1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CPU Microcode Update Driver for Linux 4 * 5 * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com> 6 * 2006 Shaohua Li <shaohua.li@intel.com> 7 * 2013-2016 Borislav Petkov <bp@alien8.de> 8 * 9 * X86 CPU microcode early update for Linux: 10 * 11 * Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com> 12 * H Peter Anvin" <hpa@zytor.com> 13 * (C) 2015 Borislav Petkov <bp@alien8.de> 14 * 15 * This driver allows to upgrade microcode on x86 processors. 16 */ 17 18 #define pr_fmt(fmt) "microcode: " fmt 19 20 #include <linux/platform_device.h> 21 #include <linux/stop_machine.h> 22 #include <linux/syscore_ops.h> 23 #include <linux/miscdevice.h> 24 #include <linux/capability.h> 25 #include <linux/firmware.h> 26 #include <linux/cpumask.h> 27 #include <linux/kernel.h> 28 #include <linux/delay.h> 29 #include <linux/mutex.h> 30 #include <linux/cpu.h> 31 #include <linux/nmi.h> 32 #include <linux/fs.h> 33 #include <linux/mm.h> 34 35 #include <asm/apic.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/perf_event.h> 38 #include <asm/processor.h> 39 #include <asm/cmdline.h> 40 #include <asm/setup.h> 41 42 #include "internal.h" 43 44 static struct microcode_ops *microcode_ops; 45 bool dis_ucode_ldr = true; 46 47 bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV); 48 module_param(force_minrev, bool, S_IRUSR | S_IWUSR); 49 50 /* 51 * Synchronization. 52 * 53 * All non cpu-hotplug-callback call sites use: 54 * 55 * - cpus_read_lock/unlock() to synchronize with 56 * the cpu-hotplug-callback call sites. 57 * 58 * We guarantee that only a single cpu is being 59 * updated at any particular moment of time. 60 */ 61 struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; 62 63 struct cpu_info_ctx { 64 struct cpu_signature *cpu_sig; 65 int err; 66 }; 67 68 /* 69 * Those patch levels cannot be updated to newer ones and thus should be final. 70 */ 71 static u32 final_levels[] = { 72 0x01000098, 73 0x0100009f, 74 0x010000af, 75 0, /* T-101 terminator */ 76 }; 77 78 struct early_load_data early_data; 79 80 /* 81 * Check the current patch level on this CPU. 82 * 83 * Returns: 84 * - true: if update should stop 85 * - false: otherwise 86 */ 87 static bool amd_check_current_patch_level(void) 88 { 89 u32 lvl, dummy, i; 90 u32 *levels; 91 92 native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); 93 94 levels = final_levels; 95 96 for (i = 0; levels[i]; i++) { 97 if (lvl == levels[i]) 98 return true; 99 } 100 return false; 101 } 102 103 static bool __init check_loader_disabled_bsp(void) 104 { 105 static const char *__dis_opt_str = "dis_ucode_ldr"; 106 const char *cmdline = boot_command_line; 107 const char *option = __dis_opt_str; 108 109 /* 110 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not 111 * completely accurate as xen pv guests don't see that CPUID bit set but 112 * that's good enough as they don't land on the BSP path anyway. 113 */ 114 if (native_cpuid_ecx(1) & BIT(31)) 115 return true; 116 117 if (x86_cpuid_vendor() == X86_VENDOR_AMD) { 118 if (amd_check_current_patch_level()) 119 return true; 120 } 121 122 if (cmdline_find_option_bool(cmdline, option) <= 0) 123 dis_ucode_ldr = false; 124 125 return dis_ucode_ldr; 126 } 127 128 void __init load_ucode_bsp(void) 129 { 130 unsigned int cpuid_1_eax; 131 bool intel = true; 132 133 if (!have_cpuid_p()) 134 return; 135 136 cpuid_1_eax = native_cpuid_eax(1); 137 138 switch (x86_cpuid_vendor()) { 139 case X86_VENDOR_INTEL: 140 if (x86_family(cpuid_1_eax) < 6) 141 return; 142 break; 143 144 case X86_VENDOR_AMD: 145 if (x86_family(cpuid_1_eax) < 0x10) 146 return; 147 intel = false; 148 break; 149 150 default: 151 return; 152 } 153 154 if (check_loader_disabled_bsp()) 155 return; 156 157 if (intel) 158 load_ucode_intel_bsp(&early_data); 159 else 160 load_ucode_amd_bsp(&early_data, cpuid_1_eax); 161 } 162 163 void load_ucode_ap(void) 164 { 165 unsigned int cpuid_1_eax; 166 167 if (dis_ucode_ldr) 168 return; 169 170 cpuid_1_eax = native_cpuid_eax(1); 171 172 switch (x86_cpuid_vendor()) { 