xref: /linux/arch/x86/kernel/cpu/microcode/intel.c (revision 51a8f9d7f587290944d6fc733d1f897091c63159)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Intel CPU Microcode Update Driver for Linux
4  *
5  * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
6  *		 2006 Shaohua Li <shaohua.li@intel.com>
7  *
8  * Intel CPU microcode early update for Linux
9  *
10  * Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
11  *		      H Peter Anvin" <hpa@zytor.com>
12  */
13 
14 /*
15  * This needs to be before all headers so that pr_debug in printk.h doesn't turn
16  * printk calls into no_printk().
17  *
18  *#define DEBUG
19  */
20 #define pr_fmt(fmt) "microcode: " fmt
21 
22 #include <linux/earlycpio.h>
23 #include <linux/firmware.h>
24 #include <linux/uaccess.h>
25 #include <linux/vmalloc.h>
26 #include <linux/initrd.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/cpu.h>
30 #include <linux/uio.h>
31 #include <linux/mm.h>
32 
33 #include <asm/microcode_intel.h>
34 #include <asm/intel-family.h>
35 #include <asm/processor.h>
36 #include <asm/tlbflush.h>
37 #include <asm/setup.h>
38 #include <asm/msr.h>
39 
40 static const char ucode_path[] = "kernel/x86/microcode/GenuineIntel.bin";
41 
42 /* Current microcode patch used in early patching on the APs. */
43 static struct microcode_intel *intel_ucode_patch;
44 
45 /* last level cache size per core */
46 static int llc_size_per_core;
47 
48 /*
49  * Returns 1 if update has been found, 0 otherwise.
50  */
51 static int has_newer_microcode(void *mc, unsigned int csig, int cpf, int new_rev)
52 {
53 	struct microcode_header_intel *mc_hdr = mc;
54 
55 	if (mc_hdr->rev <= new_rev)
56 		return 0;
57 
58 	return intel_find_matching_signature(mc, csig, cpf);
59 }
60 
61 static struct ucode_patch *memdup_patch(void *data, unsigned int size)
62 {
63 	struct ucode_patch *p;
64 
65 	p = kzalloc(sizeof(struct ucode_patch), GFP_KERNEL);
66 	if (!p)
67 		return NULL;
68 
69 	p->data = kmemdup(data, size, GFP_KERNEL);
70 	if (!p->data) {
71 		kfree(p);
72 		return NULL;
73 	}
74 
75 	return p;
76 }
77 
78 static void save_microcode_patch(struct ucode_cpu_info *uci, void *data, unsigned int size)
79 {
80 	struct microcode_header_intel *mc_hdr, *mc_saved_hdr;
81 	struct ucode_patch *iter, *tmp, *p = NULL;
82 	bool prev_found = false;
83 	unsigned int sig, pf;
84 
85 	mc_hdr = (struct microcode_header_intel *)data;
86 
87 	list_for_each_entry_safe(iter, tmp, &microcode_cache, plist) {
88 		mc_saved_hdr = (struct microcode_header_intel *)iter->data;
89 		sig	     = mc_saved_hdr->sig;
90 		pf	     = mc_saved_hdr->pf;
91 
92 		if (intel_find_matching_signature(data, sig, pf)) {
93 			prev_found = true;
94 
95 			if (mc_hdr->rev <= mc_saved_hdr->rev)
96 				continue;
97 
98 			p = memdup_patch(data, size);
99 			if (!p)
100 				pr_err("Error allocating buffer %p\n", data);
101 			else {
102 				list_replace(&iter->plist, &p->plist);
103 				kfree(iter->data);
104 				kfree(iter);
105 			}
106 		}
107 	}
108 
109 	/*
110 	 * There weren't any previous patches found in the list cache; save the
111 	 * newly found.
