xref: /linux/arch/x86/kernel/cpu/microcode/core.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * CPU Microcode Update Driver for Linux
4  *
5  * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
6  *	      2006	Shaohua Li <shaohua.li@intel.com>
7  *	      2013-2016	Borislav Petkov <bp@alien8.de>
8  *
9  * X86 CPU microcode early update for Linux:
10  *
11  *	Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
12  *			   H Peter Anvin" <hpa@zytor.com>
13  *		  (C) 2015 Borislav Petkov <bp@alien8.de>
14  *
15  * This driver allows to upgrade microcode on x86 processors.
16  */
17 
18 #define pr_fmt(fmt) "microcode: " fmt
19 
20 #include <linux/platform_device.h>
21 #include <linux/stop_machine.h>
22 #include <linux/syscore_ops.h>
23 #include <linux/miscdevice.h>
24 #include <linux/capability.h>
25 #include <linux/firmware.h>
26 #include <linux/cpumask.h>
27 #include <linux/kernel.h>
28 #include <linux/delay.h>
29 #include <linux/mutex.h>
30 #include <linux/cpu.h>
31 #include <linux/nmi.h>
32 #include <linux/fs.h>
33 #include <linux/mm.h>
34 
35 #include <asm/apic.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/perf_event.h>
38 #include <asm/processor.h>
39 #include <asm/cmdline.h>
40 #include <asm/setup.h>
41 
42 #include "internal.h"
43 
44 static struct microcode_ops	*microcode_ops;
45 bool dis_ucode_ldr = true;
46 
47 bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV);
48 module_param(force_minrev, bool, S_IRUSR | S_IWUSR);
49 
50 /*
51  * Synchronization.
52  *
53  * All non cpu-hotplug-callback call sites use:
54  *
55  * - cpus_read_lock/unlock() to synchronize with
56  *   the cpu-hotplug-callback call sites.
57  *
58  * We guarantee that only a single cpu is being
59  * updated at any particular moment of time.
60  */
61 struct ucode_cpu_info		ucode_cpu_info[NR_CPUS];
62 
63 struct cpu_info_ctx {
64 	struct cpu_signature	*cpu_sig;
65 	int			err;
66 };
67 
68 /*
69  * Those patch levels cannot be updated to newer ones and thus should be final.
70  */
71 static u32 final_levels[] = {
72 	0x01000098,
73 	0x0100009f,
74 	0x010000af,
75 	0, /* T-101 terminator */
76 };
77 
78 struct early_load_data early_data;
79 
80 /*
81  * Check the current patch level on this CPU.
82  *
83  * Returns:
84  *  - true: if update should stop
85  *  - false: otherwise
86  */
87 static bool amd_check_current_patch_level(void)
88 {
89 	u32 lvl, dummy, i;
90 	u32 *levels;
91 
92 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
93 
94 	levels = final_levels;
95 
96 	for (i = 0; levels[i]; i++) {
97 		if (lvl == levels[i])
98 			return true;
99 	}
100 	return false;
101 }
102 
103 static bool __init check_loader_disabled_bsp(void)
104 {
105 	static const char *__dis_opt_str = "dis_ucode_ldr";
106 	const char *cmdline = boot_command_line;
107 	const char *option  = __dis_opt_str;
108 
109 	/*
110 	 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
111 	 * completely accurate as xen pv guests don't see that CPUID bit set but
112 	 * that's good enough as they don't land on the BSP path anyway.