173 case X86_VENDOR_INTEL: 174 if (x86_family(cpuid_1_eax) >= 6) 175 load_ucode_intel_ap(); 176 break; 177 case X86_VENDOR_AMD: 178 if (x86_family(cpuid_1_eax) >= 0x10) 179 load_ucode_amd_ap(cpuid_1_eax); 180 break; 181 default: 182 break; 183 } 184 } 185 186 struct cpio_data __init find_microcode_in_initrd(const char *path) 187 { 188 #ifdef CONFIG_BLK_DEV_INITRD 189 unsigned long start = 0; 190 size_t size; 191 192 #ifdef CONFIG_X86_32 193 size = boot_params.hdr.ramdisk_size; 194 /* Early load on BSP has a temporary mapping. */ 195 if (size) 196 start = initrd_start_early; 197 198 #else /* CONFIG_X86_64 */ 199 size = (unsigned long)boot_params.ext_ramdisk_size << 32; 200 size |= boot_params.hdr.ramdisk_size; 201 202 if (size) { 203 start = (unsigned long)boot_params.ext_ramdisk_image << 32; 204 start |= boot_params.hdr.ramdisk_image; 205 start += PAGE_OFFSET; 206 } 207 #endif 208 209 /* 210 * Fixup the start address: after reserve_initrd() runs, initrd_start 211 * has the virtual address of the beginning of the initrd. It also 212 * possibly relocates the ramdisk. In either case, initrd_start contains 213 * the updated address so use that instead. 214 */ 215 if (initrd_start) 216 start = initrd_start; 217 218 return find_cpio_data(path, (void *)start, size, NULL); 219 #else /* !CONFIG_BLK_DEV_INITRD */ 220 return (struct cpio_data){ NULL, 0, "" }; 221 #endif 222 } 223 224 static void reload_early_microcode(unsigned int cpu) 225 { 226 int vendor, family; 227 228 vendor = x86_cpuid_vendor(); 229 family = x86_cpuid_family(); 230 231 switch (vendor) { 232 case X86_VENDOR_INTEL: 233 if (family >= 6) 234 reload_ucode_intel(); 235 break; 236 case X86_VENDOR_AMD: 237 if (family >= 0x10) 238 reload_ucode_amd(cpu); 239 break; 240 default: 241 break; 242 } 243 } 244 245 /* fake device for request_firmware */ 246 static struct platform_device *microcode_pdev; 247 248 #ifdef CONFIG_MICROCODE_LATE_LOADING 249 /* 250 * Late loading dance. Why the heavy-handed stomp_machine effort? 251 * 252 * - HT siblings must be idle and not execute other code while the other sibling 253 * is loading microcode in order to avoid any negative interactions caused by 254 * the loading. 255 * 256 * - In addition, microcode update on the cores must be serialized until this 257 * requirement can be relaxed in the future. Right now, this is conservative 258 * and good. 259 */ 260 enum sibling_ctrl { 261 /* Spinwait with timeout */ 262 SCTRL_WAIT, 263 /* Invoke the microcode_apply() callback */ 264 SCTRL_APPLY, 265 /* Proceed without invoking the microcode_apply() callback */ 266 SCTRL_DONE, 267 }; 268 269 struct microcode_ctrl { 270 enum sibling_ctrl ctrl; 271 enum ucode_state result; 272 unsigned int ctrl_cpu; 273 bool nmi_enabled; 274 }; 275 276 DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable); 277 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl); 278 static atomic_t late_cpus_in, offline_in_nmi; 279 static unsigned int loops_per_usec; 280 static cpumask_t cpu_offline_mask; 281 282 static noinstr bool wait_for_cpus(atomic_t *cnt) 283 { 284 unsigned int timeout, loops; 285 286 WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0); 287 288 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 289 if (!raw_atomic_read(cnt)) 290 return true; 291 292 for (loops = 0; loops < loops_per_usec; loops++) 293 cpu_relax(); 294 295 /* If invoked directly, tickle the NMI watchdog */ 296 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { 297 instrumentation_begin(); 298 touch_nmi_watchdog(); 299 instrumentation_end(); 300 } 301 } 302 /* Prevent the late comers from making progress and let them time out */ 303 raw_atomic_inc(cnt); 304 return false; 305 } 306 307 static noinstr bool wait_for_ctrl(void) 308 { 309 unsigned int timeout, loops; 310 311 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 312 if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT) 313 return true; 314 315 for (loops = 0; loops < loops_per_usec; loops++) 316 cpu_relax(); 317 318 /* If invoked directly, tickle the NMI watchdog */ 319 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { 320 instrumentation_begin(); 321 touch_nmi_watchdog(); 322 instrumentation_end(); 323 } 324 } 325 return false; 326 } 327 328 /* 329 * Protected against instrumentation up to the point where the primary 330 * thread completed the update. See microcode_nmi_handler() for details. 