112 	 */
113 	if (!prev_found) {
114 		p = memdup_patch(data, size);
115 		if (!p)
116 			pr_err("Error allocating buffer for %p\n", data);
117 		else
118 			list_add_tail(&p->plist, &microcode_cache);
119 	}
120 
121 	if (!p)
122 		return;
123 
124 	if (!intel_find_matching_signature(p->data, uci->cpu_sig.sig, uci->cpu_sig.pf))
125 		return;
126 
127 	/*
128 	 * Save for early loading. On 32-bit, that needs to be a physical
129 	 * address as the APs are running from physical addresses, before
130 	 * paging has been enabled.
131 	 */
132 	if (IS_ENABLED(CONFIG_X86_32))
133 		intel_ucode_patch = (struct microcode_intel *)__pa_nodebug(p->data);
134 	else
135 		intel_ucode_patch = p->data;
136 }
137 
138 /*
139  * Get microcode matching with BSP's model. Only CPUs with the same model as
140  * BSP can stay in the platform.
141  */
142 static struct microcode_intel *
143 scan_microcode(void *data, size_t size, struct ucode_cpu_info *uci, bool save)
144 {
145 	struct microcode_header_intel *mc_header;
146 	struct microcode_intel *patch = NULL;
147 	unsigned int mc_size;
148 
149 	while (size) {
150 		if (size < sizeof(struct microcode_header_intel))
151 			break;
152 
153 		mc_header = (struct microcode_header_intel *)data;
154 
155 		mc_size = get_totalsize(mc_header);
156 		if (!mc_size ||
157 		    mc_size > size ||
158 		    intel_microcode_sanity_check(data, false, MC_HEADER_TYPE_MICROCODE) < 0)
159 			break;
160 
161 		size -= mc_size;
162 
163 		if (!intel_find_matching_signature(data, uci->cpu_sig.sig,
164 						   uci->cpu_sig.pf)) {
165 			data += mc_size;
166 			continue;
167 		}
168 
169 		if (save) {
170 			save_microcode_patch(uci, data, mc_size);
171 			goto next;
172 		}
173 
174 
175 		if (!patch) {
176 			if (!has_newer_microcode(data,
177 						 uci->cpu_sig.sig,
178 						 uci->cpu_sig.pf,
179 						 uci->cpu_sig.rev))
180 				goto next;
181 
182 		} else {
183 			struct microcode_header_intel *phdr = &patch->hdr;
184 
185 			if (!has_newer_microcode(data,
186 						 phdr->sig,
187 						 phdr->pf,
188 						 phdr->rev))
189 				goto next;
190 		}
191 
192 		/* We have a newer patch, save it. */
193 		patch = data;
194 
195 next:
196 		data += mc_size;
197 	}
198 
199 	if (size)
200 		return NULL;
201 
202 	return patch;
203 }
204 
205 static void show_saved_mc(void)
206 {
207 #ifdef DEBUG
208 	int i = 0, j;
209 	unsigned int sig, pf, rev, total_size, data_size, date;
210 	struct ucode_cpu_info uci;
211 	struct ucode_patch *p;
212 
213 	if (list_empty(&microcode_cache)) {
214 		pr_debug("no microcode data saved.\n");
215 		return;
216 	}
217 
218 	intel_cpu_collect_info(&uci);
219 
220 	sig	= uci.cpu_sig.sig;
221 	pf	= uci.cpu_sig.pf;
222 	rev	= uci.cpu_sig.rev;
223 	pr_debug("CPU: sig=0x%x, pf=0x%x, rev=0x%x\n", sig, pf, rev);
224 
225 	list_for_each_entry(p, &microcode_cache, plist) {
226 		struct microcode_header_intel *mc_saved_header;
227 		struct extended_sigtable *ext_header;
228 		struct extended_signature *ext_sig;
229 		int ext_sigcount;
230 