113 	 */
114 	if (native_cpuid_ecx(1) & BIT(31))
115 		return true;
116 
117 	if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
118 		if (amd_check_current_patch_level())
119 			return true;
120 	}
121 
122 	if (cmdline_find_option_bool(cmdline, option) <= 0)
123 		dis_ucode_ldr = false;
124 
125 	return dis_ucode_ldr;
126 }
127 
128 void __init load_ucode_bsp(void)
129 {
130 	unsigned int cpuid_1_eax;
131 	bool intel = true;
132 
133 	if (!have_cpuid_p())
134 		return;
135 
136 	cpuid_1_eax = native_cpuid_eax(1);
137 
138 	switch (x86_cpuid_vendor()) {
139 	case X86_VENDOR_INTEL:
140 		if (x86_family(cpuid_1_eax) < 6)
141 			return;
142 		break;
143 
144 	case X86_VENDOR_AMD:
145 		if (x86_family(cpuid_1_eax) < 0x10)
146 			return;
147 		intel = false;
148 		break;
149 
150 	default:
151 		return;
152 	}
153 
154 	if (check_loader_disabled_bsp())
155 		return;
156 
157 	if (intel)
158 		load_ucode_intel_bsp(&early_data);
159 	else
160 		load_ucode_amd_bsp(&early_data, cpuid_1_eax);
161 }
162 
163 void load_ucode_ap(void)
164 {
165 	unsigned int cpuid_1_eax;
166 
167 	if (dis_ucode_ldr)
168 		return;
169 
170 	cpuid_1_eax = native_cpuid_eax(1);
171 
172 	switch (x86_cpuid_vendor()) {
173 	case X86_VENDOR_INTEL:
174 		if (x86_family(cpuid_1_eax) >= 6)
175 			load_ucode_intel_ap();
176 		break;
177 	case X86_VENDOR_AMD:
178 		if (x86_family(cpuid_1_eax) >= 0x10)
179 			load_ucode_amd_ap(cpuid_1_eax);
180 		break;
181 	default:
182 		break;
183 	}
184 }
185 
186 struct cpio_data __init find_microcode_in_initrd(const char *path)
187 {
188 #ifdef CONFIG_BLK_DEV_INITRD
189 	unsigned long start = 0;
190 	size_t size;
191 
192 #ifdef CONFIG_X86_32
193 	size = boot_params.hdr.ramdisk_size;
194 	/* Early load on BSP has a temporary mapping. */
195 	if (size)
196 		start = initrd_start_early;
197 
198 #else /* CONFIG_X86_64 */
199 	size  = (unsigned long)boot_params.ext_ramdisk_size << 32;
200 	size |= boot_params.hdr.ramdisk_size;
201 
202 	if (size) {
203 		start  = (unsigned long)boot_params.ext_ramdisk_image << 32;
204 		start |= boot_params.hdr.ramdisk_image;
205 		start += PAGE_OFFSET;
206 	}
207 #endif
208 
209 	/*
210 	 * Fixup the start address: after reserve_initrd() runs, initrd_start
211 	 * has the virtual address of the beginning of the initrd. It also
212 	 * possibly relocates the ramdisk. In either case, initrd_start contains
213 	 * the updated address so use that instead.
214 	 */
215 	if (initrd_start)
216 		start = initrd_start;
217 
218 	return find_cpio_data(path, (void *)start, size, NULL);
219 #else /* !CONFIG_BLK_DEV_INITRD */
220 	return (struct cpio_data){ NULL, 0, "" };
221 #endif
222 }
223 
224 static void reload_early_microcode(unsigned int cpu)
225 {
226 	int vendor, family;
227 
228 	vendor = x86_cpuid_vendor();
229 	family = x86_cpuid_family();
230 
231 	switch (vendor) {
232 	case X86_VENDOR_INTEL:
233 		if (family >= 6)
234 			reload_ucode_intel();
235 		break;
236 	case X86_VENDOR_AMD:
237 		if (family >= 0x10)
238 			reload_ucode_amd(cpu);
239 		break;
240 	default:
241 		break;
242 	}
243 }
244 
245 /* fake device for request_firmware */
246 static struct platform_device	*microcode_pdev;
247 
248 #ifdef CONFIG_MICROCODE_LATE_LOADING
249 /*
250  * Late loading dance. Why the heavy-handed stomp_machine effort?
251  *
252  * - HT siblings must be idle and not execute other code while the other sibling
253  *   is loading microcode in order to avoid any negative interactions caused by
254  *   the loading.
