int counter; 160 161 counter = nmi_evntsel_msr_to_bit(msr); 162 /* register not managed by the allocator? */ 163 if (counter > NMI_MAX_COUNTER_BITS) 164 return 1; 165 166 if (!test_and_set_bit(counter, evntsel_nmi_owner)) 167 return 1; 168 return 0; 169 } 170 EXPORT_SYMBOL(reserve_evntsel_nmi); 171 172 void release_evntsel_nmi(unsigned int msr) 173 { 174 unsigned int counter; 175 176 counter = nmi_evntsel_msr_to_bit(msr); 177 /* register not managed by the allocator? */ 178 if (counter > NMI_MAX_COUNTER_BITS) 179 return; 180 181 clear_bit(counter, evntsel_nmi_owner); 182 } 183 EXPORT_SYMBOL(release_evntsel_nmi); 184 185 void disable_lapic_nmi_watchdog(void) 186 { 187 BUG_ON(nmi_watchdog != NMI_LOCAL_APIC); 188 189 if (atomic_read(&nmi_active) <= 0) 190 return; 191 192 on_each_cpu(stop_apic_nmi_watchdog, NULL, 1); 193 194 if (wd_ops) 195 wd_ops->unreserve(); 196 197 BUG_ON(atomic_read(&nmi_active) != 0); 198 } 199 200 void enable_lapic_nmi_watchdog(void) 201 { 202 BUG_ON(nmi_watchdog != NMI_LOCAL_APIC); 203 204 /* are we already enabled */ 205 if (atomic_read(&nmi_active) != 0) 206 return; 207 208 /* are we lapic aware */ 209 if (!wd_ops) 210 return; 211 if (!wd_ops->reserve()) { 212 printk(KERN_ERR "NMI watchdog: cannot reserve perfctrs\n"); 213 return; 214 } 215 216 on_each_cpu(setup_apic_nmi_watchdog, NULL, 1); 217 touch_nmi_watchdog(); 218 } 219 220 /* 221 * Activate the NMI watchdog via the local APIC. 222 */ 223 224 static unsigned int adjust_for_32bit_ctr(unsigned int hz) 225 { 226 u64 counter_val; 227 unsigned int retval = hz; 228 229 /* 230 * On Intel CPUs with P6/ARCH_PERFMON only 32 bits in the counter 231 * are writable, with higher bits sign extending from bit 31. 232 * So, we can only program the counter with 31 bit values and 233 * 32nd bit should be 1, for 33.. to be 1. 234 * Find the appropriate nmi_hz 235 */ 236 counter_val = (u64)cpu_khz * 1000; 237 do_div(counter_val, retval); 238 if (counter_val > 0x7fffffffULL) { 239 u64 count = (u64)cpu_khz * 1000; 240 do_div(count, 0x7fffffffUL); 241 retval = count + 1; 242 } 243 return retval; 244 } 245 246 static void write_watchdog_counter(unsigned int perfctr_msr, 247 const char *descr, unsigned nmi_hz) 248 { 249 u64 count = (u64)cpu_khz * 1000; 250 251 do_div(count, nmi_hz); 252 if(descr) 253 pr_debug("setting %s to -0x%08Lx\n", descr, count); 254 wrmsrl(perfctr_msr, 0 - count); 255 } 256 257 static void write_watchdog_counter32(unsigned int perfctr_msr, 258 const char *descr, unsigned nmi_hz) 259 { 260 u64 count = (u64)cpu_khz * 1000; 261 262 do_div(count, nmi_hz); 263 if(descr) 264 pr_debug("setting %s to -0x%08Lx\n", descr, count); 265 wrmsr(perfctr_msr, (u32)(-count), 0); 266 } 267 268 /* 269 * AMD K7/K8/Family10h/Family11h support. 