231 		mc_saved_header = (struct microcode_header_intel *)p->data;
232 
233 		sig	= mc_saved_header->sig;
234 		pf	= mc_saved_header->pf;
235 		rev	= mc_saved_header->rev;
236 		date	= mc_saved_header->date;
237 
238 		total_size	= get_totalsize(mc_saved_header);
239 		data_size	= get_datasize(mc_saved_header);
240 
241 		pr_debug("mc_saved[%d]: sig=0x%x, pf=0x%x, rev=0x%x, total size=0x%x, date = %04x-%02x-%02x\n",
242 			 i++, sig, pf, rev, total_size,
243 			 date & 0xffff,
244 			 date >> 24,
245 			 (date >> 16) & 0xff);
246 
247 		/* Look for ext. headers: */
248 		if (total_size <= data_size + MC_HEADER_SIZE)
249 			continue;
250 
251 		ext_header = (void *)mc_saved_header + data_size + MC_HEADER_SIZE;
252 		ext_sigcount = ext_header->count;
253 		ext_sig = (void *)ext_header + EXT_HEADER_SIZE;
254 
255 		for (j = 0; j < ext_sigcount; j++) {
256 			sig = ext_sig->sig;
257 			pf = ext_sig->pf;
258 
259 			pr_debug("\tExtended[%d]: sig=0x%x, pf=0x%x\n",
260 				 j, sig, pf);
261 
262 			ext_sig++;
263 		}
264 	}
265 #endif
266 }
267 
268 /*
269  * Save this microcode patch. It will be loaded early when a CPU is
270  * hot-added or resumes.
271  */
272 static void save_mc_for_early(struct ucode_cpu_info *uci, u8 *mc, unsigned int size)
273 {
274 	/* Synchronization during CPU hotplug. */
275 	static DEFINE_MUTEX(x86_cpu_microcode_mutex);
276 
277 	mutex_lock(&x86_cpu_microcode_mutex);
278 
279 	save_microcode_patch(uci, mc, size);
280 	show_saved_mc();
281 
282 	mutex_unlock(&x86_cpu_microcode_mutex);
283 }
284 
285 static bool load_builtin_intel_microcode(struct cpio_data *cp)
286 {
287 	unsigned int eax = 1, ebx, ecx = 0, edx;
288 	struct firmware fw;
289 	char name[30];
290 
291 	if (IS_ENABLED(CONFIG_X86_32))
292 		return false;
293 
294 	native_cpuid(&eax, &ebx, &ecx, &edx);
295 
296 	sprintf(name, "intel-ucode/%02x-%02x-%02x",
297 		      x86_family(eax), x86_model(eax), x86_stepping(eax));
298 
299 	if (firmware_request_builtin(&fw, name)) {
300 		cp->size = fw.size;
301 		cp->data = (void *)fw.data;
302 		return true;
303 	}
304 
305 	return false;
306 }
307 
308 /*
309  * Print ucode update info.
310  */
311 static void
312 print_ucode_info(struct ucode_cpu_info *uci, unsigned int date)
313 {
314 	pr_info_once("microcode updated early to revision 0x%x, date = %04x-%02x-%02x\n",
315 		     uci->cpu_sig.rev,
316 		     date & 0xffff,
317 		     date >> 24,
318 		     (date >> 16) & 0xff);
319 }
320 
321 #ifdef CONFIG_X86_32
322 
323 static int delay_ucode_info;
324 static int current_mc_date;
325 
326 /*
327  * Print early updated ucode info after printk works. This is delayed info dump.
328  */
329 void show_ucode_info_early(void)
330 {
331 	struct ucode_cpu_info uci;
332 
333 	if (delay_ucode_info) {
334 		intel_cpu_collect_info(&uci);
335 		print_ucode_info(&uci, current_mc_date);
336 		delay_ucode_info = 0;
337 	}
338 }
339 
340 /*
341  * At this point, we can not call printk() yet. Delay printing microcode info in
342  * show_ucode_info_early() until printk() works.