255  *
256  * - In addition, microcode update on the cores must be serialized until this
257  *   requirement can be relaxed in the future. Right now, this is conservative
258  *   and good.
259  */
260 enum sibling_ctrl {
261 	/* Spinwait with timeout */
262 	SCTRL_WAIT,
263 	/* Invoke the microcode_apply() callback */
264 	SCTRL_APPLY,
265 	/* Proceed without invoking the microcode_apply() callback */
266 	SCTRL_DONE,
267 };
268 
269 struct microcode_ctrl {
270 	enum sibling_ctrl	ctrl;
271 	enum ucode_state	result;
272 	unsigned int		ctrl_cpu;
273 	bool			nmi_enabled;
274 };
275 
276 DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable);
277 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl);
278 static atomic_t late_cpus_in, offline_in_nmi;
279 static unsigned int loops_per_usec;
280 static cpumask_t cpu_offline_mask;
281 
282 static noinstr bool wait_for_cpus(atomic_t *cnt)
283 {
284 	unsigned int timeout, loops;
285 
286 	WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0);
287 
288 	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
289 		if (!raw_atomic_read(cnt))
290 			return true;
291 
292 		for (loops = 0; loops < loops_per_usec; loops++)
293 			cpu_relax();
294 
295 		/* If invoked directly, tickle the NMI watchdog */
296 		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
297 			instrumentation_begin();
298 			touch_nmi_watchdog();
299 			instrumentation_end();
300 		}
301 	}
302 	/* Prevent the late comers from making progress and let them time out */
303 	raw_atomic_inc(cnt);
304 	return false;
305 }
306 
307 static noinstr bool wait_for_ctrl(void)
308 {
309 	unsigned int timeout, loops;
310 
311 	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
312 		if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT)
313 			return true;
314 
315 		for (loops = 0; loops < loops_per_usec; loops++)
316 			cpu_relax();
317 
318 		/* If invoked directly, tickle the NMI watchdog */
319 		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
320 			instrumentation_begin();
321 			touch_nmi_watchdog();
322 			instrumentation_end();
323 		}
324 	}
325 	return false;
326 }
327 
328 /*
329  * Protected against instrumentation up to the point where the primary
330  * thread completed the update. See microcode_nmi_handler() for details.
331  */
332 static noinstr bool load_secondary_wait(unsigned int ctrl_cpu)
333 {
334 	/* Initial rendezvous to ensure that all CPUs have arrived */
335 	if (!wait_for_cpus(&late_cpus_in)) {
336 		raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
337 		return false;
338 	}
339 
340 	/*
341 	 * Wait for primary threads to complete. If one of them hangs due
342 	 * to the update, there is no way out. This is non-recoverable
343 	 * because the CPU might hold locks or resources and confuse the
344 	 * scheduler, watchdogs etc. There is no way to safely evacuate the
345 	 * machine.
346 	 */
347 	if (wait_for_ctrl())
348 		return true;
349 
350 	instrumentation_begin();
351 	panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu);
352 	instrumentation_end();
353 }
354 
355 /*
356  * Protected against instrumentation up to the point where the primary
357  * thread completed the update. See microcode_nmi_handler() for details.
358  */
359 static noinstr void load_secondary(unsigned int cpu)
360 {
361 	unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu);
362 	enum ucode_state ret;
363 
364 	if (!load_secondary_wait(ctrl_cpu)) {
365 		instrumentation_begin();
366 		pr_err_once("load: %d CPUs timed out\n",
367 			    atomic_read(&late_cpus_in) - 1);
368 		instrumentation_end();
369 		return;
370 	}
371 
372 	/* Primary thread completed. Allow to invoke instrumentable code */
373 	instrumentation_begin();
374 	/*
375 	 * If the primary succeeded then invoke the apply() callback,
376 	 * otherwise copy the state from the primary thread.