270 * AMD keeps this interface nicely stable so there is not much variety 271 */ 272 #define K7_EVNTSEL_ENABLE (1 << 22) 273 #define K7_EVNTSEL_INT (1 << 20) 274 #define K7_EVNTSEL_OS (1 << 17) 275 #define K7_EVNTSEL_USR (1 << 16) 276 #define K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING 0x76 277 #define K7_NMI_EVENT K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING 278 279 static int setup_k7_watchdog(unsigned nmi_hz) 280 { 281 unsigned int perfctr_msr, evntsel_msr; 282 unsigned int evntsel; 283 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk); 284 285 perfctr_msr = wd_ops->perfctr; 286 evntsel_msr = wd_ops->evntsel; 287 288 wrmsrl(perfctr_msr, 0UL); 289 290 evntsel = K7_EVNTSEL_INT 291 | K7_EVNTSEL_OS 292 | K7_EVNTSEL_USR 293 | K7_NMI_EVENT; 294 295 /* setup the timer */ 296 wrmsr(evntsel_msr, evntsel, 0); 297 write_watchdog_counter(perfctr_msr, "K7_PERFCTR0",nmi_hz); 298 apic_write(APIC_LVTPC, APIC_DM_NMI); 299 evntsel |= K7_EVNTSEL_ENABLE; 300 wrmsr(evntsel_msr, evntsel, 0); 301 302 wd->perfctr_msr = perfctr_msr; 303 wd->evntsel_msr = evntsel_msr; 304 wd->cccr_msr = 0; /* unused */ 305 return 1; 306 } 307 308 static void single_msr_stop_watchdog(void) 309 { 310 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk); 311 312 wrmsr(wd->evntsel_msr, 0, 0); 313 } 314 315 static int single_msr_reserve(void) 316 { 317 if (!reserve_perfctr_nmi(wd_ops->perfctr)) 318 return 0; 319 320 if (!reserve_evntsel_nmi(wd_ops->evntsel)) { 321 release_perfctr_nmi(wd_ops->perfctr); 322 return 0; 323 } 324 return 1; 325 } 326 327 static void single_msr_unreserve(void) 328 { 329 release_evntsel_nmi(wd_ops->evntsel); 330 release_perfctr_nmi(wd_ops->perfctr); 331 } 332 333 static void single_msr_rearm(struct nmi_watchdog_ctlblk *wd, unsigned nmi_hz) 334 { 335 /* start the cycle over again */ 336 write_watchdog_counter(wd->perfctr_msr, NULL, nmi_hz); 337 } 338 339 static const struct wd_ops k7_wd_ops = { 340 .reserve = single_msr_reserve, 341 .unreserve = single_msr_unreserve, 342 .setup = setup_k7_watchdog, 343 .rearm = single_msr_rearm, 344 .stop = single_msr_stop_watchdog, 345 .perfctr = MSR_K7_PERFCTR0, 346 .evntsel = MSR_K7_EVNTSEL0, 347 .checkbit = 1ULL << 47, 348 }; 349 350 /* 351 * Intel Model 6 (PPro+,P2,P3,P-M,Core1) 352 */ 353 #define P6_EVNTSEL0_ENABLE (1 << 22) 354 #define P6_EVNTSEL_INT (1 << 20) 355 #define P6_EVNTSEL_OS (1 << 17) 356 #define P6_EVNTSEL_USR (1 << 16) 357 #define P6_EVENT_CPU_CLOCKS_NOT_HALTED 0x79 358 #define P6_NMI_EVENT P6_EVENT_CPU_CLOCKS_NOT_HALTED 359 360 static int setup_p6_watchdog(unsigned nmi_hz) 361 { 362 unsigned int perfctr_msr, evntsel_msr; 363 unsigned int evntsel; 364 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk); 365 366 perfctr_msr = wd_ops->perfctr; 367 evntsel_msr = wd_ops->evntsel; 368 369 /* KVM doesn't implement this MSR */ 370 if (wrmsr_safe(perfctr_msr, 0, 0) < 0) 371 return 0; 372 373 evntsel = P6_EVNTSEL_INT 374 | P6_EVNTSEL_OS 375 | P6_EVNTSEL_USR 376 | P6_NMI_EVENT; 377 378 /* setup the timer */ 379 wrmsr(evntsel_msr, evntsel, 0); 380 nmi_hz = adjust_for_32bit_ctr(nmi_hz); 381 write_watchdog_counter32(perfctr_msr, "P6_PERFCTR0",nmi_hz); 382 apic_write(APIC_LVTPC, APIC_DM_NMI); 383 evntsel |= P6_EVNTSEL0_ENABLE; 384 wrmsr(evntsel_msr, evntsel, 0); 385 386 wd->perfctr_msr = perfctr_msr; 387 wd->evntsel_msr = evntsel_msr; 388 wd->cccr_msr = 0; /* unused */ 389 return 1; 390 } 391 392 static void p6_rearm(struct nmi_watchdog_ctlblk *wd, unsigned nmi_hz) 393 { 394 /* 395 * P6 based Pentium M need to re-unmask 396 * the apic vector but it doesn't hurt 397 * other P6 variant. 