343  */
344 static void print_ucode(struct ucode_cpu_info *uci)
345 {
346 	struct microcode_intel *mc;
347 	int *delay_ucode_info_p;
348 	int *current_mc_date_p;
349 
350 	mc = uci->mc;
351 	if (!mc)
352 		return;
353 
354 	delay_ucode_info_p = (int *)__pa_nodebug(&delay_ucode_info);
355 	current_mc_date_p = (int *)__pa_nodebug(&current_mc_date);
356 
357 	*delay_ucode_info_p = 1;
358 	*current_mc_date_p = mc->hdr.date;
359 }
360 #else
361 
362 static inline void print_ucode(struct ucode_cpu_info *uci)
363 {
364 	struct microcode_intel *mc;
365 
366 	mc = uci->mc;
367 	if (!mc)
368 		return;
369 
370 	print_ucode_info(uci, mc->hdr.date);
371 }
372 #endif
373 
374 static int apply_microcode_early(struct ucode_cpu_info *uci, bool early)
375 {
376 	struct microcode_intel *mc;
377 	u32 rev;
378 
379 	mc = uci->mc;
380 	if (!mc)
381 		return 0;
382 
383 	/*
384 	 * Save us the MSR write below - which is a particular expensive
385 	 * operation - when the other hyperthread has updated the microcode
386 	 * already.
387 	 */
388 	rev = intel_get_microcode_revision();
389 	if (rev >= mc->hdr.rev) {
390 		uci->cpu_sig.rev = rev;
391 		return UCODE_OK;
392 	}
393 
394 	/*
395 	 * Writeback and invalidate caches before updating microcode to avoid
396 	 * internal issues depending on what the microcode is updating.
397 	 */
398 	native_wbinvd();
399 
400 	/* write microcode via MSR 0x79 */
401 	native_wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits);
402 
403 	rev = intel_get_microcode_revision();
404 	if (rev != mc->hdr.rev)
405 		return -1;
406 
407 	uci->cpu_sig.rev = rev;
408 
409 	if (early)
410 		print_ucode(uci);
411 	else
412 		print_ucode_info(uci, mc->hdr.date);
413 
414 	return 0;
415 }
416 
417 int __init save_microcode_in_initrd_intel(void)
418 {
419 	struct ucode_cpu_info uci;
420 	struct cpio_data cp;
421 
422 	/*
423 	 * initrd is going away, clear patch ptr. We will scan the microcode one
424 	 * last time before jettisoning and save a patch, if found. Then we will
425 	 * update that pointer too, with a stable patch address to use when
426 	 * resuming the cores.
427 	 */
428 	intel_ucode_patch = NULL;
429 
430 	if (!load_builtin_intel_microcode(&cp))
431 		cp = find_microcode_in_initrd(ucode_path, false);
432 
433 	if (!(cp.data && cp.size))
434 		return 0;
435 
436 	intel_cpu_collect_info(&uci);
437 
438 	scan_microcode(cp.data, cp.size, &uci, true);
439 
440 	show_saved_mc();
441 
442 	return 0;
443 }
444 
445 /*
446  * @res_patch, output: a pointer to the patch we found.