331 */ 332 static noinstr bool load_secondary_wait(unsigned int ctrl_cpu) 333 { 334 /* Initial rendezvous to ensure that all CPUs have arrived */ 335 if (!wait_for_cpus(&late_cpus_in)) { 336 raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 337 return false; 338 } 339 340 /* 341 * Wait for primary threads to complete. If one of them hangs due 342 * to the update, there is no way out. This is non-recoverable 343 * because the CPU might hold locks or resources and confuse the 344 * scheduler, watchdogs etc. There is no way to safely evacuate the 345 * machine. 346 */ 347 if (wait_for_ctrl()) 348 return true; 349 350 instrumentation_begin(); 351 panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu); 352 instrumentation_end(); 353 } 354 355 /* 356 * Protected against instrumentation up to the point where the primary 357 * thread completed the update. See microcode_nmi_handler() for details. 358 */ 359 static noinstr void load_secondary(unsigned int cpu) 360 { 361 unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu); 362 enum ucode_state ret; 363 364 if (!load_secondary_wait(ctrl_cpu)) { 365 instrumentation_begin(); 366 pr_err_once("load: %d CPUs timed out\n", 367 atomic_read(&late_cpus_in) - 1); 368 instrumentation_end(); 369 return; 370 } 371 372 /* Primary thread completed. Allow to invoke instrumentable code */ 373 instrumentation_begin(); 374 /* 375 * If the primary succeeded then invoke the apply() callback, 376 * otherwise copy the state from the primary thread. 377 */ 378 if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY) 379 ret = microcode_ops->apply_microcode(cpu); 380 else 381 ret = per_cpu(ucode_ctrl.result, ctrl_cpu); 382 383 this_cpu_write(ucode_ctrl.result, ret); 384 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 385 instrumentation_end(); 386 } 387 388 static void __load_primary(unsigned int cpu) 389 { 390 struct cpumask *secondaries = topology_sibling_cpumask(cpu); 391 enum sibling_ctrl ctrl; 392 enum ucode_state ret; 393 unsigned int sibling; 394 395 /* Initial rendezvous to ensure that all CPUs have arrived */ 396 if (!wait_for_cpus(&late_cpus_in)) { 397 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 398 pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1); 399 return; 400 } 401 402 ret = microcode_ops->apply_microcode(cpu); 403 this_cpu_write(ucode_ctrl.result, ret); 404 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 405 406 /* 407 * If the update was successful, let the siblings run the apply() 408 * callback. If not, tell them it's done. This also covers the 409 * case where the CPU has uniform loading at package or system 410 * scope implemented but does not advertise it. 411 */ 412 if (ret == UCODE_UPDATED || ret == UCODE_OK) 413 ctrl = SCTRL_APPLY; 414 else 415 ctrl = SCTRL_DONE; 416 417 for_each_cpu(sibling, secondaries) { 418 if (sibling != cpu) 419 per_cpu(ucode_ctrl.ctrl, sibling) = ctrl; 420 } 421 } 422 423 static bool kick_offline_cpus(unsigned int nr_offl) 424 { 425 unsigned int cpu, timeout; 426 427 for_each_cpu(cpu, &cpu_offline_mask) { 428 /* Enable the rendezvous handler and send NMI */ 429 per_cpu(ucode_ctrl.nmi_enabled, cpu) = true; 430 apic_send_nmi_to_offline_cpu(cpu); 431 } 432 433 /* Wait for them to arrive */ 434 for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) { 435 if (atomic_read(&offline_in_nmi) == nr_offl) 436 return true; 437 udelay(1); 438 } 439 /* Let the others time out */ 440 return false; 441 } 442 443 static void release_offline_cpus(void) 444 { 445 unsigned int cpu; 446 447 for_each_cpu(cpu, &cpu_offline_mask) 448 per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE; 449 } 450 451 static void load_primary(unsigned int cpu) 452 { 453 unsigned