377 	 */
378 	if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY)
379 		ret = microcode_ops->apply_microcode(cpu);
380 	else
381 		ret = per_cpu(ucode_ctrl.result, ctrl_cpu);
382 
383 	this_cpu_write(ucode_ctrl.result, ret);
384 	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
385 	instrumentation_end();
386 }
387 
388 static void __load_primary(unsigned int cpu)
389 {
390 	struct cpumask *secondaries = topology_sibling_cpumask(cpu);
391 	enum sibling_ctrl ctrl;
392 	enum ucode_state ret;
393 	unsigned int sibling;
394 
395 	/* Initial rendezvous to ensure that all CPUs have arrived */
396 	if (!wait_for_cpus(&late_cpus_in)) {
397 		this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
398 		pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1);
399 		return;
400 	}
401 
402 	ret = microcode_ops->apply_microcode(cpu);
403 	this_cpu_write(ucode_ctrl.result, ret);
404 	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
405 
406 	/*
407 	 * If the update was successful, let the siblings run the apply()
408 	 * callback. If not, tell them it's done. This also covers the
409 	 * case where the CPU has uniform loading at package or system
410 	 * scope implemented but does not advertise it.
411 	 */
412 	if (ret == UCODE_UPDATED || ret == UCODE_OK)
413 		ctrl = SCTRL_APPLY;
414 	else
415 		ctrl = SCTRL_DONE;
416 
417 	for_each_cpu(sibling, secondaries) {
418 		if (sibling != cpu)
419 			per_cpu(ucode_ctrl.ctrl, sibling) = ctrl;
420 	}
421 }
422 
423 static bool kick_offline_cpus(unsigned int nr_offl)
424 {
425 	unsigned int cpu, timeout;
426 
427 	for_each_cpu(cpu, &cpu_offline_mask) {
428 		/* Enable the rendezvous handler and send NMI */
429 		per_cpu(ucode_ctrl.nmi_enabled, cpu) = true;
430 		apic_send_nmi_to_offline_cpu(cpu);
431 	}
432 
433 	/* Wait for them to arrive */
434 	for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) {
435 		if (atomic_read(&offline_in_nmi) == nr_offl)
436 			return true;
437 		udelay(1);
438 	}
439 	/* Let the others time out */
440 	return false;
441 }
442 
443 static void release_offline_cpus(void)
444 {
445 	unsigned int cpu;
446 
447 	for_each_cpu(cpu, &cpu_offline_mask)
448 		per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE;
449 }
450 
451 static void load_primary(unsigned int cpu)
452 {
453 	unsigned int nr_offl = cpumask_weight(&cpu_offline_mask);
454 	bool proceed = true;
455 
456 	/* Kick soft-offlined SMT siblings if required */
457 	if (!cpu && nr_offl)
458 		proceed = kick_offline_cpus(nr_offl);
459 
460 	/* If the soft-offlined CPUs did not respond, abort */
461 	if (proceed)
462 		__load_primary(cpu);
463 
464 	/* Unconditionally release soft-offlined SMT siblings if required */
465 	if (!cpu && nr_offl)
466 		release_offline_cpus();
467 }
468 
469 /*
470  * Minimal stub rendezvous handler for soft-offlined CPUs which participate
471  * in the NMI rendezvous to protect against a concurrent NMI on affected
472  * CPUs.
473  */
474 void noinstr microcode_offline_nmi_handler(void)
475 {
476 	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
477 		return;
478 	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
479 	raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE);
480 	raw_atomic_inc(&offline_in_nmi);
481 	wait_for_ctrl();
482 }
483 
484 static noinstr bool microcode_update_handler(void)
485 {
486 	unsigned int cpu = raw_smp_processor_id();
487 
488 	if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) {
489 		instrumentation_begin();
490 		load_primary(cpu);
491 		instrumentation_end();
492 	} else {
493 		load_secondary(cpu);
494 	}
495 
496 	instrumentation_begin();
497 	touch_nmi_watchdog();
498 	instrumentation_end();
499 
500 	return true;
501 }
502 
503 /*
504  * Protection against instrumentation is required for CPUs which are not
505  * safe against an NMI which is delivered to the secondary SMT sibling
506  * while the primary thread updates the microcode. Instrumentation can end
507  * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI
508  * which is the opposite of what the NMI rendezvous is trying to achieve.