398 * ArchPerfom/Core Duo also needs this 399 */ 400 apic_write(APIC_LVTPC, APIC_DM_NMI); 401 402 /* P6/ARCH_PERFMON has 32 bit counter write */ 403 write_watchdog_counter32(wd->perfctr_msr, NULL,nmi_hz); 404 } 405 406 static const struct wd_ops p6_wd_ops = { 407 .reserve = single_msr_reserve, 408 .unreserve = single_msr_unreserve, 409 .setup = setup_p6_watchdog, 410 .rearm = p6_rearm, 411 .stop = single_msr_stop_watchdog, 412 .perfctr = MSR_P6_PERFCTR0, 413 .evntsel = MSR_P6_EVNTSEL0, 414 .checkbit = 1ULL << 39, 415 }; 416 417 /* 418 * Intel P4 performance counters. 419 * By far the most complicated of all. 420 */ 421 #define MSR_P4_MISC_ENABLE_PERF_AVAIL (1 << 7) 422 #define P4_ESCR_EVENT_SELECT(N) ((N) << 25) 423 #define P4_ESCR_OS (1 << 3) 424 #define P4_ESCR_USR (1 << 2) 425 #define P4_CCCR_OVF_PMI0 (1 << 26) 426 #define P4_CCCR_OVF_PMI1 (1 << 27) 427 #define P4_CCCR_THRESHOLD(N) ((N) << 20) 428 #define P4_CCCR_COMPLEMENT (1 << 19) 429 #define P4_CCCR_COMPARE (1 << 18) 430 #define P4_CCCR_REQUIRED (3 << 16) 431 #define P4_CCCR_ESCR_SELECT(N) ((N) << 13) 432 #define P4_CCCR_ENABLE (1 << 12) 433 #define P4_CCCR_OVF (1 << 31) 434 435 /* 436 * Set up IQ_COUNTER0 to behave like a clock, by having IQ_CCCR0 filter 437 * CRU_ESCR0 (with any non-null event selector) through a complemented 438 * max threshold. [IA32-Vol3, Section 14.9.9] 439 */ 440 static int setup_p4_watchdog(unsigned nmi_hz) 441 { 442 unsigned int perfctr_msr, evntsel_msr, cccr_msr; 443 unsigned int evntsel, cccr_val; 444 unsigned int misc_enable, dummy; 445 unsigned int ht_num; 446 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk); 447 448 rdmsr(MSR_IA32_MISC_ENABLE, misc_enable, dummy); 449 if (!(misc_enable & MSR_P4_MISC_ENABLE_PERF_AVAIL)) 450 return 0; 451 452 #ifdef CONFIG_SMP 453 /* detect which hyperthread we are on */ 454 if (smp_num_siblings == 2) { 455 unsigned int ebx, apicid; 456 457 ebx = cpuid_ebx(1); 458 apicid = (ebx >> 24) & 0xff; 459 ht_num = apicid & 1; 460 } else 461 #endif 462 ht_num = 0; 463 464 /* 465 * performance counters are shared resources 466 * assign each hyperthread its own set 467 * (re-use the ESCR0 register, seems safe 468 * and keeps the cccr_val the same) 469 */ 470 if (!ht_num) { 471 /* logical cpu 0 */ 472 perfctr_msr = MSR_P4_IQ_PERFCTR0; 473 evntsel_msr = MSR_P4_CRU_ESCR0; 474 cccr_msr = MSR_P4_IQ_CCCR0; 475 cccr_val = P4_CCCR_OVF_PMI0 | P4_CCCR_ESCR_SELECT(4); 476 } else { 477 /* logical cpu 1 */ 478 perfctr_msr = MSR_P4_IQ_PERFCTR1; 479 evntsel_msr = MSR_P4_CRU_ESCR0; 480 cccr_msr = MSR_P4_IQ_CCCR1; 481 cccr_val = P4_CCCR_OVF_PMI1 | P4_CCCR_ESCR_SELECT(4); 482 } 483 484 evntsel = P4_ESCR_EVENT_SELECT(0x3F) 485 | P4_ESCR_OS 486 | P4_ESCR_USR; 487 488 cccr_val |= P4_CCCR_THRESHOLD(15) 489 | P4_CCCR_COMPLEMENT 490 | P4_CCCR_COMPARE 491 | P4_CCCR_REQUIRED; 492 493 wrmsr(evntsel_msr, evntsel, 0); 494 wrmsr(cccr_msr, cccr_val, 0); 495 write_watchdog_counter(perfctr_msr, "P4_IQ_COUNTER0", nmi_hz); 496 apic_write(APIC_LVTPC, APIC_DM_NMI); 497 cccr_val |= P4_CCCR_ENABLE; 498 wrmsr(cccr_msr, cccr_val, 0); 499 wd->perfctr_msr = perfctr_msr; 500 wd->evntsel_msr = evntsel_msr; 501 wd->cccr_msr = cccr_msr; 502 return 1; 503 } 504 505 static void stop_p4_watchdog(void) 506 { 507 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk); 508 wrmsr(wd->cccr_msr, 0, 0); 509 wrmsr(wd->evntsel_msr, 0, 0); 510 } 511 512 static int p4_reserve(void) 513 { 514 if (!reserve_perfctr_nmi(MSR_P4_IQ_PERFCTR0)) 515 return 0; 516 #ifdef CONFIG_SMP 517 if (smp_num_siblings > 1 && !reserve_perfctr_nmi(MSR_P4_IQ_PERFCTR1)) 518 goto fail1; 519 #endif 520 if (!reserve_evntsel_nmi(MSR_P4_CRU_ESCR0)) 521 goto fail2; 522 /* RED-PEN why is ESCR1 not reserved here? */ 523 return 1; 524 fail2: 525 #ifdef CONFIG_SMP 526 if (smp_num_siblings > 1) 527 release_perfctr_nmi(MSR_P4_IQ_PERFCTR1); 528 fail1: 529 #endif 530 release_perfctr_nmi(MSR_P4_IQ_PERFCTR0); 531 return 0; 532 } 533 534 static void p4_unreserve(void) 535 { 536 #ifdef CONFIG_SMP 537 if (smp_num_siblings > 1) 538 release_perfctr_nmi(MSR_P4_IQ_PERFCTR1); 539 #endif 540 release_evntsel_nmi(MSR_P4_CRU_ESCR0); 541 release_perfctr_nmi(MSR_P4_IQ_PERFCTR0); 542 } 543 544 static void p4_rearm(struct nmi_watchdog_ctlblk *wd, unsigned nmi_hz) 545 { 546 unsigned dummy; 547 /* 548 * P4 quirks: 549 * - An overflown perfctr will assert its interrupt 550 * until the OVF flag in its CCCR is cleared. 551 * - LVTPC is masked on interrupt and must be 552 * unmasked by the LVTPC handler. 553 */ 554 rdmsrl(wd->cccr_msr, dummy); 555 dummy &= ~P4_CCCR_OVF; 556 wrmsrl(wd->cccr_msr, dummy); 557 apic_write(APIC_LVTPC, APIC_DM_NMI); 558 /* start the cycle over again */ 559 write_watchdog_counter(wd->perfctr_msr, NULL, nmi_hz); 560 } 561 562 static const struct wd_ops p4_wd_ops = { 563 .reserve = p4_reserve, 564 .unreserve = p4_unreserve, 565 .setup = setup_p4_watchdog, 566 .rearm = p4_rearm, 567 .stop = stop_p4_watchdog, 568 /* RED-PEN this is wrong for the other sibling */ 569 .perfctr = MSR_P4_BPU_PERFCTR0, 570 .evntsel = MSR_P4_BSU_ESCR0, 571 .checkbit = 1ULL << 39, 572 }; 573 574 /* 575 * Watchdog using the Intel architected PerfMon. 576 * Used for Core2 and hopefully all future Intel CPUs. 577 */ 578 #define ARCH_PERFMON_NMI_EVENT_SEL ARCH_PERFMON_UNHALTED_CORE_CYCLES_SEL 579 #define ARCH_PERFMON_NMI_EVENT_UMASK ARCH_PERFMON_UNHALTED_CORE_CYCLES_UMASK 580 581 static struct wd_ops intel_arch_wd_ops; 582 583 static int setup_intel_arch_watchdog(unsigned nmi_hz) 584 { 585 unsigned int ebx; 586 union cpuid10_eax eax; 587 unsigned int unused; 588 unsigned int perfctr_msr, evntsel_msr; 589 unsigned int evntsel; 590 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk); 591 592 /* 593 * Check whether the Architectural PerfMon supports 594 * Unhalted Core Cycles Event or not. 595 * NOTE: Corresponding bit = 0 in ebx indicates event present. 