int nr_offl = cpumask_weight(&cpu_offline_mask); 454 bool proceed = true; 455 456 /* Kick soft-offlined SMT siblings if required */ 457 if (!cpu && nr_offl) 458 proceed = kick_offline_cpus(nr_offl); 459 460 /* If the soft-offlined CPUs did not respond, abort */ 461 if (proceed) 462 __load_primary(cpu); 463 464 /* Unconditionally release soft-offlined SMT siblings if required */ 465 if (!cpu && nr_offl) 466 release_offline_cpus(); 467 } 468 469 /* 470 * Minimal stub rendezvous handler for soft-offlined CPUs which participate 471 * in the NMI rendezvous to protect against a concurrent NMI on affected 472 * CPUs. 473 */ 474 void noinstr microcode_offline_nmi_handler(void) 475 { 476 if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) 477 return; 478 raw_cpu_write(ucode_ctrl.nmi_enabled, false); 479 raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE); 480 raw_atomic_inc(&offline_in_nmi); 481 wait_for_ctrl(); 482 } 483 484 static noinstr bool microcode_update_handler(void) 485 { 486 unsigned int cpu = raw_smp_processor_id(); 487 488 if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) { 489 instrumentation_begin(); 490 load_primary(cpu); 491 instrumentation_end(); 492 } else { 493 load_secondary(cpu); 494 } 495 496 instrumentation_begin(); 497 touch_nmi_watchdog(); 498 instrumentation_end(); 499 500 return true; 501 } 502 503 /* 504 * Protection against instrumentation is required for CPUs which are not 505 * safe against an NMI which is delivered to the secondary SMT sibling 506 * while the primary thread updates the microcode. Instrumentation can end 507 * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI 508 * which is the opposite of what the NMI rendezvous is trying to achieve. 509 * 510 * The primary thread is safe versus instrumentation as the actual 511 * microcode update handles this correctly. It's only the sibling code 512 * path which must be NMI safe until the primary thread completed the 513 * update. 514 */ 515 bool noinstr microcode_nmi_handler(void) 516 { 517 if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) 518 return false; 519 520 raw_cpu_write(ucode_ctrl.nmi_enabled, false); 521 return microcode_update_handler(); 522 } 523 524 static int load_cpus_stopped(void *unused) 525 { 526 if (microcode_ops->use_nmi) { 527 /* Enable the NMI handler and raise NMI */ 528 this_cpu_write(ucode_ctrl.nmi_enabled, true); 529 apic->send_IPI(smp_processor_id(), NMI_VECTOR); 530 } else { 531 /* Just invoke the handler directly */ 532 microcode_update_handler(); 533 } 534 return 0; 535 } 536 537 static int load_late_stop_cpus(bool is_safe) 538 { 539 unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0; 540 unsigned int nr_offl, offline = 0; 541 int old_rev = boot_cpu_data.microcode; 542 struct cpuinfo_x86 prev_info; 543 544 if (!is_safe) { 545 pr_err("Late microcode loading without minimal revision check.\n"); 546 pr_err("You should switch to early loading, if possible.\n"); 547 } 548 549 atomic_set(&late_cpus_in, num_online_cpus()); 550 atomic_set(&offline_in_nmi, 0); 551 loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000); 552 553 /* 554 * Take a snapshot before the microcode update in order to compare and 555 * check whether any bits changed after an update. 556 */ 557 store_cpu_caps(&prev_info); 558 559 if (microcode_ops->use_nmi) 560 static_branch_enable_cpuslocked(µcode_nmi_handler_enable); 561 562 stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask); 563 564 if (microcode_ops->use_nmi) 565 static_branch_disable_cpuslocked(µcode_nmi_handler_enable); 566 567 /* Analyze the results */ 568 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 569 switch (per_cpu(ucode_ctrl.result, cpu)) { 570 case UCODE_UPDATED: updated++; break; 571 case UCODE_TIMEOUT: timedout++; break; 572 case UCODE_OK: siblings++; break; 573 case UCODE_OFFLINE: offline++; break; 574 default: failed++; break; 575 } 576 } 577 578 if (microcode_ops->finalize_late_load) 579 microcode_ops->finalize_late_load(!updated); 580 581 if (!updated) { 582 /* Nothing changed. */ 583 if (!failed && !timedout) 584 return 0; 585 586 nr_offl = cpumask_weight(&cpu_offline_mask); 587 if (offline < nr_offl) { 588 pr_warn("%u offline siblings did not respond.