447  */
448 static struct microcode_intel *__load_ucode_intel(struct ucode_cpu_info *uci)
449 {
450 	static const char *path;
451 	struct cpio_data cp;
452 	bool use_pa;
453 
454 	if (IS_ENABLED(CONFIG_X86_32)) {
455 		path	  = (const char *)__pa_nodebug(ucode_path);
456 		use_pa	  = true;
457 	} else {
458 		path	  = ucode_path;
459 		use_pa	  = false;
460 	}
461 
462 	/* try built-in microcode first */
463 	if (!load_builtin_intel_microcode(&cp))
464 		cp = find_microcode_in_initrd(path, use_pa);
465 
466 	if (!(cp.data && cp.size))
467 		return NULL;
468 
469 	intel_cpu_collect_info(uci);
470 
471 	return scan_microcode(cp.data, cp.size, uci, false);
472 }
473 
474 void __init load_ucode_intel_bsp(void)
475 {
476 	struct microcode_intel *patch;
477 	struct ucode_cpu_info uci;
478 
479 	patch = __load_ucode_intel(&uci);
480 	if (!patch)
481 		return;
482 
483 	uci.mc = patch;
484 
485 	apply_microcode_early(&uci, true);
486 }
487 
488 void load_ucode_intel_ap(void)
489 {
490 	struct microcode_intel *patch, **iup;
491 	struct ucode_cpu_info uci;
492 
493 	if (IS_ENABLED(CONFIG_X86_32))
494 		iup = (struct microcode_intel **) __pa_nodebug(&intel_ucode_patch);
495 	else
496 		iup = &intel_ucode_patch;
497 
498 	if (!*iup) {
499 		patch = __load_ucode_intel(&uci);
500 		if (!patch)
501 			return;
502 
503 		*iup = patch;
504 	}
505 
506 	uci.mc = *iup;
507 
508 	apply_microcode_early(&uci, true);
509 }
510 
511 static struct microcode_intel *find_patch(struct ucode_cpu_info *uci)
512 {
513 	struct microcode_header_intel *phdr;
514 	struct ucode_patch *iter, *tmp;
515 
516 	list_for_each_entry_safe(iter, tmp, &microcode_cache, plist) {
517 
518 		phdr = (struct microcode_header_intel *)iter->data;
519 
520 		if (phdr->rev <= uci->cpu_sig.rev)
521 			continue;
522 
523 		if (!intel_find_matching_signature(phdr,
524 						   uci->cpu_sig.sig,
525 						   uci->cpu_sig.pf))
526 			continue;
527 
528 		return iter->data;
529 	}
530 	return NULL;
531 }
532 
533 void reload_ucode_intel(void)
534 {
535 	struct microcode_intel *p;
536 	struct ucode_cpu_info uci;
537 
538 	intel_cpu_collect_info(&uci);
539 
540 	p = find_patch(&uci);
541 	if (!p)
542 		return;
543 
544 	uci.mc = p;
545 
546 	apply_microcode_early(&uci, false);
547 }
548 
549 static int collect_cpu_info(int cpu_num, struct cpu_signature *csig)
550 {
551 	struct cpuinfo_x86 *c = &cpu_data(cpu_num);
552 	unsigned int val[2];
553 
554 	memset(csig, 0, sizeof(*csig));
555 
556 	csig->sig = cpuid_eax(0x00000001);
557 
558 	if ((c->x86_model >= 5) || (c->x86 > 6)) {
559 		/* get processor flags from MSR 0x17 */
560 		rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]);
561 		csig->pf = 1 << ((val[1] >> 18) & 7);
562 	}
563 
564 	csig->rev = c->microcode;
565 
566 	return 0;
567 }
568 
569 static enum ucode_state apply_microcode_intel(int cpu)
570 {
571 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
572 	struct cpuinfo_x86 *c = &cpu_data(cpu);
573 	bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
574 	struct microcode_intel *mc;
575 	enum ucode_state ret;
576 	static int prev_rev;
577 	u32 rev;
578 
579 	/* We should bind the task to the CPU */
580 	if (WARN_ON(raw_smp_processor_id() != cpu))
581 		return UCODE_ERROR;
582 
583 	/* Look for a newer patch in our cache: */
584 	mc = find_patch(uci);
585 	if (!mc) {
586 		mc = uci->mc;
587 		if (!mc)
588 			return UCODE_NFOUND;
589 	}
590 
591 	/*
592 	 * Save us the MSR write below - which is a particular expensive
593 	 * operation - when the other hyperthread has updated the microcode
594 	 * already.