596 */ 597 cpuid(10, &(eax.full), &ebx, &unused, &unused); 598 if ((eax.split.mask_length < (ARCH_PERFMON_UNHALTED_CORE_CYCLES_INDEX+1)) || 599 (ebx & ARCH_PERFMON_UNHALTED_CORE_CYCLES_PRESENT)) 600 return 0; 601 602 perfctr_msr = wd_ops->perfctr; 603 evntsel_msr = wd_ops->evntsel; 604 605 wrmsrl(perfctr_msr, 0UL); 606 607 evntsel = ARCH_PERFMON_EVENTSEL_INT 608 | ARCH_PERFMON_EVENTSEL_OS 609 | ARCH_PERFMON_EVENTSEL_USR 610 | ARCH_PERFMON_NMI_EVENT_SEL 611 | ARCH_PERFMON_NMI_EVENT_UMASK; 612 613 /* setup the timer */ 614 wrmsr(evntsel_msr, evntsel, 0); 615 nmi_hz = adjust_for_32bit_ctr(nmi_hz); 616 write_watchdog_counter32(perfctr_msr, "INTEL_ARCH_PERFCTR0", nmi_hz); 617 apic_write(APIC_LVTPC, APIC_DM_NMI); 618 evntsel |= ARCH_PERFMON_EVENTSEL0_ENABLE; 619 wrmsr(evntsel_msr, evntsel, 0); 620 621 wd->perfctr_msr = perfctr_msr; 622 wd->evntsel_msr = evntsel_msr; 623 wd->cccr_msr = 0; /* unused */ 624 intel_arch_wd_ops.checkbit = 1ULL << (eax.split.bit_width - 1); 625 return 1; 626 } 627 628 static struct wd_ops intel_arch_wd_ops __read_mostly = { 629 .reserve = single_msr_reserve, 630 .unreserve = single_msr_unreserve, 631 .setup = setup_intel_arch_watchdog, 632 .rearm = p6_rearm, 633 .stop = single_msr_stop_watchdog, 634 .perfctr = MSR_ARCH_PERFMON_PERFCTR1, 635 .evntsel = MSR_ARCH_PERFMON_EVENTSEL1, 636 }; 637 638 static void probe_nmi_watchdog(void) 639 { 640 switch (boot_cpu_data.x86_vendor) { 641 case X86_VENDOR_AMD: 642 if (boot_cpu_data.x86 != 6 && boot_cpu_data.x86 != 15 && 643 boot_cpu_data.x86 != 16) 644 return; 645 wd_ops = &k7_wd_ops; 646 break; 647 case X86_VENDOR_INTEL: 648 /* 649 * Work around Core Duo (Yonah) errata AE49 where perfctr1 650 * doesn't have a working enable bit. 651 */ 652 if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 14) { 653 intel_arch_wd_ops.perfctr = MSR_ARCH_PERFMON_PERFCTR0; 654 intel_arch_wd_ops.evntsel = MSR_ARCH_PERFMON_EVENTSEL0; 655 } 656 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { 657 wd_ops = &intel_arch_wd_ops; 658 break; 659 } 660 switch (boot_cpu_data.x86) { 661 case 6: 662 if (boot_cpu_data.x86_model > 13) 663 return; 664 665 wd_ops = &p6_wd_ops; 666 break; 667 case 15: 668 wd_ops = &p4_wd_ops; 669 break; 670 default: 671 return; 672 } 673 break; 674 } 675 } 676 677 /* Interface to nmi.c */ 678 679 int lapic_watchdog_init(unsigned nmi_hz) 680 { 681 if (!wd_ops) { 682 probe_nmi_watchdog(); 683 if (!wd_ops) { 684 printk(KERN_INFO "NMI watchdog: CPU not supported\n"); 685 return -1; 686 } 687 688 if (!wd_ops->reserve()) { 689 printk(KERN_ERR 690 "NMI watchdog: cannot reserve perfctrs\n"); 691 return -1; 692 } 693 } 694 695 if (!(wd_ops->setup(nmi_hz))) { 696 printk(KERN_ERR "Cannot setup NMI watchdog on CPU %d\n", 697 raw_smp_processor_id()); 698 return -1; 699 } 700 701 return 0; 702 } 703 704 void lapic_watchdog_stop(void) 705 { 706 if (wd_ops) 707 wd_ops->stop(); 708 } 709 710 unsigned lapic_adjust_nmi_hz(unsigned hz) 711 { 712 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk); 713 if (wd->perfctr_msr == MSR_P6_PERFCTR0 || 714 wd->perfctr_msr == MSR_ARCH_PERFMON_PERFCTR1) 715 hz = adjust_for_32bit_ctr(hz); 716 return hz; 717 } 718 719 int lapic_wd_event(unsigned nmi_hz) 720 { 721 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk); 722 u64 ctr; 723 724 rdmsrl(wd->perfctr_msr, ctr); 725 if (ctr & wd_ops->checkbit) /* perfctr still running? */ 726 return 0; 727 728 wd_ops->rearm(wd, nmi_hz); 729 return 1; 730 } 731 732 int lapic_watchdog_ok(void) 733 { 734 return wd_ops != NULL; 735 } 736