\n", 589 nr_offl - atomic_read(&offline_in_nmi)); 590 return -EIO; 591 } 592 pr_err("update failed: %u CPUs failed %u CPUs timed out\n", 593 failed, timedout); 594 return -EIO; 595 } 596 597 if (!is_safe || failed || timedout) 598 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 599 600 pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings); 601 if (failed || timedout) { 602 pr_err("load incomplete. %u CPUs timed out or failed\n", 603 num_online_cpus() - (updated + siblings)); 604 } 605 pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode); 606 microcode_check(&prev_info); 607 608 return updated + siblings == num_online_cpus() ? 0 : -EIO; 609 } 610 611 /* 612 * This function does two things: 613 * 614 * 1) Ensure that all required CPUs which are present and have been booted 615 * once are online. 616 * 617 * To pass this check, all primary threads must be online. 618 * 619 * If the microcode load is not safe against NMI then all SMT threads 620 * must be online as well because they still react to NMIs when they are 621 * soft-offlined and parked in one of the play_dead() variants. So if a 622 * NMI hits while the primary thread updates the microcode the resulting 623 * behaviour is undefined. The default play_dead() implementation on 624 * modern CPUs uses MWAIT, which is also not guaranteed to be safe 625 * against a microcode update which affects MWAIT. 626 * 627 * As soft-offlined CPUs still react on NMIs, the SMT sibling 628 * restriction can be lifted when the vendor driver signals to use NMI 629 * for rendezvous and the APIC provides a mechanism to send an NMI to a 630 * soft-offlined CPU. The soft-offlined CPUs are then able to 631 * participate in the rendezvous in a trivial stub handler. 632 * 633 * 2) Initialize the per CPU control structure and create a cpumask 634 * which contains "offline"; secondary threads, so they can be handled 635 * correctly by a control CPU. 636 */ 637 static bool setup_cpus(void) 638 { 639 struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, }; 640 bool allow_smt_offline; 641 unsigned int cpu; 642 643 allow_smt_offline = microcode_ops->nmi_safe || 644 (microcode_ops->use_nmi && apic->nmi_to_offline_cpu); 645 646 cpumask_clear(&cpu_offline_mask); 647 648 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 649 /* 650 * Offline CPUs sit in one of the play_dead() functions 651 * with interrupts disabled, but they still react on NMIs 652 * and execute arbitrary code. Also MWAIT being updated 653 * while the offline CPU sits there is not necessarily safe 654 * on all CPU variants. 655 * 656 * Mark them in the offline_cpus mask which will be handled 657 * by CPU0 later in the update process. 658 * 659 * Ensure that the primary thread is online so that it is 660 * guaranteed that all cores are updated. 661 */ 662 if (!cpu_online(cpu)) { 663 if (topology_is_primary_thread(cpu) || !allow_smt_offline) { 664 pr_err("CPU %u not online, loading aborted\n", cpu); 665 return false; 666 } 667 cpumask_set_cpu(cpu, &cpu_offline_mask); 668 per_cpu(ucode_ctrl, cpu) = ctrl; 669 continue; 670 } 671 672 /* 673 * Initialize the per CPU state. This is core scope for now, 674 * but prepared to take package or system scope into account. 675 */ 676 ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu)); 677 per_cpu(ucode_ctrl, cpu) = ctrl; 678 } 679 return true; 680 } 681 682 static int load_late_locked(void) 683 { 684 if (!setup_cpus()) 685 return -EBUSY; 686 687 switch (microcode_ops->request_microcode_fw(0, µcode_pdev->dev)) { 688 case UCODE_NEW: 689 return load_late_stop_cpus(false); 690 case UCODE_NEW_SAFE: 691 return load_late_stop_cpus(true); 692 case UCODE_NFOUND: 693 return -ENOENT; 694 default: 695 return -EBADFD; 696 } 697 } 698 699 static ssize_t reload_store(struct device *dev, 700 struct device_attribute *attr, 701 const char *buf, size_t size) 702 { 703 unsigned long