509  *
510  * The primary thread is safe versus instrumentation as the actual
511  * microcode update handles this correctly. It's only the sibling code
512  * path which must be NMI safe until the primary thread completed the
513  * update.
514  */
515 bool noinstr microcode_nmi_handler(void)
516 {
517 	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
518 		return false;
519 
520 	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
521 	return microcode_update_handler();
522 }
523 
524 static int load_cpus_stopped(void *unused)
525 {
526 	if (microcode_ops->use_nmi) {
527 		/* Enable the NMI handler and raise NMI */
528 		this_cpu_write(ucode_ctrl.nmi_enabled, true);
529 		apic->send_IPI(smp_processor_id(), NMI_VECTOR);
530 	} else {
531 		/* Just invoke the handler directly */
532 		microcode_update_handler();
533 	}
534 	return 0;
535 }
536 
537 static int load_late_stop_cpus(bool is_safe)
538 {
539 	unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0;
540 	unsigned int nr_offl, offline = 0;
541 	int old_rev = boot_cpu_data.microcode;
542 	struct cpuinfo_x86 prev_info;
543 
544 	if (!is_safe) {
545 		pr_err("Late microcode loading without minimal revision check.\n");
546 		pr_err("You should switch to early loading, if possible.\n");
547 	}
548 
549 	atomic_set(&late_cpus_in, num_online_cpus());
550 	atomic_set(&offline_in_nmi, 0);
551 	loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000);
552 
553 	/*
554 	 * Take a snapshot before the microcode update in order to compare and
555 	 * check whether any bits changed after an update.
556 	 */
557 	store_cpu_caps(&prev_info);
558 
559 	if (microcode_ops->use_nmi)
560 		static_branch_enable_cpuslocked(&microcode_nmi_handler_enable);
561 
562 	stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask);
563 
564 	if (microcode_ops->use_nmi)
565 		static_branch_disable_cpuslocked(&microcode_nmi_handler_enable);
566 
567 	/* Analyze the results */
568 	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
569 		switch (per_cpu(ucode_ctrl.result, cpu)) {
570 		case UCODE_UPDATED:	updated++; break;
571 		case UCODE_TIMEOUT:	timedout++; break;
572 		case UCODE_OK:		siblings++; break;
573 		case UCODE_OFFLINE:	offline++; break;
574 		default:		failed++; break;
575 		}
576 	}
577 
578 	if (microcode_ops->finalize_late_load)
579 		microcode_ops->finalize_late_load(!updated);
580 
581 	if (!updated) {
582 		/* Nothing changed. */
583 		if (!failed && !timedout)
584 			return 0;
585 
586 		nr_offl = cpumask_weight(&cpu_offline_mask);
587 		if (offline < nr_offl) {
588 			pr_warn("%u offline siblings did not respond.\n",
589 				nr_offl - atomic_read(&offline_in_nmi));
590 			return -EIO;
591 		}
592 		pr_err("update failed: %u CPUs failed %u CPUs timed out\n",
593 		       failed, timedout);
594 		return -EIO;
595 	}
596 
597 	if (!is_safe || failed || timedout)
598 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
599 
600 	pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings);
601 	if (failed || timedout) {
602 		pr_err("load incomplete. %u CPUs timed out or failed\n",
603 		       num_online_cpus() - (updated + siblings));
604 	}
605 	pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode);
606 	microcode_check(&prev_info);
607 
608 	return updated + siblings == num_online_cpus() ? 0 : -EIO;
609 }
610 
611 /*
612  * This function does two things:
613  *
614  * 1) Ensure that all required CPUs which are present and have been booted
615  *    once are online.
616  *
617  *    To pass this check, all primary threads must be online.