595 	 */
596 	rev = intel_get_microcode_revision();
597 	if (rev >= mc->hdr.rev) {
598 		ret = UCODE_OK;
599 		goto out;
600 	}
601 
602 	/*
603 	 * Writeback and invalidate caches before updating microcode to avoid
604 	 * internal issues depending on what the microcode is updating.
605 	 */
606 	native_wbinvd();
607 
608 	/* write microcode via MSR 0x79 */
609 	wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits);
610 
611 	rev = intel_get_microcode_revision();
612 
613 	if (rev != mc->hdr.rev) {
614 		pr_err("CPU%d update to revision 0x%x failed\n",
615 		       cpu, mc->hdr.rev);
616 		return UCODE_ERROR;
617 	}
618 
619 	if (bsp && rev != prev_rev) {
620 		pr_info("updated to revision 0x%x, date = %04x-%02x-%02x\n",
621 			rev,
622 			mc->hdr.date & 0xffff,
623 			mc->hdr.date >> 24,
624 			(mc->hdr.date >> 16) & 0xff);
625 		prev_rev = rev;
626 	}
627 
628 	ret = UCODE_UPDATED;
629 
630 out:
631 	uci->cpu_sig.rev = rev;
632 	c->microcode	 = rev;
633 
634 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
635 	if (bsp)
636 		boot_cpu_data.microcode = rev;
637 
638 	return ret;
639 }
640 
641 static enum ucode_state generic_load_microcode(int cpu, struct iov_iter *iter)
642 {
643 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
644 	unsigned int curr_mc_size = 0, new_mc_size = 0;
645 	enum ucode_state ret = UCODE_OK;
646 	int new_rev = uci->cpu_sig.rev;
647 	u8 *new_mc = NULL, *mc = NULL;
648 	unsigned int csig, cpf;
649 
650 	while (iov_iter_count(iter)) {
651 		struct microcode_header_intel mc_header;
652 		unsigned int mc_size, data_size;
653 		u8 *data;
654 
655 		if (!copy_from_iter_full(&mc_header, sizeof(mc_header), iter)) {
656 			pr_err("error! Truncated or inaccessible header in microcode data file\n");
657 			break;
658 		}
659 
660 		mc_size = get_totalsize(&mc_header);
661 		if (mc_size < sizeof(mc_header)) {
662 			pr_err("error! Bad data in microcode data file (totalsize too small)\n");
663 			break;
664 		}
665 		data_size = mc_size - sizeof(mc_header);
666 		if (data_size > iov_iter_count(iter)) {
667 			pr_err("error! Bad data in microcode data file (truncated file?)\n");
668 			break;
669 		}
670 
671 		/* For performance reasons, reuse mc area when possible */
672 		if (!mc || mc_size > curr_mc_size) {
673 			vfree(mc);
674 			mc = vmalloc(mc_size);
675 			if (!mc)
676 				break;
677 			curr_mc_size = mc_size;
678 		}
679 
680 		memcpy(mc, &mc_header, sizeof(mc_header));
681 		data = mc + sizeof(mc_header);
682 		if (!copy_from_iter_full(data, data_size, iter) ||
683 		    intel_microcode_sanity_check(mc, true, MC_HEADER_TYPE_MICROCODE) < 0) {
684 			break;
685 		}
686 
687 		csig = uci->cpu_sig.sig;
688 		cpf = uci->cpu_sig.pf;
689 		if (has_newer_microcode(mc, csig, cpf, new_rev)) {
690 			vfree(new_mc);
691 			new_rev = mc_header.rev;
692 			new_mc  = mc;
693 			new_mc_size = mc_size;
694 			mc = NULL;	/* trigger new vmalloc */
695 			ret = UCODE_NEW;
696 		}
697 	}
698 
699 	vfree(mc);
700 
701 	if (iov_iter_count(iter)) {
702 		vfree(new_mc);
703 		return UCODE_ERROR;
704 	}
705 
706 	if (!new_mc)
707 		return UCODE_NFOUND;
708 
709 	vfree(uci->mc);
710 	uci->mc = (struct microcode_intel *)new_mc;
711 
712 	/*
713 	 * If early loading microcode is supported, save this mc into
714 	 * permanent memory. So it will be loaded early when a CPU is hot added
715 	 * or resumes.