val; 704 ssize_t ret; 705 706 ret = kstrtoul(buf, 0, &val); 707 if (ret || val != 1) 708 return -EINVAL; 709 710 cpus_read_lock(); 711 ret = load_late_locked(); 712 cpus_read_unlock(); 713 714 return ret ? : size; 715 } 716 717 static DEVICE_ATTR_WO(reload); 718 #endif 719 720 static ssize_t version_show(struct device *dev, 721 struct device_attribute *attr, char *buf) 722 { 723 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 724 725 return sprintf(buf, "0x%x\n", uci->cpu_sig.rev); 726 } 727 728 static ssize_t processor_flags_show(struct device *dev, 729 struct device_attribute *attr, char *buf) 730 { 731 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 732 733 return sprintf(buf, "0x%x\n", uci->cpu_sig.pf); 734 } 735 736 static DEVICE_ATTR_RO(version); 737 static DEVICE_ATTR_RO(processor_flags); 738 739 static struct attribute *mc_default_attrs[] = { 740 &dev_attr_version.attr, 741 &dev_attr_processor_flags.attr, 742 NULL 743 }; 744 745 static const struct attribute_group mc_attr_group = { 746 .attrs = mc_default_attrs, 747 .name = "microcode", 748 }; 749 750 static void microcode_fini_cpu(int cpu) 751 { 752 if (microcode_ops->microcode_fini_cpu) 753 microcode_ops->microcode_fini_cpu(cpu); 754 } 755 756 /** 757 * microcode_bsp_resume - Update boot CPU microcode during resume. 758 */ 759 void microcode_bsp_resume(void) 760 { 761 int cpu = smp_processor_id(); 762 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 763 764 if (uci->mc) 765 microcode_ops->apply_microcode(cpu); 766 else 767 reload_early_microcode(cpu); 768 } 769 770 static struct syscore_ops mc_syscore_ops = { 771 .resume = microcode_bsp_resume, 772 }; 773 774 static int mc_cpu_online(unsigned int cpu) 775 { 776 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 777 struct device *dev = get_cpu_device(cpu); 778 779 memset(uci, 0, sizeof(*uci)); 780 781 microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig); 782 cpu_data(cpu).microcode = uci->cpu_sig.rev; 783 if (!cpu) 784 boot_cpu_data.microcode = uci->cpu_sig.rev; 785 786 if (sysfs_create_group(&dev->kobj, &mc_attr_group)) 787 pr_err("Failed to create group for CPU%d\n", cpu); 788 return 0; 789 } 790 791 static int mc_cpu_down_prep(unsigned int cpu) 792 { 793 struct device *dev = get_cpu_device(cpu); 794 795 microcode_fini_cpu(cpu); 796 sysfs_remove_group(&dev->kobj, &mc_attr_group); 797 return 0; 798 } 799 800 static struct attribute *cpu_root_microcode_attrs[] = { 801 #ifdef CONFIG_MICROCODE_LATE_LOADING 802 &dev_attr_reload.attr, 803 #endif 804 NULL 805 }; 806 807 static const struct attribute_group cpu_root_microcode_group = { 808 .name = "microcode", 809 .attrs = cpu_root_microcode_attrs, 810 }; 811 812 static int __init microcode_init(void) 813 { 814 struct device *dev_root; 815 struct cpuinfo_x86 *c = &boot_cpu_data; 816 int error; 817 818 if (dis_ucode_ldr) 819 return -EINVAL; 820 821 if (c->x86_vendor == X86_VENDOR_INTEL) 822 microcode_ops = init_intel_microcode(); 823 else if (c->x86_vendor == X86_VENDOR_AMD) 824 microcode_ops = init_amd_microcode(); 825 else 826 pr_err("no support for this CPU vendor\n"); 827 828 if (!microcode_ops) 829 return -ENODEV; 830 831 pr_info_once("Current revision: 0x%08x\n", (early_data.new_rev ?: early_data.old_rev)); 832 833 if (early_data.new_rev) 834 pr_info_once("Updated early from: 0x%08x\n", early_data.old_rev); 835 836 microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0); 837 if (IS_ERR(microcode_pdev)) 838 return PTR_ERR(microcode_pdev); 839 840 dev_root = bus_get_dev_root(&cpu_subsys); 841 if (dev_root) { 842 error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group); 843 put_device(dev_root); 844 if (error) { 845 pr_err("Error creating microcode group!\n"); 846 goto out_pdev; 847 } 848 } 849 850 register_syscore_ops(&mc_syscore_ops); 851 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online", 852 mc_cpu_online, mc_cpu_down_prep); 853 854 return 0; 855 856 out_pdev: 857 platform_device_unregister(microcode_pdev); 858 return error; 859 860 } 861 late_initcall(microcode_init); 862