618  *
619  *    If the microcode load is not safe against NMI then all SMT threads
620  *    must be online as well because they still react to NMIs when they are
621  *    soft-offlined and parked in one of the play_dead() variants. So if a
622  *    NMI hits while the primary thread updates the microcode the resulting
623  *    behaviour is undefined. The default play_dead() implementation on
624  *    modern CPUs uses MWAIT, which is also not guaranteed to be safe
625  *    against a microcode update which affects MWAIT.
626  *
627  *    As soft-offlined CPUs still react on NMIs, the SMT sibling
628  *    restriction can be lifted when the vendor driver signals to use NMI
629  *    for rendezvous and the APIC provides a mechanism to send an NMI to a
630  *    soft-offlined CPU. The soft-offlined CPUs are then able to
631  *    participate in the rendezvous in a trivial stub handler.
632  *
633  * 2) Initialize the per CPU control structure and create a cpumask
634  *    which contains "offline"; secondary threads, so they can be handled
635  *    correctly by a control CPU.
636  */
637 static bool setup_cpus(void)
638 {
639 	struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, };
640 	bool allow_smt_offline;
641 	unsigned int cpu;
642 
643 	allow_smt_offline = microcode_ops->nmi_safe ||
644 		(microcode_ops->use_nmi && apic->nmi_to_offline_cpu);
645 
646 	cpumask_clear(&cpu_offline_mask);
647 
648 	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
649 		/*
650 		 * Offline CPUs sit in one of the play_dead() functions
651 		 * with interrupts disabled, but they still react on NMIs
652 		 * and execute arbitrary code. Also MWAIT being updated
653 		 * while the offline CPU sits there is not necessarily safe
654 		 * on all CPU variants.
655 		 *
656 		 * Mark them in the offline_cpus mask which will be handled
657 		 * by CPU0 later in the update process.
658 		 *
659 		 * Ensure that the primary thread is online so that it is
660 		 * guaranteed that all cores are updated.
661 		 */
662 		if (!cpu_online(cpu)) {
663 			if (topology_is_primary_thread(cpu) || !allow_smt_offline) {
664 				pr_err("CPU %u not online, loading aborted\n", cpu);
665 				return false;
666 			}
667 			cpumask_set_cpu(cpu, &cpu_offline_mask);
668 			per_cpu(ucode_ctrl, cpu) = ctrl;
669 			continue;
670 		}
671 
672 		/*
673 		 * Initialize the per CPU state. This is core scope for now,
674 		 * but prepared to take package or system scope into account.
675 		 */
676 		ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu));
677 		per_cpu(ucode_ctrl, cpu) = ctrl;
678 	}
679 	return true;
680 }
681 
682 static int load_late_locked(void)
683 {
684 	if (!setup_cpus())
685 		return -EBUSY;
686 
687 	switch (microcode_ops->request_microcode_fw(0, &microcode_pdev->dev)) {
688 	case UCODE_NEW:
689 		return load_late_stop_cpus(false);
690 	case UCODE_NEW_SAFE:
691 		return load_late_stop_cpus(true);
692 	case UCODE_NFOUND:
693 		return -ENOENT;
694 	default:
695 		return -EBADFD;
696 	}
697 }
698 
699 static ssize_t reload_store(struct device *dev,
700 			    struct device_attribute *attr,
701 			    const char *buf, size_t size)
702 {
703 	unsigned long val;
704 	ssize_t ret;
705 
706 	ret = kstrtoul(buf, 0, &val);
707 	if (ret || val != 1)
708 		return -EINVAL;
709 
710 	cpus_read_lock();
711 	ret = load_late_locked();
712 	cpus_read_unlock();
713 
714 	return ret ? : size;
715 }
716 
717 static DEVICE_ATTR_WO(reload);
718 #endif
719 
720 static ssize_t version_show(struct device *dev,
721 			struct device_attribute *attr, char *buf)
722 {
723 	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
724 
725 	return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
726 }
727 
728 static ssize_t processor_flags_show(struct device *dev,
729 			struct device_attribute *attr, char *buf)
730 {
731 	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
732 
733 	return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
734 }
735 
736 static DEVICE_ATTR_RO(version);
737 static DEVICE_ATTR_RO(processor_flags);
738 
739 static struct attribute *mc_default_attrs[] = {
740 	&dev_attr_version.attr,
741 	&dev_attr_processor_flags.attr,
742 	NULL
743 };
744 
745 static const struct attribute_group mc_attr_group = {
746 	.attrs			= mc_default_attrs,
747 	.name			= "microcode",
748 };
749 
750 static void microcode_fini_cpu(int cpu)
751 {
752 	if (microcode_ops->microcode_fini_cpu)
753 		microcode_ops->microcode_fini_cpu(cpu);
754 }
755 
756 /**
757  * microcode_bsp_resume - Update boot CPU microcode during resume.