716 	 */
717 	save_mc_for_early(uci, new_mc, new_mc_size);
718 
719 	pr_debug("CPU%d found a matching microcode update with version 0x%x (current=0x%x)\n",
720 		 cpu, new_rev, uci->cpu_sig.rev);
721 
722 	return ret;
723 }
724 
725 static bool is_blacklisted(unsigned int cpu)
726 {
727 	struct cpuinfo_x86 *c = &cpu_data(cpu);
728 
729 	/*
730 	 * Late loading on model 79 with microcode revision less than 0x0b000021
731 	 * and LLC size per core bigger than 2.5MB may result in a system hang.
732 	 * This behavior is documented in item BDF90, #334165 (Intel Xeon
733 	 * Processor E7-8800/4800 v4 Product Family).
734 	 */
735 	if (c->x86 == 6 &&
736 	    c->x86_model == INTEL_FAM6_BROADWELL_X &&
737 	    c->x86_stepping == 0x01 &&
738 	    llc_size_per_core > 2621440 &&
739 	    c->microcode < 0x0b000021) {
740 		pr_err_once("Erratum BDF90: late loading with revision < 0x0b000021 (0x%x) disabled.\n", c->microcode);
741 		pr_err_once("Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
742 		return true;
743 	}
744 
745 	return false;
746 }
747 
748 static enum ucode_state request_microcode_fw(int cpu, struct device *device)
749 {
750 	struct cpuinfo_x86 *c = &cpu_data(cpu);
751 	const struct firmware *firmware;
752 	struct iov_iter iter;
753 	enum ucode_state ret;
754 	struct kvec kvec;
755 	char name[30];
756 
757 	if (is_blacklisted(cpu))
758 		return UCODE_NFOUND;
759 
760 	sprintf(name, "intel-ucode/%02x-%02x-%02x",
761 		c->x86, c->x86_model, c->x86_stepping);
762 
763 	if (request_firmware_direct(&firmware, name, device)) {
764 		pr_debug("data file %s load failed\n", name);
765 		return UCODE_NFOUND;
766 	}
767 
768 	kvec.iov_base = (void *)firmware->data;
769 	kvec.iov_len = firmware->size;
770 	iov_iter_kvec(&iter, ITER_SOURCE, &kvec, 1, firmware->size);
771 	ret = generic_load_microcode(cpu, &iter);
772 
773 	release_firmware(firmware);
774 
775 	return ret;
776 }
777 
778 static struct microcode_ops microcode_intel_ops = {
779 	.request_microcode_fw             = request_microcode_fw,
780 	.collect_cpu_info                 = collect_cpu_info,
781 	.apply_microcode                  = apply_microcode_intel,
782 };
783 
784 static int __init calc_llc_size_per_core(struct cpuinfo_x86 *c)
785 {
786 	u64 llc_size = c->x86_cache_size * 1024ULL;
787 
788 	do_div(llc_size, c->x86_max_cores);
789 
790 	return (int)llc_size;
791 }
792 
793 struct microcode_ops * __init init_intel_microcode(void)
794 {
795 	struct cpuinfo_x86 *c = &boot_cpu_data;
796 
797 	if (c->x86_vendor != X86_VENDOR_INTEL || c->x86 < 6 ||
798 	    cpu_has(c, X86_FEATURE_IA64)) {
799 		pr_err("Intel CPU family 0x%x not supported\n", c->x86);
800 		return NULL;
801 	}
802 
803 	llc_size_per_core = calc_llc_size_per_core(c);
804 
805 	return &microcode_intel_ops;
806 }
807