758  */
759 void microcode_bsp_resume(void)
760 {
761 	int cpu = smp_processor_id();
762 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
763 
764 	if (uci->mc)
765 		microcode_ops->apply_microcode(cpu);
766 	else
767 		reload_early_microcode(cpu);
768 }
769 
770 static struct syscore_ops mc_syscore_ops = {
771 	.resume	= microcode_bsp_resume,
772 };
773 
774 static int mc_cpu_online(unsigned int cpu)
775 {
776 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
777 	struct device *dev = get_cpu_device(cpu);
778 
779 	memset(uci, 0, sizeof(*uci));
780 
781 	microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
782 	cpu_data(cpu).microcode = uci->cpu_sig.rev;
783 	if (!cpu)
784 		boot_cpu_data.microcode = uci->cpu_sig.rev;
785 
786 	if (sysfs_create_group(&dev->kobj, &mc_attr_group))
787 		pr_err("Failed to create group for CPU%d\n", cpu);
788 	return 0;
789 }
790 
791 static int mc_cpu_down_prep(unsigned int cpu)
792 {
793 	struct device *dev = get_cpu_device(cpu);
794 
795 	microcode_fini_cpu(cpu);
796 	sysfs_remove_group(&dev->kobj, &mc_attr_group);
797 	return 0;
798 }
799 
800 static struct attribute *cpu_root_microcode_attrs[] = {
801 #ifdef CONFIG_MICROCODE_LATE_LOADING
802 	&dev_attr_reload.attr,
803 #endif
804 	NULL
805 };
806 
807 static const struct attribute_group cpu_root_microcode_group = {
808 	.name  = "microcode",
809 	.attrs = cpu_root_microcode_attrs,
810 };
811 
812 static int __init microcode_init(void)
813 {
814 	struct device *dev_root;
815 	struct cpuinfo_x86 *c = &boot_cpu_data;
816 	int error;
817 
818 	if (dis_ucode_ldr)
819 		return -EINVAL;
820 
821 	if (c->x86_vendor == X86_VENDOR_INTEL)
822 		microcode_ops = init_intel_microcode();
823 	else if (c->x86_vendor == X86_VENDOR_AMD)
824 		microcode_ops = init_amd_microcode();
825 	else
826 		pr_err("no support for this CPU vendor\n");
827 
828 	if (!microcode_ops)
829 		return -ENODEV;
830 
831 	pr_info_once("Current revision: 0x%08x\n", (early_data.new_rev ?: early_data.old_rev));
832 
833 	if (early_data.new_rev)
834 		pr_info_once("Updated early from: 0x%08x\n", early_data.old_rev);
835 
836 	microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
837 	if (IS_ERR(microcode_pdev))
838 		return PTR_ERR(microcode_pdev);
839 
840 	dev_root = bus_get_dev_root(&cpu_subsys);
841 	if (dev_root) {
842 		error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group);
843 		put_device(dev_root);
844 		if (error) {
845 			pr_err("Error creating microcode group!\n");
846 			goto out_pdev;
847 		}
848 	}
849 
850 	register_syscore_ops(&mc_syscore_ops);
851 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
852 			  mc_cpu_online, mc_cpu_down_prep);
853 
854 	return 0;
855 
856  out_pdev:
857 	platform_device_unregister(microcode_pdev);
858 	return error;
859 
860 }
861 late_initcall(microcode_init);
862